
USENIX Association

Proceedings of the
LISA 2001 15th Systems

Administration Conference

San Diego, California, USA
December 2–7, 2001

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Gossips – System and Service Monitor
Victor Götsch, Albert Wuersch, and Tobias Oetiker – Swiss Federal Institute of Technology

ABSTRACT

Gossips is a modular client/server based system monitor. It uses distributed monitoring tasks
to define and report states of an IT-environment. A monitoring task includes probes to measure
data and a test to evaluate them. Gossips does not only report problems, it can also suggest
solutions to the problems by consulting a knowledge-base, which is maintained and easily
extended by the system managers using the local system. The monitor software is easily extensible
through a flexible plug-in system for tests and probes. The monitor software is written in object
oriented Perl which allows new tasks to inherit large parts of the existing infrastructure of the
program.

Introduction

The problem of monitoring a group of networked
hosts has been discussed at length only recently by
John Sellens [1]. Many protocols and tools for moni-
toring are available, including SNMP [2], Big Brother
[3], Swatch [4], Spong [5] and pikt [6]. These have
different strengths and weaknesses. Our goal in this
project was to address some of the problems we found
with existing solutions, focusing on a clean architec-
ture and easy extensibility. After an evaluation of the
mentioned tools we defined the following criteria for a
new design:

• The monitor relies on a scalable client-server
architecture where the client only talks to the
server when it finds a problem and periodically
assures the server that everything is okay.

• The software design is flexible and expandable.
• Only free tools are used (e.g., GNU GPL).
• The monitoring system allows to archive solu-

tions to known problems.

State of the Art

Evaluation Criteria

• Configuration: The tool configuration should
present the system manager with a good
overview of the system and services monitored.
The configuration is the instrument of a system
manager using the tool. The system manager
should be able to change configurations quickly
without editing many files.

Monitor configuration design scalable extensible modular messaging
Big Brother + + - +
Swatch + + + - +
Spong + + +
pikt + + + + - +
gossips + + + + + +

Figure 1: Comparison: ‘+’ good; ‘ ’ okay; ‘-’ missing.

• Design and Complexity: The design of the
tool should be as simple as possible, but not too

simple. This concerns not just the code, but also
the documentation and configuration of the
tool.

• Scalability: The tool should work fine with
five as well as with 5000 machines.

• Extensibility: The tool should offer an inter-
face for adding new monitoring tasks without
modification to the code of the tool.

• Modularity: This is in fact a specific aspect of
extensibility. When a new extension is added to
the tool, it should be possible to reuse this new
extension, like in a lego system.

• Messaging: The tool should report exceptions.
It should not primarily display a webpage with
red and green ‘lights.’ Such a webpage gives
the system manager kind of a secure feeling
when he sees all shining in green. But he
always has to look at the pages and is distracted
from his work.

Comparison
A first evaluation in summer 2000 showed defi-

ciencies in most tools mainly in the areas of extensi-
bility and modularity. The table in Figure 1 shows an
updated summary of the evaluation based on the latest
versions (September 2001) of the most promising
monitor tools after our first evaluation.

Big Brother

• Configuration: Big Brother needs a separate
configuration file for each local test. Global
tests, such as network tests are all configured in
one additional file. In these configuration files
you are able to define global configuration for

2001 LISA XV – December 2-7, 2001 – San Diego, CA 121

Gossips – System and Service Monitor Götsch, Wuersch, and Oetiker

all client and local configuration for special
clients. It is rather painful to make changes in
this system of configuration files.

Test_Ping

Test_DiskSpace

Common Interface to
Message History

Probe name
Message
Value
Time stamp

History

Queue

add_entry
show
average_value
match_pattern

Probe_DiskSpace Probe_Syslog Probe_Ping

DiskSpace measuring Syslog reading Host pinging

Probe_Prototype

Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c1t1d0s0 1637656 1003308 585219 64% /

Jun 5 07:29:47 tardis sshd[24231]: pam_setcred: error Permisson denied
Jun 5 07:29:47 tardis automount[292]: authdes_validate: verifier mismatch

drwho.ee.ethz.ch is alive
no answer form engelberg.ee.ethz.ch

Test_Syslog

Common Interface to Message History

Figure 2: Objects.

