


Securing the PlanetLab Distributed Testbed Brett, Bowman, Sedayao, Adams, Knauerhase, and Klingaman

which are hosted by a variety of universities, corpora-
tions, and other organizations. The nodes are dedi-
cated running PlanetLab. They run a special version of
Linux (detailed later in the paper) and are adminis-
tered remotely (including patching) by a set of admin-
istrators focus on PlanetLab. The set of initial test bed
machines was seeded by a grant from Intel Corpora-
tion, but now new member organizations must con-
tribute nodes as a condition of joining the test bed.
Hosting organizations provide electrical power, physi-
cal space, and network connectivity to their nodes.
PlanetLab administrators have physical access to
almost none of the nodes, and the turnaround on phys-
ical work requests on the machines is on the order of
days. Administrative and system burden on the host-
ing organization is deliberately limited (we don’t
require remote consoles, for example), in order to
make joining the testbed as painless as possible.
Security Challenges

Because of the nature of the research done on
PlanetLab – requiring unfettered access to the network
and frequently resulting in non-standard traffic pat-
terns – the nodes are generally positioned outside of
the hosting organization’s firewall. A consequence of
this is that nodes are typically not protected by any
kind of filtering of inbound traffic, and lack of the out-
bound filtering permits all kinds of traffic, some of
which will be interpreted as hostile, to be sent out.

PlanetLab users perform distributed systems
research. Accomplishing this frequently requires great
flexibility on the part of the system – for example,
requiring root access to perform certain functions, or
wishing to use the system in odd ways (or replace part
of the system with their own code). At the same time,
the node must remain stable enough for use. More-
over, researchers don’t want other experiments affect-
ing their experiment (as well as the converse).

PlanetLab nodes are administratively very com-
plex – they consist of machines in different networks
and administrative domains, providing access to
researchers who are at arbitrary locations in other
administrative domains and who do odd, non-standard
things. Keeping control of the nodes is a difficult
problem. That control rests with a centralized group of
PlanetLab system administrators who develop and
maintain the base operating system (including patches
for security and for PlanetLab functionality) and the
associated management utilities.

Host organizations also frequently have require-
ments that they be able to control nodes on their net-
work. One concern that host organizations have is that
PlanetLab nodes would be used for nefarious purposes.
Sites would need ways to audit PlanetLab usage to help
them deal with any possible complaints that received
about PlanetLab node behavior. Despite the trust that

1The PlanetLab consortium is hosted by Princeton Univer-
sity, and their staff serve as centralized PlanetLab system ad-
ministrators.

sites have shown by hosting PlanetLab nodes, we antic-
ipated that at some point PlanetLab nodes could be
compromised. We needed a mechanism be able to
remotely regain control of hosts when this happened.
Nodes would need to be brought to a safe known state
for forensics and for removal of vulnerabilities. Also,
the ability to remotely power cycle a node would not be
enough. While that functionality is extremely useful for
remote managing machines when they get hung, it does
not implicitly put the PlanetLab node into a state where
it can be debugged remotely.

Summary
The security key problems faced are summarized

as the following:
• Create a full and rich development environment

where users have tremendous flexibility while
being isolated from each other and the native
OS environment.

• Make it possible, even comfortable for sites to
host PlanetLab nodes despite possible com-
plaints about node behavior and the fact that the
local site does not fully control the node

• Be able to regain control of PlanetLab nodes
even if they are compromised.

Related Work

There are a number of large distributed/network
testbeds that deal with similar issues. Emulab [2] is a
network testbed that has many of the same concerns as
PlanetLab. Emulab uses the FreeBSD jail [3] to isolate
experiments in a type of virtual machine. PlanetLab
differs from Emulab in that PlanetLab emphasizes the
development of services and APIs and also aims to be
a deployment platform for services. Also, while Emu-
lab nodes talk primarily to each other, PlanetLab
nodes are encouraged to and often do communicate
with non-PlanetLab nodes, making the need for an
audit trail of PlanetLab node more critical.

As we describe later, PlanetLab uses a virtualiza-
tion technology to isolate users from each others while
giving them a very flexible environment, not unlike
Emulab’s use of a chroot jail. Related work in the vir-
tualization area are Xen [4] and Denali [5]. A number
of PlanetLab nodes are even running on top of Xen.

