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ABSTRACT

The art of performance tuning is, alas, still an art; there are few tools to help predict the
effects of changes that are motivated by performance needs. In this work, we present dynamic
dependency modeling techniques for predicting the effects of configuration changes. These
techniques utilize a simple, exterior model of the system under test, and only require codifying the
nature of dependencies between subsystems. With a few examples, we demonstrate how to utilize
these models to predict the impact of system changes. Using simple tools and a reasoning process,
it is possible to answer many questions about possible performance enhancements. The impact of
this work is to advance performance tuning a small amount – from being an art toward becoming a
science.

Introduction

This paper was conceived in the context of a
very practical problem. In a pilot course on service
performance analysis, the class undertook a term
project to determine how to improve performance at a
reasonably large (3000+ simultaneous users) social
networking site. The owner reported that the site
exhibits self-limiting behavior, in the sense that the
number of simultaneous users is limited by and cou-
pled to server capacity. Thus, our problem was to
increase server capacity as much as possible within
reasonable economic limits. The site was implemented
using a LAMP architecture, with the MySQL and
Apache server executing on the same host. The owner
of the site proposed an initial alternative, which was to
move MySQL to an external enterprise cluster with
much more CPU capacity. The initial goal of study
was to determine whether this proposal was reason-
able and – to the extent possible – to predict the bene-
fits of this change before making it (because such a
change is expensive to make).

The students began attacking the problem by
understanding traditional performance analysis, as de-
fined in Menascé’s books [16, 17]. We found out
quickly, however, that traditional methods for perfor-
mance analysis failed to predict the behaviors we were
observing. Part of the reason was that our model of
application behavior was incorrect, and there were
hidden factors in how the application was written that
seriously affected performance. The classical theory
thus failed to be useful, and the performance results
we actually observed did not look anything like what
we might have expected. Artifacts in our observations
led us to realize that our model of system behavior
was quite näive.

For example, memory caching had a dominant
effect upon performance. After studying some confusing

measurements, we discovered that the application makes
extensive use of in-memory caching of MySQL query
results (using the memcache PHP library). The critical
bottleneck was not the normally CPU-intensive pro-
cess of uncached query execution, but rather, mem-
cache’s intensive use of memory. We concluded that
deploying a clustered MySQL server would have at
best a minor effect upon performance: a lot of bucks
for little or no bang. A better alternative would be to
migrate MySQL onto a single server, move all static
content to a third server, and give the dynamic content
server as much memory in which to cache MySQL
results as possible.

This experience was a hard lesson that changed
our thinking about service performance prediction in
fundamental ways. In a complex system or applica-
tion, it can be difficult and costly to develop a detailed
model of internals. This greatly reduces the effective-
ness of traditional performance analysis theory. Single
servers are difficult enough to understand, networks of
heterogeneous systems even more. What is needed,
therefore, are new theories and methodologies for ana-
lyzing performance that do not require detailed inter-
nal modeling.

This paper is a small first step toward that goal.
We attempt to describe, package, and discuss the
methodology by which we came to these conclusions.
Nothing in this paper is new by itself; it is the combi-
nation of elements into a coherent tuning strategy that
is new. We hope that this strategy will inspire other
system administrators to both employ and improve it
for their needs. The ideas here are a start, but in no
sense a mature answer.

Overview

Performance modeling and tuning of a complex
system by experimental means has a very different
form than classical performance tuning [16, 17]. The
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approach follows these steps, which we discuss in fur-
ther detail in the remaining sections:

1. Factor the system under test into independent
subsystems and resources subject to change.

2. Synthesize steady-state behavior via an obser-
vation plan.

3. Determine dependencies between performance
and resources.

4. Validate the dependency model by observation.
5. Reduce resource availability temporarily.
6. Measure the difference in performance between

current and slightly-reduced resources.
7. Compute critical resources from the measure-

ments.
8. Expand the amount of a critical resource.
9. Repeat the methodology for the expanded sys-

tem to note improvement (or lack thereof).

This is nothing more than a structured scientific
method. Some of these steps are intuitive, and some
require detailed explanation. The main difference
between this and trial by error is that we are better
informed, and the path to our goal is more strictly
guided.

The reasons we present this methodology are
threefold. First, although there is a trend toward open-
source in IT, there remain a large number of inscru-
table closed-source software systems. Detailed model-
ing (and understanding) of the interaction between
such systems is impractical for system administrators.
Second, SAs should not need to be software engineers
or computer scientists in order to squeeze optimal per-
formance out of their infrastructure. They require
tested, transparent, and relatively intuitive techniques
for achieving performance gains without greatly sacri-
ficing other goals. Last, the rapid adoption of virtual-
ization will significantly increase the complexity and
opacity of performance problems. External modeling
will become a necessity rather than an alternative.