• Extensibility: There is an interface where you
can add your own scripts. The script has to
translate the state of your system to green, yel-
low and red states. This makes it difficult to
write a test which looks for keywords in log-
files. Additionally it is rather complicated to
configure tests from the configuration file.

• Modularity: Since the new tests are hard to
configure from the configuration file, it is diffi-
cult to write reusable Big Brother tests.

Swatch

• Configuration: It takes just a few minutes to
learn how to setup and use the monitoring
system. Each system manager has his cus-
tomized swatch configuration file, that con-
tains pattern/action pairs that are personally
interesting, or that pertain to his system
responsibility.

• Extensibility: Swatch is a monitoring tool to
observe syslogs. It is possible to implement
tests that write their monitored data to the sys-
log, but Swatch does not support a test devel-
oper with any tools to write a new test.

122 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Götsch, Wuersch, and Oetiker Gossips – System and Service Monitor

• Modularity: Not everybody has access to the
vendor ’s source code for system utilities that
produce syslog entries. This makes it really dif-
ficult to enhance or reuse these utilities of
Swatch.

Spong

• Configuration: Spong uses one global configu-
ration file which sets internal values. If a spe-
cific client needs different settings you have to
‘override’ the default configuration with a new
file. A monitoring system should be managed
centrally even if it is a distributed system. The
concept of grouping hosts for network tests
should have been applied to local tests, too.

• Extensibility: You can write new tests by
implementing new plugins. The measured state
of the test has be mapped to status colors red,
yellow or green.

• Modularity: Spong does not offer support
reusing of implemented tests or parts of it. The
plugin-system does not define an interface for
intercommunication of different tests. A separa-
tion of data measuring and data analyzing
would be a step to go towards modularity.

Results
In the process of evaluating the other products

we found lots of fascinating concepts and ideas. But
no tool had a really flexible framework for writing
new tests. The framework we envisioned would han-
dle all the basic functionality of a monitoring system
like execution time, message handling and internal
communication. Such a toolkit helps to implement
new monitoring tasks much faster as the developer can
focus on the functionality of the new monitoring task.
We have not found a system which separates data
acquisition and data analysis, allowing the implemen-
tation of reusable monitoring tasks.

In the end no tool fulfilled our criteria to a
degree which encouraged us to add the missing bits to
an existing package, so we decided to implement the
tool ourselves.

Gossips Design

Architecture
Gossips is a object oriented framework written in

Perl. The software is designed as a distributed
client/server architecture where all clients report to a
central server. Gossips is configured through a central
configuration file and controlled via a command-line
interface. A message handling system on the server
notifies the system manager about system-state-
changes. This concept is similar to the messaging of
cfengine [7]. Cfengine writes a message when it
changes something on a system and gossips notifies
the system manager if and only if a state-change
occurs in the system. Thus there is no need for a
graphical display of the system status, as most of the
time nothing changes. For long-time monitoring of

system status, a tool as for example RRDtool [8] can
be used within the gossips frame work. (See Figure 9
for an example.)

Probes and Tests – Separating Measurement from
Analysis
Each participating client runs a gossips monitor-

ing process. Each gossips process consists of a set of
probe objects to acquire data about the state of the
local system or anything else you want to observe.
Data from these probes is then analyzed by a set of
test objects. Each test can subscribe to any number of
probes. This separation of data collection and data
analysis was an important step toward simplifying the
design, implementation and reuse of new monitoring
components for the gossips system (see Figure 2).

Gossips uses a scheduler similar to the one
implemented in pikt. The scheduler manages the exe-
cution of all tests and probes within a gossips instance.
It executes the probes periodically. When a probe
finds new data it adds all tests which have subscribed
to its data to the scheduler. When a test is executed, it
accesses the data acquired by the probe together with a
history of old data. The test evaluates the data and
decides about the state of its target.