Other work has been done to manage an environ-
ment where users have tremendous flexibility and
need the equivalent of root. Leon, et al., [6] discuss
how they manage an environment where all users have
root. Like the environment described, PlanetLab takes
advantage of having sophisticated users who are will-
ing and capable of managing their own environment.
PlanetLab is not intended as a desktop environment
where users perform activities such as receive mail.

The Grid has been compared to PlanetLab in [7].
PlanetLab differs in that it is more network centric vs.
compute-centric than the Grid. Many PlanetLab appli-
cations, such as network measurement [8] and content

196 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



Brett, Bowman, Sedayao, Adams, Knauerhase, and Klingaman Securing the PlanetLab Distributed Testbed

distribution [9, 10], rely on geographic and network
dispersal to be effective, while rarely being CPU
intensive. Dispersal of Grid resources tend to be more
accidental than intentional. Also, Grid resources are
shared (compared to dedicated PlanetLab node) and
typically more heterogeneous than PlanetLab nodes
and are not centrally managed like PlanetLab. The net-
work-centric application mix of PlanetLab, particu-
larly with network measurement and content distribu-
tion, makes the audit trail requirement more pressing.

Security Design and Implementation

There are many points of control that must be
managed to provide top-to-bottom control of the sys-
tem. The first are the users who must use the system’s
resources in a reasonable way, as not to provoke sites
into removing the hosts. Next, resource utilization,
such as network, CPU, and disk space, for each user
must operate within certain bounds. The platform
must be remotely controlled. The booted operating
system and base execution environment must be
installed securely and controlled remotely. This sec-
tion describes each of these pieces and how they are
controlled and secured.

AUP

The PlanetLab users operate within the limits of
a published Acceptable Use Policy (AUP). All Planet-
Lab users get access to PlanetLab by first creating an
account at PlanetLab Central. One step in this signup
is the user’s acceptance of the AUP. Since PlanetLab
is a testbed for experiments in new Internet technolo-
gies, it is difficult to enumerate specific limits within
which users must operate. Of course, malicious activ-
ity, attempts to subvert the PlanetLab security and
authorization system, illegal activities, excessive node
use and activities that exceed the usual limits of net-
work propriety are called out, but the general rule is
‘‘do no harm.’’ The AUP instructs PlanetLab users to
ask what activities would cause network and resource
alerts in their own site and then consider the same sort
of limits on the remainder of the PlanetLab modes.

User Isolation

To provide a rich development environment to
users yet provide user isolation, we modified the base
OS of PlanetLab nodes [11]. PlanetLab administrators
use a lightweight virtual machine abstraction provided
by the Linux VServer [12] implementation. Each
research group getting access to a node receives a
chrooted virtual Linux machine, which we will call a
vserver. The user API effectively becomes Linux.
VServers virtualize machines at the system call level,
above the kernel. Virtualizing at this level allows us to
scale to 1000 virtual machines at the cost of weaker
isolation, something not possible with other VMM
implementations like VMWARE [13] or Xen [4]. To
use the PlanetLab network, researchers get ‘‘slices’’ of
the infrastructure. Slices are collections of accounts on

some set of nodes across the network. These accounts
on a node are isolated within vservers, with the excep-
tion of some administrative slices.

Network isolation is achieved through a ‘‘safe raw
sockets’’ implementation [14], part of the SILK pack-
age, which is derived from Scout [15]. This implemen-
tation provides controlled access to the network stack
by what appears to be raw sockets without granting
root privilege. It also isolates traffic, preventing indi-
vidual virtual machines from snooping on each other’s
traffic. In addition to isolating network traffic, SILK
provides CPU guarantees and enforces usage policy.
The Linux Traffic control facility [12] is used to man-
age the bandwidth utilization and implement bandwidth
policies. We allow site administrators to set the amount
of bandwidth that each PlanetLab node can use.