In the following, we mix intuition and previously
developed rigorous mathematics to inform our ap-
proach. It turns out that most of an expert practi-
tioner ’s intuition about performance tuning has its
basis in rigorous mathematics. The flip side of this,
though, is that other results arise from the same math-
ematical basis that are not intuitive to system adminis-
trators. So, many of our claims will seem like common
sense at the outset, but by the end of this paper, rather
useful and counter-intuitive claims will arise.

Tr oubleshooting Performance

A common question asked by users and IT staff
alike is ‘‘exactly what is making this service run so
slowly?’’ Classical performance analysis [16, 17] relies
on the ability to describe a system under study precisely
and in detail. In many environments, this can take more
time than it is worth, and obtaining sufficient precision

in the description may well be wasteful1 or impossible
(because of technical limitations, closed source, or
intellectual property concerns).

If we instead look at the system as a collection of
interconnected components, whose internal function
remains unknown but whose interdependence is un-
derstood, we can make inferences about performance
without referring to internals. Since the true service
model of some components may well be unknowable,
this approach sidesteps knowledge of source code and
specific service configurations. Thus, it is equally
applicable to open source systems as to, e.g., propri-
etary SANs or turnkey solutions.

Factoring a Service Into Components

The first step in our methodology is to create a
high-level model of a service’s dependencies about
which we can reason. There are two useful ways to
think about relationships between a set of interdepen-
dent components: as a set of information flows and as a
set of dynamic dependencies. The flow model is more
familiar; interdependence arises from request/response
behavior. Sometimes, however, requests and responses
cannot be easily described, and one must instead assert
a dependency without an explicit (and measurable)
request/response model.
Modeling Information Flows

Tr a d i t i o n a l performance analysis describes systems
via request flow models. For example, how does a web
request get served? First, it arrives at the web server,
which makes a request for a file, which is serviced by a
file server or filesystem, which returns the file, which is
processed in whatever manner the web server wishes,
and the results are returned to the user. Thus the model
of information flow looks like that in Figure 1.

Figure 1: A model of information flow between a web
server and its associated file server.

A few basic concepts of this flow model will
prove useful. The mean time in system for a request is
the average amount of time between when a request
arrives and the response is sent. What we normally
refer to as response time is mean time in system, plus
network overhead in sending both request and re-
sponse. In the above diagram, there are two environ-
ments in which mean time in system makes sense: the
web server and the file server.

It is often useful to express times as their recipro-
cals, which are rates. The reciprocal of mean time in

1We might even say that detailed classical analysis of a per-
formance problem is something like ‘‘fiddling while Rome
burns.’’ When there is a performance problem, the city is
burning down around us and we need to take action. Re-
drawing a city plan is usually not the first step!
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system (in seconds) is service rate (requests serviced
per second); this is often notated as the symbol µ. The
arrival rate λ for a component is the rate at which
requests arrive to be serviced. Both µ and λ can
change over time.

It is common sense that for a system to be in a
steady state, the arrival rate must be less than the ser-
vice rate; otherwise requests arrive faster than they
can be processed, and delays increase without bound.
The concept of steady state is often notated as λ/µ < 1.

Steady-State Behavior

The average behavior of a system has little
meaning unless the system is in some kind of steady
state. The actual meaning of steady state is somewhat
subtle. We are interested in response time for various
requests. Steady state does not mean that response
times are identical for each request, but that their sta-
tistical distribution does not vary over time. A system
is in steady state between time X and time Y if the
population of possible response times does not change
during that period.

Figure 2: Histogram of response times for multi-class requests over a six hour period. The X axis corresponds to re-
sponse time while the Y axis represents frequency of that time.

To understand this concept, think of the system
being tested as analogous to an urn of marbles. Each
marble is labeled with a possible response time. When
one makes a request of the system, one selects a mar-
ble and interprets its label as a response time for the
request. After picking many marbles, the result is a
statistical distribution of response times (e.g., Figure
2). More common response times correspond to lots of
marbles with the exact same label.

The exact definition of steady state for our sys-
tems is that the distribution of possible response times
does not change, i.e., there is only one urn of marbles
from which one selects response times. No matter

when one samples response time, one is getting mar-
bles from the same urn which in turn means that the
frequencies of each response time do not vary.