States – Describing Systems or Services
Simple Monitoring Tasks

The generation of states relies on the data gath-
ered by the probes. States describe the condition of a
system or a service. It is up to the developer of a test
to decide what states best describe a certain system.
Simple things like working/broken are possible but
also more complex approaches with many different
states of operation. For example, if free disk space is
monitored, a system manager needs to know when a
certain threshold is reached. Additionally, it would be
helpful to predict if a disk will fill up in the next hour.
Because the test does not only see current data from a
probe but also data collected earlier, it can make much
more in-depth decisions as if it had only access to the
latest measurements. This feature makes is possible to
do trend analysis of measured values. In the free disk
space-test just mentioned, all the data that was accu-
mulated is used to calculate an approximate time when
the disk fills up. The free disk space-test can then use
the following states to decide the condition of a disk,
all the values in this example are thresholds:

• Everything okay with disk /scratch
• less than 200 M on disk /scratch
• less than 30 minutes until disk /scratch full
• less than 200 M on disk /scratch and less than

30 minutes left until disk full

Combining Monitoring Tasks

By assigning several probes to a test, a next level
of defining states is reached. An ftp-test, for example,
could just monitor an ftp connection to a host. It could
use simple states like working or broken. The client
monitor might also test the ‘pingability’ of a host.
When the observed host crashes or is rebooted gossips

2001 LISA XV – December 2-7, 2001 – San Diego, CA 123

Gossips – System and Service Monitor Götsch, Wuersch, and Oetiker

would then come up with two messages, one noticing
the broken ftp connection and the other that the host is
not alive. This is redundant information. The important
information at this time is that the host is not alive.

Therefore an ftp-test should be implemented that
checks the ftp connection with an ftp-probe and simul-
taneously evaluates the ‘pingability’ of a host using a
ping-probe. The test is then able to access information
on status messages of these two probes and use states
like:

• Everything okay with ftp connection to tardis
• no ftp connection to tardis
• no answer from tardis

A test that subscribes to several numbers of
probes allows very comprehensive state assessments.
As each instance of gossips is able to decide about the
state of the system it monitors, it will only talk to the
central server if something interesting happens (a
state-change). Because normal operation is much more
common than problems, this approach helps to keep
communication between clients and server down to a
minimal level.
Configuration
Central Configuration

One of the main design goals of the project was
to keep the configuration files in one central location.
Therefor gossips uses a central file for test parameters.
Systems like Big Brother or Spong with their local
config files for each client are much more cumber-
some to change. If the parameters of a test must be
edited for each client the system manager has to do
lots of editing. With the complexity reducing group-
design of gossips the system manager only has to edit
some lines in the test.cfg file.
Distribution of the Configuration

All instances of gossips get their configuration
from a central configuration. When a gossips process
on a client is started, it contacts the server and asks it
for its configuration. The server can also push new
configurations out to the clients as each client con-
nects to the server in a regular interval to assure the
server that it is still alive.
host.cfg

Every host in the IT-environment is subscribed to
groups. These groups describe hardware, network and
organizational setup of a host. This design is similar to
the class concept of cfengine. The difference between
the two designs is that gossips uses a separate file to
define a host-group relation whereas cfengine lets the
host derive its memberships to the defined groups.
This was made to be flexible enough to define abstract
terms like department names, computer room names,
institutes or even disk size as groups. See Figure 3 for
an example of a host configuration file.
test.cfg

Tests are configured by assigning parameters to
groups. This allows to define a network wide configu-
ration and also the specification of test parameters for

a particular host. This is a similar approach as the con-
figuration model of cfengine. For example every host
is subscribed to a group called ‘ee’, meaning it is
located in the department of electrical engineering. All
of these hosts receive the same test parameters when
the parameters are assigned to the ‘ee’ group. In Fig-
ure 4 part of a test configuration file is shown. Each
test configuration section starts with its name encapsu-
lated by three asterisks (***). Lines starting with ‘+’
build a subsection to attach parameters to groups.

*** HOSTS ***
server server,ignore
tardis ee,tardis,sun,2cpu,link,ignore
engelberg ee,isg,sun,1cpu,ignore
nova ee,isg,sun,2cpu,ignore
jabba ee,jabba,sun,1cpu,ignore
tardis-a4 ee,tardis-a,sun,1cpu,4gb,ignore

Figure 3: host.cfg – file.