SILK also provides network traffic auditing capa-
bility. SILK tags each packet with the ID of the
VServer that sent it and provides an administrative port
for snooping outgoing traffic. We also created black-
lists that would prevent a PlanetLab node from con-
tacting some set of IP addresses. PlanetLab administra-
tors install these blacklists, and local site administrator
can request that nodes or networks be placed on them.
Care needs to be taken in the installation of blacklists
to prevent nodes from being made totally inaccessible.

Reporting

PlanetLab’s geographic distribution makes it
ideal for mapping the Internet. It seems that many
researchers first build a ‘‘Hello world’’ application
that pings other PlanetLab and non-PlanetLab nodes to
discover timing and connectivity information.
Repeated pings, IP address space scanning and port
scanning are just the activities that set off Snort [16],
and other network monitoring tool alarms. Even some
‘‘well designed’’ probing applications (i.e., with built
in flow restriction to avoid complaints) have set off
alarms. This implies that some sites have very tight
restrictions on probing and mapping activities.

To handle an inappropriate traffic incident, we
need to map the reported activity from the network
traffic to the experimenter. A traffic report usually
contains a time and a source and destination IP
address. Additionally, traffic reports relate to an inci-
dent in the past. We found that most conventional traf-
fic monitoring tools are for watching current traffic
and not recording and querying past traffic.

These problems (mapping, delay and distribu-
tion) led to the development of tools which have each
node collecting information on its own network traffic
(in and out), saving that information and eventually
reporting that information to a central repository.

As mentioned above, the kernel’s network stack
was enhanced with SILK to return information on
which IP addresses to which the slivers were communi-
cating. An administrative application named ‘‘netflow’’

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 197



Securing the PlanetLab Distributed Testbed Brett, Bowman, Sedayao, Adams, Knauerhase, and Klingaman

analyzes this information every five minutes and cal-
culates the ‘‘flows’’ – the connections from a source to
a destination by some slice. This information is saved
to a file. These files are kept on the node and are even-
tually copied to PlanetLab Central where they are
available for analysis if problem reports arrive.

This flow information is then made available on
each node and from PlanetLab Central. Each Planet-
Lab node runs a web server on the standard web port
(80) that gives information about PlanetLab, about the
node and allows browsing through the flow informa-
tion. This allows local administrators of sites hosting
PlanetLab nodes to respond to traffic and security
alerts. Through the web page, an administrator can
search for the reported destination IP addresses and
trace this to the email address of the researcher. If a
remote (not at the PlanetLab site) network administra-
tor receives reports about the traffic from a PlanetLab
node, that administrator can contact the experimenter
directly. In this way, the reporting facility removes
PlanetLab administrators from the chain of contacts
regarding a perceived incident, reducing the time to
respond to security complaints. Given the exposure of
this web server (no passwords or accounts are needed
to access it), web pages are implemented in simple
HTML (no java, javascript, or PHP) with no user text
input required for selecting looking at traffic patterns.

The requirement on the PlanetLab infrastructure
for providing this service is maintaining a mapping
between service operators (the researchers). This
means a verifiable system of user identities and the
monitoring system that records the user of resources
and who is using them. PlanetLab thus has a extensive
system of monitoring resource use and this monitoring
system is tied into a system that authenticates users
and which provides a path back to the email of a
responsible person for any resource use.
Preventing and Dealing with Compromises

We knew that there was a substantial chance that
our exposed network of nodes could be compromised.
To deal with that possibility, we configured our
machines to boot only from a CD in a machine. Once
the machine boots, it downloads via an SSL secured
connection a gpg signed script to execute as the next
phase of the boot process. These scripts are used for
remote re-installation, normal booting, and placing the
node into a ‘‘debug’’ mode in which the network stops
all traffic except ssh connections. Since scripts for nor-
mal reboot are downloaded from a central location, we
can upgrade the kernel versions used on the hosts with-
out having to update the CD. During debug mode,
should the connection to the PlanetLab central website
become unavailable for any reason, the node will reboot
and retry the connection at 15 minute intervals. With
the debug mode, we can bring nodes into a safe known
state while preserving disk information for forensics.