Synthesizing Steady-State Behavior

A real system is seldom in a steady-state condition.
Luckily there are ways of obtaining steady-state data for
a system in flux by normalizing performance data.

Suppose, for example, that the load on a system
changes with the time of day. This is often referred to
as a sinusoidal arrival rate. A very common technique
for dealing with time-varying behavior is to note that
sinusoidal arrival rates (e.g., correlated with business
hours) can be viewed as steady state if one looks at
them for long enough in time. An hour’s results may
always vary, but when looking at several days worth
of data, starting at the same time each day for begin-
ning and end, frequency diagrams look the same
regardless of the day upon which one starts.

Likewise, we can also normalize our data into a
steady state by sampling behavior that just happens to
match in state. Looking at the same hour of the day for
several days yields steady-state data. We used this
method previously in [8] to model costs of trouble
ticket response, by treating each hour of the day as a
different sample and combining data for different days
(excluding holidays).

Measuring Response Time

There are several ways in which to measure ser-
vice time. Ideally, it is measured from the point at
which a request arrives to the point at which a
response is put on the wire. Calculating true service
times may or may not be technically feasible, depend-
ing on the capabilities of the operating system and/or
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service software. In this work, technical limitations of
Apache prevent us from using this measure. Even
measurements of socket durations from within the ker-
nel are asymmetric in the sense that while the start
time for service is very close to correct, the end time
includes the time the response spends in transit. In
practice, we can approximate the true service time by
sending requests over a high-speed LAN and measur-
ing round-trip times from the source.

Figure 3: Decreasing the delay between requests (increasing load) has a noticeable effect on the probe’s response
time distribution. The mean is indicated by the dashed line.

To measure response times, we use a benchmark-
ing tool called JMeter [2]. The tool allows us to pro-
gramatically construct various numbers and types of
HTTP requests for static or dynamic content. These
requests can then be generated from multiple threads
on one or more clients and sent to one or more servers.
Additionally, JMeter affords us very fine control over
when and for how long tests and sub-tests are run, and
the kind of results they collect.

So far, we have run a multitude of simple tests
that repeatedly ask a single Apache server for one or
more of several classes (i.e., file size) of static content.
Thus, the components of the service all reside on the
same machine. There is no reason, however, that the
black box cannot be expanded to include multi-system
services or entire networks.

One very useful way to visualize performance of
a complex system is via histograms, with response
time on the X axis and frequency of that response time
on the Y axis. Figure 2 shows a histogram for one
6-hour test. Here, the JMeter client repeatedly asks for
a random file from a set of 40 classes. Requests are
sent from the client at an average rate of 16.6 per

second (Poisson delay of 60 ms). The distribution of
service times seems to be exponential, but it is danger-
ous to conclude this just from eyeballing the graph,
especially in the presence of the self-similar ‘‘spikes.’’

We cannot say much about the server just by col-
lecting response time statistics. The server’s perfor-
mance depends in large part on which resources it is
being asked to utilize. It is impossible to get a picture
of every possible combination of requests. To ap-
proach the problem in this manner would limit us to
making broad statements about our system only as it is
currently configured and under arbitrarily determined
categories of load.

We can gain more useful insight by normalizing
our performance data. Suppose that we have a very
simple probe (akin to a heartbeat monitor, but yielding
more information) that continually sends requests to
the server at a rate that is intended not to affect perfor-
mance. At regular intervals, we create histograms of
the probe results and observe how they change, e.g.,
calculate their means, medians, standard deviations,
etc. If the system is in a steady state, we can expect
that the response time distribution will not change
much. As saturation approaches, certain probe statis-
tics will change.

Figure 3 shows response time distributions from
probes under increasing background loads. In all
cases, not only do statistics such as the mean change,
but the probability mass changes shape also. This indi-
cates that the underlying distribution is changing,
making it difficult to compare against any theoreti-
cally ideal baseline. If we determine that the ideal
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distribution is exponential, what does an observed
bimodal or normal distribution tell us about resource
utilization? Any goodness-of-fit test for the exponen-
tial – which we might use to measure the distance
from expected – will fail miserably. This fact moti-
vates our use of non-parametric statistical methods
(presented in a later section), which make no assump-
tions about underlying distributions.