*** Test_DiskS ***

+ ignore
run = no

+ sun
disk1 = scratch::100M::20min
disk2 = tmp::100M::20min

+ sun&4gb
disk = default::50M::30min

*** Test_Load ***

+ ignore
run = no

+ 2cpu
period = 60sec
timeavg = 30min
proclim = 3proc

+ 1cpu
run = no

Figure 4: test.cfg – file.

Gossips can also handle more complex group
structures in the test configuration. By chaining sev-
eral groups with ‘&’ it is possible to assign very spe-
cific parameters to selected hosts. If parameters for a
group ‘sun&4gb’ are defined gossips would apply this
configuration only for hosts belonging to both groups
‘sun’ and ‘4gb’.

Merging the Configuration Information

The server process reads the configuration files
and build an internal structure by merging the infor-
mation. The merging algorithm searches in each test
section of the config file shown in Figure 4 for a
matching constellation with a host by seeking from the
bottom to the top. On the top of every test section is a
group called ‘ignore’. It has the parameter ‘run = no’
which deactivates the test for a group. As you can see
in Figure 3 all hosts are member of the ‘ignore’ group.
If the merging algorithm finds for a host no other
match than the ‘ignore’ group, the test is deactivated

124 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Götsch, Wuersch, and Oetiker Gossips – System and Service Monitor

for the host. If no match can be found at all, meaning,
a host is not a member in the ‘ignore’ group, gossips
will tell the system manager to review his configura-
tion files.

Based on the information available in the config-
uration file fragments shown in Figures 3 and 4 the
host ‘tardis-a4’ would receive the configuration shown
in Figure 5.

tardis-a4:
Test_DiskS: sun&4gb

default::50M::30min

Figure 5: Configuration of tardis-a4.

scheduler

probe test

probe a

host

probe b
probe c

probe d

test a
test b

test c
test dqueue

message_pool

history test_ref history

hist_ref

probe a

probe d

probe b

test a

test b

Figure 6: Structure of a host.

The Knowledge Base

One of the functions of the gossips server is to
provide a message handling system which notifies the
system manager of state-changes found by tests run-
ning on the clients.

Because gossips reacts to state-changes and not
to system conditions it will only report a broken disk
once. If the disk breaks, this is a state-change, and
gossips will report it. The disk will only be reported
again when the state of the disk changes (e.g., miracle
healing).

Depending on the nature of the state-change, the
solution to the problem might not be obvious. When a
problem occurs for the first time, there is no helping it,
someone has to get to the bottom of the problem and
find a solution. Once the solution is found, gossips
allows to attach a description of the solution to the
original message. Gossips stores this information in its
knowledge base. When this particular state-change
occurs again, gossips will not only inform the system

manager about the new state, but will also tell about
the solution which was found last time.

It is possible that in some cases many different
causes will result in the same state-change. Lets look
at a hard drive which is running out of space. When
this happens for the first time, the system manager
will add a description of the problem to the knowledge
base. If the state-change occurs again at a later stage
and the system manager finds a different cause for the
problem, the knowledge base entry can easily be
edited to explain the second possible cause as well.
Otherwise the trigger can be adjusted to match the
state-change more closely.

If the system manager notices that a certain prob-
lem occurs again and again, gossips could be used
together with cfengine, which is able to do reparations
or rebuild configurations.
Message Handling System

Gossips does not maintain a fancy web page with
red and green icons indicating the system health. Nor-
mally it is quiet and leaves the system manager alone.
Only if a problem occurs gossips searches its knowl-
edge base and initiates a message to the system man-
ager about the new state of the system or service. The
communication module at the moment uses email, but
it can easily be extended to talk over other transports,
e.g., a pager. Visual monitoring tasks can be imple-
mented for long-time monitoring by using RRDTool
as graphic library (see Figure 9).

Implementation of Gossips

Startup of a Process
Let’s start at the beginning and see what happens

when you start the monitoring system. A gossips

2001 LISA XV – December 2-7, 2001 – San Diego, CA 125

Gossips – System and Service Monitor Götsch, Wuersch, and Oetiker

distribution contains two shell scripts which are
designed to be executed as init.d scripts. The startup
scripts gossips-client-control and gossips-server-control
will each start the related process as daemons. Both
scripts handle the command-line arguments start, stop
and re s t a r t.