The Linux kernel on PlanetLab nodes has been
modified to reboot when it receives an ICMP trigger

packet with a unique 128 bit payload which is gener-
ated for each machine and is re-generated each time a
machine reboots. We choose 128 bits to make exhaus-
tive search attacks very difficult against a single node.
Since each node has a unique packet for reboot, replay
attack is ineffective against the nodeentire PlanetLab
network. At worse, a replay attack will only cause a sin-
gle node to be rebooted. If desired, the machine can be
forced to come up into a special debug mode, to which
as described above, limits access while allowing for
forensics. While effective, this software reboot mecha-
nism suffers from the problem that the machine must
have a working network stack, and connectivity to the
internet in order to ensure a reboot. With the widescale
filtering of ICMP traffic following the SQL Slammer
worm, we now recommend that PlanetLab sites install
remote power switches on their nodes.

Experiences

Many of the security features implemented in have
proven very useful. Our reporting mechanisms have
defused many incidents after a network experiment trig-
gered an overly sensitive Intrusion Detection System
(IDS). Remote control and access made recovery from a
system compromise quick and effective. This section
will describe some of the incidents and successes of the
PlanetLab security and control mechanisms.
User Behavior and AUP

Since the current direct users of PlanetLab are
researchers who generally understand operation on the
Internet, there have not been many incidents that
required enforcement of the Acceptable Use Policy
(‘‘AUP’’). We have not yet had to revoke any access
from user, which would be the ultimate penalty associ-
ated with AUP violation.

Problems with PlanetLab user behavior have
been studied [17] and fall into two categories: pro-
gram failure and accidental network traffic alerts.
Building distributed, decentralized applications is hard
and, of course when you have lots of projects building
them, there will be bugs. PlanetLab Central will
receive reports or will notice excessive node resource
use (e.g., no file descriptors) or excessive network
traffic (e.g., too many external computers accessed or
excess volume) and PlanetLab Central sends email to
the researcher. In all cases, the researchers have
responded to the situation.

Measuring the Internet generates lots of probes
and pings. A simple mapping experiment, generating a
small amount of data and performing a straightforward
measurement set off alarms at many locations. In this
case, and in others, a measurement experiment has the
same network traffic profile as a worm looking for
hosts to infect (probing port 80 is a feature of
CodeRed/NIMDA). It is against the PlanetLab
Acceptable User Policy to generate ‘‘disruptive’’ net-
work traffic but it’s sometimes hard to know what type
of traffic would be considered disruptive.

198 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



Brett, Bowman, Sedayao, Adams, Knauerhase, and Klingaman Securing the PlanetLab Distributed Testbed

There have been many incidents of ‘‘attack’’ or
‘‘worm’’ reports that were traced back to a measuring
or topology experiment. The resource monitoring sys-
tem allows forwarding of the reports to the researchers
and, in all cases, the researchers responded appropri-
ately to the situation.

Monitoring
We put a lot of energy into providing ways for

network and security administrators to determine for
themselves what researcher generated traffic and how
to contact them. While these facilities did reduce the
workload from dealing with security complaints about
PlanetLab node behavior, we continue to have prob-
lems from overzealous intrusion detection systems.
Some organizations set up intrusion detection systems
(IDS) to trigger on relatively innocuous things as a
traceroute. One organization went as far as to threaten
lawsuits if behavior persisted, and this tactic proved
successful in getting a number of PlanetLab hosts
pulled off networks. Sometimes complaints were justi-
fied, as some researchers experiments generated what
would have to be interpreted as an attack – large num-
bers of connections attempted to a range of IP
addresses in a domain. In any case, we anticipate that
poor experiment behavior and overly sensitive IDS
will continue to cause problems.

Compromise and Recovery
We had anticipated that at some point, PlanetLab

nodes would be compromised, and we did have an
incident where large numbers of PlanetLab nodes
were compromised. The early implementation of Plan-
etLab had accounts that were not virtualized – they
had access to the native operating system. An SSH
key to a non-virtualized account was compromised,
and that key was used to log into a number of nodes.
Since the account was not isolated within a VServer,
the attacker used his access to the native operating
system obtain root. When we received notice that a
number of PlanetLab hosts had been rooted, we used
the reboot feature of PlanetLab nodes to force all of
PlanetLab into a known safe state in 10 minutes.