Modeling Dependencies

The nature of information flow within a system
determines one level of performance dependencies
between subsystems. Our next step is to codify depen-
dencies based upon contention for resources. These
dependencies may be more difficult to directly ob-
serve; individual requests and responses may be hid-
den from the analyst. Examples of contention depen-
dencies include the use of memory, CPU cycles, or a
network interface among several processes. For these
dependencies, there is no (reasonably) measurable
notion of a request or response; the system simply
slows down (sometimes mysteriously) when there is
not enough resource to go around. The reason why
something like memory contention is not measurable
in terms of a request-response model, is that the act of
measurement would slow the system down too much
to be practical. The requests and responses do exist (as
calls to, e.g., sbrk), but we must theorize their presence
without being able to observe them directly.

One way we can begin to model these dependen-
cies is via a dependency graph. A dependency graph for
a system consists of nodes and edges, where a node rep-
resents a resource and a directed edge represents a hypo-
thetical dependency between two resources. A → B
means that A depends upon something that B has.

For example, suppose that the web server and the
file server both run on the same host. Then the infor-
mation flow is just one kind of dependency, and there
are three other bounded resources (CPU, disk I/O, and
memory) that the servers share. To depict this, we can
draw arrows from services to dependencies, as in Fig-
ure 4. In this case A → B means that A depends upon
B in some way. Two arrows to the same place indicate
possible contention. One value of such a model is that
it can describe, at a very high level, the potential per-
formance bottlenecks of a system, in a manner that is
invariant of how the system is actually implemented.

The main purpose of a dependency model is to
list – in a compact form – the resource limitations that
can affect performance. A useful model describes ele-
ments that are subject to change, and ignores elements
that one cannot change. For example, if one can
expand the memory in a system, but cannot change the
processor, modeling in-processor cache size is not par-
ticularly useful. In practice, this tends to keep depen-
dency models to a manageable size.

The dependency model corresponds to a flow
model, of course, but the details of that underlying

flow model may not be useful. For example, disk I/O
indeed consists of requests and responses but the over-
all response time of the system is only vaguely related
to disk response; there are many other factors that
influence performance. Likewise, use of memory cor-
responds to requests for more memory and responses
that grant access.

Figure 4: A model of resource conflicts, where two
arrows to the same place represent a conflict.

Näive Physics
Dependency models mostly help us reason about

performance. The most immediate and easy thing one
can do with a dependency model is to utilize what
might be most aptly called näive physics [20]. The
term first arose in the context of artificial intelligence,
as a machine model of human intuition in understand-
ing physical processes. A so-called näive model con-
cerns order but not quantity. We know, e.g., given the
above model, that if we decrease the memory size,
both web server and file server are potentially ad-
versely affected. If we increase memory size, they
both potentially benefit. But more important, we also
know that if we increase memory size and perfor-
mance does not improve, then there is some other fac-
tor that affects performance that we have not changed.
Worse yet, if we change nothing at all and perfor-
mance worsens or improves, then our model itself is
incomplete and/or invalid.

Näive physics are our first defense against for-
mulating an invalid model of a system. When load
increases, service time should increase accordingly,
and certainly should not decrease. A good understand-
ing of what a decrease or increase should do is enough
to allow us to check many simple dependency models.

Validity

Obviously, a dependency graph that omits some
important element is not particularly useful. It is best
to consider a dependency graph as a hypothesis, rather
than a fact. Hypotheses are subject to validation. In
this case, the hypothesis can be considered valid (or
complete) if changes in resources available within the
graph cause reasonable changes in performance at the
edges of the system, and invalid (or incomplete) other-
wise.

For example, consider a web server. We might
start with the initial hypothesis that the web server’s
performance depends only upon a file server, as
above. This means that as file server load goes up for
whatever reason, we would expect from näive physics
that the web server’s performance would decrease or –
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at the least – remain constant. Likewise, we would
expect that if the file server remains relatively idle,
web service should not vary in performance.

Testing this hypothesis exposes a dichotomy
between validating and invalidating a hypothesis that
will affect all rigorous thinking about our problem.
Our hypothesis tests true as long as web server perfor-
mance only decreases when the file server is loaded,
and tests false if there is any situation in which, given
the same input request rate as before, the file server is
not busy and the web server slows down anyway. A
point to bear in mind is that hypothesis testing can
only ever invalidate a hypothesis; good data simply
shows us that the hypothesis is reasonable so far, but
cannot prove the hypothesis to be valid.

One potential problem in our model above is that
web servers do not necessarily depend just upon file
servers. Changing a single line of code in its configu-
ration makes an Apache web server depend addition-
ally (via flow) upon a DNS server to look up all
request addresses on the fly. In the context of our
model, such a web server must have a hidden depen-
dency upon the DNS server. If the DNS server is now
explicitly included in our model, then a slowdown in
that component offers alternative evidence for why the
web server is slow.