Client

Message_Pool

Module

Knowledge Base Message Handling System

Server

System Manager

Communication Port to the Server

Error files Email

Client

Message_Pool

Module

Client

Message_Pool

Module

Client

Message_Pool

Module

Figure 7: Client/Server architecture.

Internal Organization of a Gossips Process
Server and Client Modules

There is a single main gossips program. By using
different startup parameters it loads either the server or
the client modules. Every gossips process has the
same objects, a scheduler, as well as several probe-
and test-objects. In Figure 6 the internal structure of a
host is illustrated. The next subsection will describe
the function of each object.
Objects in a Gossips Instance

The scheduler object manages the internal opera-
tion of a gossips process. It uses a queue to control the
firetime of probes and tests. Every probe object con-
sists of a period. When a probe has finished its execu-
tion the scheduler puts it back into the queue and it
will be re-executed after the specified time interval.

Every object in a gossips instance has a history
object attached. The history object of the scheduler is

called message_pool. To save the states of the related
object the history uses a stack of constant length. In
addition, the history supplies methods to evaluate its
contents. For example, it provides a trend analyzing
method which calculates a gradient of the numerical
values stored in the history.

The probe objects gather the data for the monitor
system. The data is stored in the attached history and
accessible for the test objects through a reference. The
test objects which evaluate the measured data are ref-
erenced in the probe object. At the end of its execution
the probe inserts all the test objects that are subscribed
to it into the scheduler queue. If a test is already
scheduled it will not be added to the queue again.

Client/Server Communication

The gossips client/server architecture is imple-
mented with probes and tests. The client and the
server both use modules to communicate with each
other. Each module uses a probe and a test object to
implement its functionality. In Figure 7 the
client/server architecture and the relation to the system
manager is shown.

When a test on a client detects a new state, it
pushes the related message into the message pool of

126 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Götsch, Wuersch, and Oetiker Gossips – System and Service Monitor

the scheduler. A probe monitors the message pool. If a
new message is put in the message pool the probe sched-
ules a test that connects to the server and forwards all
new messages from the message pool to the server.

Measurement Classes

Probe_Logfile.pm gathers lines of a logfile in its history.
Probe_DiskS.pm measures free disk space using the UNIX command ‘df -l’.
Probe_Load.pm measures the load on the local host using the UNIX command ‘uptime’.
Probe_Ping.pm pinging hosts. (using ‘ping’)
Probe_MultiPing.pm pinging hosts more than once. (using ‘fping’)
Probe_FTP.pm checks ftp-connections to a host.
Probe_FileSize.pm measures the size of a given file and returns the filename and its size in kilo bytes.

Analysis Classes (basic)

Test_Logfile.pm analyses logfiles using regular expressions.
Test_DiskS.pm checks if there is enough space and enough time before a disk is filled up. It uses

threshold values for available space on a disk and a time window in which the disk
should not fill up.

Test_Load.pm checks if the load of a local host is critical over a given period of time.
Test_FTP.pm checks the ftp-connections and the pingability of a host simultaneously.
Test_MailWatcher.pm checks if the size of the INBOX-file is beyond a given threshold. It sends an email to

the respective user if the mailbox is too large.

Analysis Classes (graphical/using RRDTool)

Test_DiskGraph.pm builds a html-page with graphics which display free and used disk space of local disks.
Test_LinkUp.pm draws a graph of the round trip times between the localhost and a given remote host

(see Figure 9).
Test_MailGraph.pm draws graphs about sent, received, bounced and rejected mails of your mailserver.

Figure 8: Features of a gossips distribution.

On the server a probe listens for client connec-
tions. The client authenticates itself using a chal-
lenge/respond-module. The communication socket
itself is not encrypted by default, but it is possible to
modify the client/server-modules to use the IO-Socket-
SSL-perl-module which provides SSL functionality.

Current Gossips Distribution

The current gossips distribution is not just a
monitoring toolkit. The current release of the package
consists of an installation system, the gossips base
classes, several monitoring tasks, and full documenta-
tion. Figure 8 shows a listing of the currently imple-
mented monitoring tasks.