We took a number of actions in response to the
compromise. Forensic analysis, enabled by debug
mode, determined that the nodes were rooted using a
vulnerability that we had plans to patch. We had just
begun to roll out a version that was not vulnerable to
the exploit when we were attacked. We also elimi-
nated general purpose slices that were not isolated
with VServer accounts. At the same time, we made all
user slices dynamic and eliminated static VServer
slices. Slices would not be assigned by default to all
nodes, which would limit the access to nodes if a slice
private key were compromised. In addition, slices
would have a finite lifetime. They would not last
indefinitely, and would need to be renewed. This idea
brings us closer to the idea of least privilege for slices
– slices would only be instantiated on nodes that they
needed and only for as long as they were needed.

A Security Review
We had fixed the more obvious problems, but

what about problems we had not yet anticipated?
Another response to the incident was to have more
eyes looking at the problem, so we conducted a review
of PlanetLab security. We wrote a summary of Planet-
Lab’s architecture and implementation and had it
reviewed by a variety of security researchers and prac-
titioners and PlanetLab users. This review proved
quite valuable, finding a variety of vulnerabilities and
areas of improvement at both the implementation and
architecture levels.

One key problem found was the dependency on a
single instance of PlanetLab Central for key Planet-
Lab’s operations, such as slice creation and deletion
and software updates. A compromise there would lead
to a compromise of all PlanetLab nodes. A DOS
attack on PlanetLab Central, while not rendering Plan-
etLab unavailable, would make many key PlanetLab
functions unusable.

Another problem regarded resource manage-
ment. We need better ways to monitor and manage
resources such as slices, CPU, disk, and bandwidth
utilization. A runaway process could render nodes
unusable and take up so many resources that it would
be nearly impossible to log in and fix the problem. In
addition, much of resource management and the secu-
rity associated with it is hard to use. Slices can only be
created the principal investigator at site. As a site PI
this is usually a busy professor, this leads to a ten-
dency of the PI to share his password, and we have
evidence of this. Also, the dynamic slice mechanism
provides no warning when slices will expire and all of
our user’s work will disappear. As a result, there is a
perverse incentive to create slices that live as long as
possible. Some of PlanetLab users had a contest to see
who create the longest lived slice. Many of the
reviewers mentioned that security that is hard to use
will usually be worked around, as demonstrated.

Related to the resource management issues is the
need for better intrusion detection and prevention.
While we have worked to improve the isolation of slices
from each other and then real operating system, if a
PlanetLab slice is compromised, the attacker has a large
amount of resources available to him. We need ways to
detect resource misuse and intrusion. Also, we need bet-
ter ways to authenticate and authorize users. Relying on
a single database of information run by a single organi-
zation to authenticate and authorize users is not likely to
scale or be secure. As the number of users and organiza-
tions using PlanetLab increases, it is unlikely that Plan-
etLab administrators could revoke them when those
users leave an organization. Instead, a federated
scheme, where access is granted to some institutions
and those individual institutions manage who has valid
access, is more likely to be successful in the long term.
PlanetLab does not allow easy ways for slices to
authenticate and authorize each other. As a result, some

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 199



Securing the PlanetLab Distributed Testbed Brett, Bowman, Sedayao, Adams, Knauerhase, and Klingaman

users have poor practices such as leaving SSH private
keys on nodes. One reviewer pointed out the use of any
reusable password is not vulnerable to attack. The
attacker who compromised PlanetLab set up sniffers
that listened not to network interfaces but to TTY ports.
In this case, SSH does not help as data streams are
decrypted when the attackers are listening to them, so if
users actually did put pass phrases on their SSH private
keys, those pass phrases could be compromised.

Future Work

A large focus of future work is on the dependen-
cies on a single centralized facility for much of Planet-
Lab’s operations. Key dependencies are in PlanetLab
Central are being analyzed, and a more formalized threat
assessment matrix will be created. Creation of a Red
team for more formally and thoroughly analyzing secu-
rity weaknesses is also being considered. Integrity
checkers such as chkrootkit [18] and rkdet [19] and
other IDS like features are being evaluated and tested.
Longer term, the architecture for PlanetLab management
is being studied to make it more secure and scalable.