Criticality

With a reasonable model in hand, an obvious
question is ‘‘which elements of a dependency graph
should be improved to make the service respond
faster?’’

A critical resource is one that – if increased or
decreased – will cause changes in overall perfor-
mance. For example, available CPU time is usually
critical to response time. If there is more than suffi-
cient memory, then changing memory size will not be
critical to performance. If our web server is executing
many scripts, CPU time may be the most critical
resource, while if it is performing a lot of disk I/O,
disk read and write speed may be more critical.

Micro Resource Saturation Tests
Testing criticality of a resource in a complex sys-

tem is difficult. We borrow an idea from [5], used pre-
viously to trace packets statistically in a complex net-
work. A resource is critical to the extent that changing
its availability or speed changes overall performance.
If we can perturb the system enough to change the
availability of one resource, and the whole system’s
performance responds, then the resource is critical.
The extent to which a resource is critical is – in turn –
determined by how much of an effect a small change
has upon overall performance.

We can analyze the effects of resource perturba-
tion via use of a Micro Resource Saturation Test
(mRST). A mRST is a programmatic action that – for
a little while – decreases the amount of resources

available. We cannot change the amount of memory a
system has on the fly,2 but we can – for a short time –
consume available memory with another process. We
cannot change network bandwidth on the fly but we
can – for a short time – disrupt it a bit by doing some-
thing else with the network. If response time consis-
tently changes for the service itself in response to our
disruptions, then we can conclude that we are chang-
ing the amount of a critical resource, and the extent of
the change indicates how critical. Using a simple
probe, we can sometimes determine which resources
should be increased and which are of no importance.

The reader might ask at this point why we do not
simply check the available amount of the resources in
which we are interested. The reason is that the kernel’s
idea of availability may well be biased by what one or
more processes are doing. For example, in our first
case study above, the web server immediately allo-
cated all available memory, so that the memory always
looked full. The reality was that this memory was a
cache that was only full for part of the time.

Quantifying Criticality
The purpose of a mRST is to perturb a resource r

by an amount ∆r and observe the difference in perfor-
mance ∆p. Thus the criticality of a resource r under
specific load conditions is a derivative of the form:

Cr =
dp

dr
=

∆r→0
lim

∆p

∆r
where p represents service performance, ∆p represents
the change in performance, r represents the amount
available of a resource, and ∆r represents the change
in a resource. This can be estimated as

Cr ≈
∆p

∆r
for a specific ∆r we arrange, and a specific ∆p that we
measure.

Note that for a multiple-resource system with a
set of resources ri, criticality of the various resources
can be expressed as a gradient

∇p = Σi
∂p

∂ri
≈ Σi

∆p

∆ri
This suggests that one way to tune systems is via gra-
dient ascent, in which one increases a resource in the
direction of maximum performance improvement.

Resource criticality is a concept that is only rea-
sonably measured relative to some steady state of a
system (in which input and output are in balance).
Obviously, resources are only critical when there is
work to be done, and the above gradient only makes
sense when that work to be done is a constant.

Cost Versus Value
Remember that the objective here is to get the

best performance for the least cost. Thus criticality is
best defined in terms of the cost of a resource, rather
than its value. One can think of the units for r in ∂p/∂r

2The advent of virtualization does make this possible, but it
is not likely to be practical in a production environment.
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as a cost increment rather than a size increment, so
that the units of the derivative are rate/cost [8]. Often,
this is a finite difference because cost is a discrete
function, e.g., memory can only be expanded in 128
MB chunks.

Figure 5: (top) The raw response times of an Apache web server during and between increasing memory mRSTs.
The initial perturbation at 0M is due to the loading of the operating system’s page-cache. (bot.) The variability
(standard deviation) of response times does not change much from test to test.

Figure 6: Adding to memory usage with a series of increasing mRST loads shows a clear plateau where memory be-
comes critical.

Interpreting mRST Results

Critical resource tests can be interpreted either via
näive physics or statistics. From a näive physics point
of view, resources are either non-critical (∂p/∂r ≈ 0) or

critical (∂p/∂r > 0), where p is the average response
rate (1 divided by average response time). Increases in
p represent increased performance and increases in r
represent increased capacity.