Extending

Base Classes
One of the main reasons for designing gossips as

an object oriented framework was to define a clear and
simple interface for adding new tests and probes. Gos-
sips comes with base classes for tests and probes
including several methods. The base classes provide
all the communication infrastructure required for tests
and probes. They also handle the scheduler as well as
a few other essential gossips services.

The first step to build a new monitoring task is to
separate data collection from data evaluation. Data

collection is done with the probe object that measures
a device or a service. The evaluation of the collected
data is done by the test object. Both objects are
instances of a basic test and a probe class.

Adding Probes

Probes often use UNIX-commands to collect
data. Gossips supports the execution of external com-
mands through a method called ‘safe_run’ which kills
any started process if it does not complete within a
given amount of time.

The main method of a probe object is the
‘my_script’-method. It must be overridden when inher-
iting from the basic probe class. The job of the sched-
uler is to execute the ‘my_script’-method. (See Figure
10 for an example of a method that pings hosts.)

Adding Tests

It is a bit more complex to implement a new test
class. Again the main method that is called by the
scheduler is named ‘my_script.’ Additionally, a method
must be added that defines a language to parse the
desired parameters from the configuration file and one
that links these parameters with the probes and the
test. Those two methods are explained in the next sec-
tion.

The new test object will determine a certain state
from the data acquired by the probe. This state is the
return value of the main method ‘my_script’ (see Figure
11 for an example of a method evaluating ping measure-
ments). In this example the ‘my_script’ method uses a
pattern analyzing feature of the history object. This

2001 LISA XV – December 2-7, 2001 – San Diego, CA 127

Gossips – System and Service Monitor Götsch, Wuersch, and Oetiker

method only returns the first message of the history if
it was repeated at least twice in a row. This feature
forces the test to verify a received probe message. The
state is only returned when it was confirmed once
again. This test directly uses the returned messages of
the ping command as states. The ping command of a
Solaris distribution returns messages like hostname is
alive, no answer from hostname or ping: unknown
host hostname. On a Linux system the ‘my_script’
method would be implemented differently.

sub my_script {
my $self = shift;
my $history = shift;
my $message = $history->show_message();
return $history->first_entries_eq(1);

}

Figure 11: Test_Ping.pm: my_script-method.

The history object provides several methods to
handle the collected data of the probe. It has methods
to show the content of history entries. A history entry
contains the name of the owner object, a message
field, a value field and a time-stamp. Value fields
could, for example, store available disk space in a test
monitoring a hard disk.

Figure 9: Example of a RRDTool-Graph used in gossips (Test_LinkUp).

sub my_script {
my $self = shift;
my $target = $self->argument;
my $message = $self->safe_run("/usr/sbin/ping $target 5");
return $message;

}

Figure 10: my_script-method of Probe_Ping.pm.

The history also provides methods that evaluate
its value fields. One example is an average-method
that calculates the arithmetic mean of all values in the
history entries. The history provides the gradient-

method to be able to predict trends of measured val-
ues. This method calculates a gradient using the values
from the history entries along with its time-stamp.

The result of the ‘my_script’-method is the identi-
fied state of the measured service. Gossips then
decides if the result is a state-change. If it is, gossips
puts the state message into the message pool of the
scheduler object.

Defining the Configuration
The configuration system of gossips gives the

test developer the freedom to define his own ‘parame-
ter style.’ Two methods are required in the test module
to define the syntax of the parameter and the assign-
ment of parameters to the test and the probes.

A ‘my_syntax’-method defines the syntax of the
test parameters in the configuration file seen in Figure
4. Figure 12 shows the corresponding ‘my_syn-
tax’-method of the ‘Test_Load’-class.

• [1] defines the parameter key ‘run’.
• [2] assigns a syntax to ‘run’. The syntax is given

by a regular expression (/˜no$/). For the key
‘run’ the parser just accepts the line ‘run = no’.
Otherwise it throws the error message ‘wrong
run value’.