Conclusion

PlanetLab’s security mechanisms have worked
relatively well so far. The VServer mechanism effec-
tively gives PlanetLab users a whole virtual machine
to use and configure while isolating them from each
other and the native operating system. The PlanetLab
user account system allows network and security
administrators a way to determine the source of prob-
lematic traffic. While PlanetLab has hosted hundreds
of projects and researchers, and a major compromise
was dealt with swiftly and effectively using Planet-
Lab’s reboot mechanisms. A review of PlanetLab’s
architecture and implementation has yielded a number
of areas of improvement, such as the vulnerability of
having a single point of control, the need for better
resource management, and the need for improvements
in authentication and authorization.

Author Information

Jeff Sedayao is a staff engineer in the Planetary
Services Strategic Research Project and in Intel’s IT
Research Group. He focuses on applying PlanetLab
and PlanetLab developed technologies to enterprise IT
problems. Sedayao joined Intel in 1986, where he
designed and implemented almost all aspects of Intel’s
Internet connectivity, including routing, firewalls, mail,
proxying, and DNS. After leaving Intel’s IT org a n i z a -
tion, he worked in Intel’s Online Services venture,
designing firewall configurations, managing network
services, and providing consulting services on security,
mail, and DNS. Sedayao has participated in IETF
working groups, published papers on policy, network
measurement, network and system administration, and
authored the O’Reilly and Associates book, Cisco IOS
Access Lists. He has recently written PlanetLab Design
notes on port usage and IP address usage.

Mic Bowman is a senior researcher within Intel’s
Virtualization Platform Lab. He received a Ph.D. in
Computer Science from the University of Arizona.
Bowman joined Intel’s Personal Information Manage-
ment group in 1999. While at Intel, he has developed
personal information retrieval applications, context-
based communication systems, and middleware ser-
vices for mobile applications. He is currently a Princi-
pal Investigator for Intel’s Planetary Services Strategic
Research Project. Prior to joining Intel, Bowman
worked at Transarc Corporation, where he led research
teams that developed distributed search services for
the Web, distributed file systems, and naming systems.

Paul Brett joined Intel in 2000 as part of Intel’s
Online Services group. He is currently focused on
PlanetLab, a global test bed for developing, deploying
and accessing planetary-scale services. From 1988 to
2000, Brett worked on the design and implementation
of dependable systems for air traffic control. He is a
graduate of the UKs Open University, where he earned
a First Class Honours degree in systems engineering
of software- based systems.

Rob Knauerhase is a staff research engineer in
the Planetary Services Strategic Research Project. He
joined Intel in 1993 and has been involved in the
research and development of mobile networking, hand-
held/mobile computing, distributed computing, Inter-
net technologies and middleware, and static and run-
time compiler environments. He holds 11 patents, with
approximately 60 more pending. Rob is a Senior Mem-
ber of the IEEE and IEEE Computer Society and has
been an adjunct professor at Portland State University.

Aaron Klingaman is a member of the research
staff at Princeton University. He joined Intel in 2001
after receiving a B.S. degree in Software Engineering,
with honors, from the Oregon Institute of Technology.
His initial research focused on interactive television.
His current interests include management of remote
distributed computing and network resources.
Extracurricular projects include work in the areas of
firmware development and fractals. Klingaman cur-
rently works on supporting and developing Planet-
Lab’s infrastructure.

Robert Adams began working with computers
long before he earned a B.S. in Computer Science at
Oregon State University. After receiving his degree,
he spent ten years in Silicon Valley, where he worked
on multi-processor operating systems for large and
small computer systems. Adams joined Intel in 1986,
initially writing drivers for the first port of Unix to
Intel’s 386 processor. Later, he moved to Intel’s new
Multimedia Systems Technology Group, where he was
a principal developer of video and audio conferencing
systems, eventually winning Intel’s Achievement
Award for leading the team that wrote the company’s
first software video codecs. He also has worked in
Intel’s Architecture Laboratory developing multiple

200 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



Brett, Bowman, Sedayao, Adams, Knauerhase, and Klingaman Securing the PlanetLab Distributed Testbed

technologies, including cable modem networking, sta-
tistical text analysis, peer-to-peer networking and Web
infrastructure. Adams holds more than 18 patents and
has served on various Internet standards committees.
His current work focuses on the deployment of Planet-
Lab, a global test bed for developing, deploying and
accessing planetary-scale services.