The näive view may suffice for most practice,
but we would be served better by a more rigorous
approach. From a statistical point of view, some
resources can be characterized as more critical than
others, but the definition of criticality is rather tricky
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and the actual inferences somewhat more subtle than
when utilizing näive physics.

Figure 7: A CPU-time mRST conducted 10 minutes into a test shows almost no criticality of CPU resources.

Example: Perturbing Memory Use

We can see the effects of perturbation through a
simple example. We synthesize steady-state behavior
by creating a constant load of probe requests on a
server. Figure 5 shows the raw response times of the
server when hit with a sequence of memory perturba-
tions. Our test run continually requests a sequence of
different files totaling 512 MB in size. The server is
equipped with 1 GB of RAM and no swap space. The
initial variations in response time (at 0 MB) are a
result of the OS filling the page-cache from disk. Each
mRST works by obtaining a specified amount of
memory and freeing that memory after ten minutes.
The lulls (reductions) in response time between pertur-
bations are an indication that the server has returned to
an unstressed state and is serving the requested files
from cache. There is a relative lack of variation in
response times after the page-cache has loaded and up
until the 256 MB mRST. This indicates a critical point
in memory usage. Also, while there is no specific
trend in the standard deviation of the response time
(aside from an anomaly at 320 MB), the settling time
back to undisturbed performance increases with the
size of the mRST. This can be observed in the increas-
ing width of the perturbations. Alternatively, one can
observe the same critical point for memory without
waiting for the system to reset (Figure 6).

The other case – in which the resource under test
is not critical – is shown in Figure 7. In this case, 10
minutes into the test, 512 processes are spawned to
compete for CPU cycles for the next 10 minutes. This
does not affect response time noticeably, so we con-
clude that CPU cycles are not critical. Note that this

test is much more convincing than load average,
because the interpretation of load average changes
depending on the OS platform and the architecture of
a given machine. In this case, the load average
becomes very large, but the system still responds ade-
quately. One must take care, however, when systems
are near saturation. Figure 8 shows a series of increas-
ing mRSTs after a system is already saturated. The
perturbations in this case do not have a significant
effect upon behavior, as shown by the histograms
found in Figure 9, which are virtually identical.

Reasoning About Criticality
Reasoning about what is critical is sometimes

difficult and counter-intuitive. The system under test is
in a dynamic state. It is important to distinguish
between what one can learn about this state, and what
aspects of performance are unknowable because there
is no mechanism for observing them, even indirectly.

For example, the question often arises as to what
to change first in a complex system, in order to
achieve the most improvement. Testing via mRST
does not tell us how much improvement is possible,
but does tell us the rate of change of improvement
around current resource bounds. If there is no change,
a resource is not critical and need not be enlarged
and/or improved. After an adjustment, another set of
mRSTs is required to check criticality of the new con-
figuration.

For example, suppose that we manage to take up
10% of 1 GB of memory for a short time and overall
performance of the system under test decreases by 5%.
This does not indicate exactly what will happen if we
expand the memory to 2 GB, but instead, bounds any
potential improvement in performance. If memory is
the only factor, we could perhaps expect a performance
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improvement of 50% (presuming 5% per 100 MB) but
this is unlikely. It is more likely that memory will cease
being a constraint and another resource (e.g., CPU) will
become most critical long before that happens, and that
the overall benefit from memory increases will plateau.

Figure 8: (top) Increasing sequence of mRSTs after saturation with no lulls between increases shows no significant
change in behavior. (bot.) Variability in response times during each mRST is more significant than in the case
with resting time.

Figure 9: Histograms of response time for progressively larger memory mRST of an already saturated system shows
that there is little change in distributions as resource availability decreases.

To better understand this concept, note that the
measurements we can make via mRST are only point
rates and not global rates. We can measure what will

happen to performance if we make a small change in a
resource, but this estimation only applies to changes
near the estimation. In other words, if we manage to
temporarily consume 1 MB of 1024 MB of memory,
and performance drops by, e.g., 5%, we can only con-
clude that adding 1 MB to an existing 1023 MB might
improve performance by 5%, and not that adding 1
MB to 1024 MB might improve it by another 5%. We
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can be reasonably sure that adding 1 MB to 1024 MB
will improve things a little, but we have no informa-
tion (from the test in hand) as to when we will have
added enough memory that the addition of more will
no longer be critical.

Statistical Inference

So far, we have discussed a methodology based
upon a mix of direct measurement and intuitive rea-
soning. While this is certainly better than trial by error,
there are also powerful mathematical tools we can
bring to bear to make this process more rigorous and
accurate.