• [3] defines the parameter key ‘period’.
• [4] assigns a syntax to ‘period’. The regular

expression (/˜\d+sec$/) is the syntax. With this
configuration the parser accepts only lines start-
ing with a number and ending with the

128 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Götsch, Wuersch, and Oetiker Gossips – System and Service Monitor

identifier ‘sec’. On failure it will respond ‘‘syn-
tax error in ’period’ parameter’’.
To assign the different parameters to the test and

probes the developer has to implement a
‘my_struct’-method. Again, the test base class offers
methods to define these relations.

sub my_syntax {
my $self = shift;

[1] $self->add_syntax_key(’run’);
[2] $self->add_syntax_to_key(’run’,’/ˆno$/’,"wrong ’run’ value");
[3] $self->add_syntax_key(’period’);
[4] $self->add_syntax_to_key(’period’,’/ˆ\d+sec$/’,

"syntax error in ’period’ parameter");
$self->add_syntax_key(’timeavg’);
$self->add_syntax_to_key(’timeavg’,’/ˆ\d+min$/’,

"syntax error in ’time average’ parameter");
$self->add_syntax_key(’proclim’);
$self->add_syntax_to_key(’proclim’,’/ˆ\d+\e.?\ed*proc$/’,

"syntax error in ’proc limit’ parameter");
}

Figure 12: Test_Load.pm: my_syntax-method.

sub my_struct {
my $self = shift;

[A] $self->add_key_to_struct(’period’);
[B] $self->add_filter_to_parameter(’period’,’/ˆ(\d+)sec/’,1);
[C] $self->add_key_to_struct(’timeavg’);
[D] $self->add_filter_to_parameter(’timeavg’,’/ˆ(\d+)min/’,1);

$self->add_key_to_struct(’proclim’);
$self->add_filter_to_parameter(’proclim’,’/ˆ(\d+)proc/’,1);

[E] $self->add_probe_to_struct(’Probe_Load’);
[F] $self->link_key_elem_to_probe_period(’period’,1,’Probe_Load’);
[G] $self->link_key_elem_to_test(’timeavg’,1);
[H] $self->link_key_elem_to_test(’proclim’,1);
}

Figure 13: Test_Load.pm: my_struct-method.

In the ‘my_struct’-method of the ‘Test_ Load’-
class seen in Figure 13 the developer first adds the
keys defined in the configuration file.

• [A] defines the key ‘period’.
• [B] adds a ‘filter’ to the first parameter of key

‘period’. The filter ‘/˜(\d+)sec/’ is used to extract
the information from the parameter. In this case
the filter cuts off the identifier sec’.

• [C] defines the key ‘timeavg’.
• [D] adds the filter ‘/(\d+)min/’ to the first element

of the key ‘timeavg’. This filter lets pass just
the minutes which are defined.

• [E] adds the probe ‘Probe_Load’ to the test.
• [F] links the first argument of key ‘period’ to the

period of the probe ‘Probe_Load’. This com-
mand sets the period of a probe.

• [G] links the first argument of key ‘timeavg’ to
the test.

• [H] links the first argument of key ‘proclim’ to
the test.

Figure 14 illustrates the relations between the
configuration parameter, the parser, the test and the
probe object.

Defining the States
The generation of states relies on the data gath-

ered by the probes. For a simple test like a ping test
the collected data already defines reasonable states
like ‘host is alive’ or ‘no answer from host.’ In more
difficult cases the test developer has to define his own
set of states in the test class.

The main job of the ‘my_script’-method in the test
module is to handle the messages in the history of the
probe. The message should be mapped to logical
states. The definition of a sensible set of states is
essential for successful monitoring. The type of infor-
mation that flows from the history into the states is
restricted in some points. Remember that gossips sup-
plies state-changes. States should express if they are
good or bad. By using such states gossips is able to
tell the system manager if a monitored service just
changed to a bad state. If gossips monitors, for exam-
ple, a hard disk by collecting the free disk space it
should use a threshold value. With such a value it can
define states like ‘Everything okay with disk /scratch’
when the free disk space is larger then the threshold or
‘less than 100 M on disk /scratch’ if the free disk
space shrinks under the defined mark of 100 MB. The
important point for the design of states is that they
should not contain changing elements like actual disk-
size, uptimes, etc. Otherwise gossips will generate lots
of state-change messages overwhelming the system
manger. Gossips provides the possibility to log

2001 LISA XV – December 2-7, 2001 – San Diego, CA 129

Gossips – System and Service Monitor Götsch, Wuersch, and Oetiker

changing values like ‘free disk space.’ These values
can be submitted to the server along with the state
message. The server then stores these values in a log-
file associated with the corresponding knowledge base
file.

disk = default::50M::30min

Filter

Test-Object

arguments
[default,50]

Parser

my_syntax
keys disk
regex /\d+M/

my_struct
keys disk
regex /(\d+)M/

Probe-Object

period
[30min]

argument
[]

Figure 14: Filtering of test parameter and linking them to the test or probe object.