References

[1] Peterson, L., T. Anderson, D. Culler, and T.
Roscoe, ‘‘A Blueprint for Introducing Disruptive
Technology into the Internet,’’ Proceedings of
HotNets I, October 2002.

[2] White, Brian, Jay Lepreau, Leigh Stoller, Robert
Ricci, Shashi Guruprasad, Mac Newbold, Mike
Hibler, Chad Barb, and Abhijeet Joglekar, ‘‘An
Integrated Experimental Environment for Dis-
tributed Systems and Network,’’ Proceedings of
the Fifth Symposium on Operating Systems
Design and Implementation, December 2002.

[3] Kamp, P. H., and R. N. M. Watson, ‘‘Jails: Con-
fining the Omnipotent root.’’ Proceedings of the
Second International SANME Conference, May
2000.

[4] Barham, Paul, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf Hege-
bar, Ian Pratt, and and Warfield, ‘‘Zen and the
Art of Virtualization,’’ Proceedings of the ACM
Symposium on Operating Systems Principles
(SOSP), October 2003.

[5] Whitaker, Andrew, Marianne Shaw, and Steven
D. Gribble, ‘‘Denali: A Scalable Isolation Ker-
nel,’’ Proceedings of the Tenth ACM SIGOPS
European Workshop, September 2002.

[6] De Leon, Laura, Mike Rodriguez, and Brent
Thompson, ‘‘Our Users Have Root!’’ Procedings
of the Seventh Large Installation System Admin-
istration Conference (LISA ’93), November
2003.

[7] Ripeanu, Matei, Mic Bowman, Jeffrey Chase,
Ian Foster, and Milan Milenkovic, ‘‘Comparing
Globus and PlanetLab Resource Management
Solutions,’’ PDN-04-018, February 2004.

[8] Spring, N., D. Wetherall, and T. Anderson,
‘‘Scriptroute: A Public Internet Measurement
Facility,’’ USENIX Symposium on Internet Tech-
nologies and Systems, 2003.

[9] Wang, L., K. Park, R. Pang, V. Pai, and L. Peter-
son, ‘‘Reliability and Security in the CoDeen
Content Distribution Network,’’ Proceedings of
the USENIX 2004 Annual Technical Conference,
June 2004.

[10] Freedman, M., E. Freundenthal, and David
Mazieres, ‘‘Democratizing Content Publication
with Coral,’’ Proceedings of NSDI ’04: First
Symposium on Networked Systems Design and
Implementation, March 2004.

[11] Bavier, Andy, Mic Bowman, Brent Chun, Scott
Karlin, Steve Muir, Larry Petersen, Timothy
Roscoe, Tammo Spalink, Make Wawrzoniak,
‘‘Operation System Support for Planetary-Scale
Network Service,’’ Proceedings of NSDI ’04:
First Symposium on Networked Systems Design
and Implementation, March 2004.

[12] Linux VServers, http://www.linux-VServer.org .
[13] VMWARE, http://www.vmware.com/ .
[14] Safe Raw Sockets, http://www.planet-lab.org/raw_

sockets .
[15] Mosberger, D. and L. Peterson, ‘‘Making Paths

Explicit in the Scout Operating System,’’ Pro-
ceedings of the Second OSDI Conference, Oct
1996.

[16] Roesch, Martin, ‘‘Snort – Lightweight Intrusion
Detection for Networks,’’ Procedings of the
Thirteenth System Administration Coference
(LISA ’99), November 1999.

[17] Adams, Robert, ‘‘Distributed System Manage-
ment: PlanetLab Incidents and Management
Tools,’’ PDN-03-015, November, 2003.

[18] Murilo, N. and K. Steding-Jessen, Chkrootkit,
http://www.chkrootkit.org/ .

[19] rkdet, http://vancouver-webpages.com/rkdet/ .

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 201