The long-term goal of this work is to develop a
cogent statistical inference methodology that allows
one to infer – with reasonable certainty – whether sys-
tem attributes are critical or not. We would like, e.g.,
to be able to say that ‘‘with 95% certainty, resource X
is critical.’’ An ideal technique would also measure
the extent to which X is critical.

The key question when we observe a change in a
system is whether there is a real change. Suppose that
we observe an increase in mean response time be-
tween two experimental conditions. It could be that
this is a true underlying change, but it is also possible
that the difference in measurements is due to random
factors other than resource criticality.

Returning to the urn analogy, if we measure
response time under two conditions, then the basic
question is whether there is one urn or two. If the con-
ditions are different, then this is analogous to two dif-
ferent urns from which marbles are being selected. If
they are the same, this is analogous to drawing both
sets of marbles from the same urn. We need to be able
to determine, to some acceptable degree of certainty,
whether there are really two different urns.

The key to answering this question is to consider
chance. At any time, any marble in the urn could be
selected. Thus it is possible, though not very likely, that
one could select the same marble over and over again,
ignoring the others. This would lead to a measured
response time distribution with a different mean, even
though we are choosing from the same urn as before.

There are many tests that statisticians use to com-
pensate for randomness in data. Each test utilizes some
model of how randomness can arise in the data, and
allows one to compute the probability that two sample
distributions differ by chance even though the distribu-
tions are collected under the same conditions. This
probability allows one to judge whether an observed
difference is likely to be large enough to matter.

Our tools for this task are non-parametric statisti-
cal models and tests [21] that do not assume any partic-
ular distribution of data. As illustrated in the figures
above, the data we observe has no clear relationship to
well-known statistical distributions. Moreover, the true
population distribution likely changes under different

circumstances. This is important because if we were to
use traditional parametric tests such as, e.g., Pearson’s
chi-square, on data that are not normally distributed,
the results would be unreliable or inconsistent at best.3

The goal of the following section is to compute the
probability that there is one urn rather than two. If this
probability is high, one cannot confidently claim that
observed differences are meaningful; in statistical
terms, the differences would not be significant. Fortu-
nately for us, this problem arises frequently in the
social sciences and we can borrow tools from statisti-
cal analysis to help. In order to do this, however, we
must carefully analyze our experiments and data, and
select tools that apply to the task.

Non-parametric Statistics
One key to applying a statistical technique is to

first consider the assumptions required and ensure that
it is safe to make those assumptions about one’s data.

Statistical techniques that show promise for de-
termining criticality of a resource include the Mann-
Whitney-Wilcoxin rank-sum test (U test) [14], and the
Kolmogorov-Smirnov test (K-S test) [7]. These tests
are robust in the sense that they still perform well
when certain distributional assumptions are violated.
They are also generally less powerful than their para-
metric counterparts, which means that they are more
likely to generate false negatives [19]. There are ways
of improving this, but that discussion is beyond the
scope of this paper.

Both of these tests take as input two sample dis-
tributions of data, and test whether differences be-
tween the samples could have arisen by chance. The
output of the test is a p-value that describes how likely
it is that observed differences are due to chance alone.
A low p-value (e.g., p ≤ 0. 05) is evidence that the
populations from which the samples are drawn differ,
but a high p-value does not give evidence that the dis-
tributions are the same. This counter-intuitive result
partly arises from the fact that we are sampling the
populations; the fact that a particular sample of a pop-
ulation conforms does not mean that the entire popula-
tion conforms, but if two samples differ sufficiently,
this is evidence that the populations differ as well.

To apply these tests meaningfully, however, one
must satisfy their requirements. Both the U test and K-
S test require that individual samples (e.g., the re-
sponse times for single requests) are independent. Two
samples are independent if the response time for one
cannot affect the other’s response time, and vice versa.
Unfortunately for us, independence does not arise nat-
urally and must be synthesized. Two requests that
occur close together in time are not independent, in
the sense that they may compete for scarce resources

3If the population can be made to approximate a normal
distribution by, e.g., collecting large enough samples, then
the test would work correctly. However, to make our
methodology as efficient as possible, one of our goals is to
minimize sample sizes while still obtaining valid results.
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and affect each other. But, if one considers two
requests that are far enough apart in time, say, 10 sec-
onds, there is no way in which these can compete, so
these can be considered independent.