Conclusions

The distributed architecture of gossips builds a
scalable monitoring system. Through its flexible and
central configuration environment, together with its
command-line module, gossips is easily maintainable.
The object oriented design of gossips builds a flexible
and well defined framework for developing new moni-
toring tasks. The concept of separating data acquisi-
tion and data analysis makes defined monitoring tasks
reusable and provides the possibility to build com-
bined tests. The knowledge base allows to archive
solutions to known problems in one place and to inte-
grate the knowledge of the system manager.

By including cfengine, gossips could be
extended into a automated repair tool. Development of
an SNMP-probe-class would extend the monitor soft-
ware to a low level device monitor.

Availability

Gossips source and documentation along with its
monitoring tests are available on the web-page
http://isg.ee.ethz.ch/tools. There is a mailing list on
gossips. Send an email with subject: subscribe to gos-
sips-request@list.ee.ethz.ch to subscribe.

Acknowledgments

We would like to thank the following people for
their feedback and suggestions: our co-workers Andreas

Karrer, David Schweikert, Edwin Thaler, Christoph
Wicki, Fritz Zaucker, as well as our shepherds Mark
Burgess and Todd K. Watson.

Author Information

Victor Götsch is a third year Computer Science
student at the Swiss Federal Institute of Technology,
Zurich. After finishing his second year he started an
internship with the IT Support Group of the Depart-
ment of Electrical Engineering where he learned a lot
about system management and spent most of his time
developing the System and Service Monitor gossips.
He will continue his studies in fall 2001 to get his
degree in Computer Science.

Albert Wuersch got a degree in Electrical Engi-
neering from the Swiss Federal Institute of Technol-
ogy in 1999. He worked for nine months as a Trainee
System Manager for the IT Support Group of the EE
Department. During that time he designed the gossips
concept and started the implementation.

Tobias Oetiker is a Senior System Manager with
the above mentioned IT Support Group and has
guided the gossips project over the last 18 months.

References

[1] Sellens, John, ‘‘System and Network Monitor-
ing,’’ ;login:, Vol 25, No. 3, June, 2000.

[2] Case, Fedor, Schoffstall, and Davin, ‘‘A Simple
Network Management Protocol (SNMP),’’ RFC
1157, SNMP, May, 1990.

[3] MacGuire, Sean, ‘‘Big Brother, a tool for proac-
tive network monitoring,’’ http://www.bb4.com .

[4] Hansen, S. E., E. T. Atkins, ‘‘Automated System
Monitoring and Notification With Swatch,’’

130 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Götsch, Wuersch, and Oetiker Gossips – System and Service Monitor

Proceedings of the Seventh Systems Administra-
tion Conference (LISA VII), p. 145, USENIX
Association, Berkeley, CA.

[5] Johnson, Stephen L., ‘‘Spong – Systems and
Network Montoring,’’ http://spong.sourceforge.
net .

[6] Osterlund, R., ‘‘PIKT: Problem Informant/Killer
tool, Proceedings of the Fourteenth Systems
Administration Conference (LISA XIV), p. 147,
USENIX Association, Berkeley, CA.

[7] Burgess, Mark, ‘‘Cfengine: A Site Configuration
Engine,’’ USENIX Computing Systems, http://
www.iu.hio.no/cfengine, Vol 8, No. 3, 1995,

[8] Oetiker, Tobias, ‘‘RRDTool, The Round Robin
Database Tool for Long Time Monitoring,’’
http://people.ee.ethz.ch/˜oetiker/webtools/rrdtool .

2001 LISA XV – December 2-7, 2001 – San Diego, CA 131

132 2001 LISA XV – December 2-7, 2001 – San Diego, CA