We can use the non-parametric tests in our per-
formance analyses as follows. First we collect data for
a steady state of a system under test. We then perturb
the system by denying access to some resource and
collect data during the denial. These two data sets are
both discrete distributions of service response times.
We apply a test to these data. If the p-value for the test
is p ≤ 0. 05, we can conclude that the two distributions
are different, while if p > 0. 05, results are inconclu-
sive and the difference could be due to randomness
alone.4 Here great care must be taken to avoid erro-
neous conclusions. Suppose we run the K-S test on
two sets of measurements known to be from the same
population and they test as significantly different. We
know that the K-S test requires that the system be in a
steady state, and that the measurements are indepen-
dent of one another. Thus if the test returns a result we
know to be false, then something must be wrong with
the way we are applying it: either the system is not in
a steady state, or measurements are not independent.

We can exploit this reasoning to test indepen-
dence of measurements. If we apply the K-S test to two
samples from one population, and we know the system
is in a steady state, and the test finds significant differ-
ences, then we can conclude that either measurements
are not independent or the sample size is too small,
because all other assumptions of the test are satisfied
and the test should not identify significant differences.

Thus we adopt a methodology of grounding our
assumptions by synthesizing an environment in which
our tests do not flag samples of the baseline steady
state as significantly different. To do this, we:

a) probe the system regularly at intervals long
enough to assure independence of measurements.

b) validate our probes by assuring that two sets of
measurements for the same system state could
occur by random chance.

c) create another system state via mRST.
d) check whether that state yields a significantly

different population of probe measurements.
The point of this technique is that a system is defined
as having a steady state if any deviations in measure-
ments could occur by random chance, so that compar-
isons between that state and any other then make
sense. Otherwise, we cannot be entirely sure that we
are applying the test correctly.

Related Work

Systems performance analysis has been con-
ducted for many years and in many contexts, such as
hardware design, operating systems, storage, and

4A 0.05 significance level is typically used when testing
hypotheses. It represents the probability of finding a differ-
ence where none exists.

networking. Many books have been written that focus
on the practical sides of analysis such as experimental
design, measurement, and simulation [10, 13, 16, 17].
These present comprehensive, general-purpose meth-
ods for goals such as capacity planning, benchmark-
ing, and performance remediation. The scope of our
research is more narrow; it is less about traditional
performance analysis, and more about discovering
performance dependencies. It is targeted to a system
administration community that is frequently asked to
perform small miracles with a deadline of yesterday
and at the lowest possible cost.

Several past works have attempted to describe
what is normal ‘‘behavior ’’ or performance for a sys-
tem, either for specific classes of load or in a more
general fashion [4, 6, 12]. Detecting behavioral abnor-
malities is also frequently studied in a security context
[9] and for fault diagnosis [11, 15]. Since our own
work relies on perceived or statistical changes in sys-
tem response, it is to a significant extent, compatible
with many such approaches. In fact, time series analy-
sis techniques such as those found in [4] could be used
inside our methodology, but we can make no claims
about their efficiency in discovering critical resources.

Finally, prior work that uses black-box testing to
uncover performance problems [1, 3, 18] is similar to
our own in philosophy, but not in purpose. These
research projects attempt to locate nodes that choke
performance in a distributed system by analyzing
causal path patterns.5 Our methodology can be adap-
ted to function on larger black boxes such as a distrib-
uted system simply by scaling, i.e., we can factor a
distributed system into distinct communicating sub-
systems, e.g., nodes or groups of nodes, and/or re-
sources, e.g., individual services. Once we have lo-
cated problem nodes, we can apply the process again
to the resources on those particular nodes.

Future Work

This paper is just a start on a rather new idea. We
plan on eventually embodying the thinking presented
here into a toolkit that can aid others in doing perfor-
mance analysis of this kind. This requires, however,
much more groundwork in the mathematics of statisti-
cal inference, so that the toolset can enable appropriate
statistical reasoning with little or no error or misinter-
pretation. Hand-in-hand development of tests and sta-
tistical reasoning will be paramount.

Conclusions

Resource dependency analysis and performance
tuning of complex systems remains an art. In this
paper, we have made a small start at turning it into a
science. Our initial inspiration was that classical meth-
ods of performance analysis that require a complete
factoring of a system into understandable and modeled

5And in the case of [3], also utilizing some whitebox infor-
mation.
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components are not particularly useful in a complex
environment. Instead, we rely upon a partial factoring
into a high-level entity-relationship model that reveals
the bonds between services and resources. We can
quantify those relationships via näive physics or via
statistical inference. This gives us a relatively quick
way to flag resources to change, and to check whether
our intuitive ideas of what to change are valid.
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