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Automating Infrastructure
Composition for Internet Services

Todd Poynor — Hewlett Packard Laboratories

ABSTRACT

This paper describes a framework for automatically configuring relationships that tie together
the software and hardware infrastructure components for an Internet-based service, which we also
call “composing” the service infrastructure. Management and infrastructure software employ the
framework to specify, discover, and react to changes in the infrastructure components participating
in the service, automatically configuring cross-component relationships based on this information.
This plays a key role in increasing the flexibility of a highly dynamic service infrastructure by
reducing manual configuration required to redeploy resources. The framework also facilitates
enterprises distributed across multiple autonomous administrative domains by automating chores
required to tie resources distributed among the domains together into a cohesive service. We
advocate extending existing service discovery protocols to distribute the information needed by
the framework and suggest this as an area for future standardization.

Introduction

The technology described in this paper arises out
of our recent research into automation of deployment
and configuration of Internet applications and enter-
prise infrastructure. Our chief motivation is to assist in
manageability and flexibility of the data center. Espe-
cially for the more dynamic enterprise infrastructures
envisioned for the near future [13, 14, 21], the config-
uration of the data center hardware and software may
be in nearly constant flux to support changing work-
loads, changing customer sets, and changing hardware
resources. Our goal is to redeploy available resources
quickly and easily according to demand instead of
massively over-provisioning dedicated resources, as
has often been the usual practice. Today we find our-
selves in the midst of a global slowdown in IT spend-
ing, and we can predict that a good many service
providers will be interested in ‘““doing more with
less.”

We are also interested in increasing reliability of
management and consequent availability of the enter-
prise. Today, administrators must often manually per-
form a number of individual hardware and software
configuration steps to effect a consistent change in
data center configuration, which is a known source of
errors and downtime. For example, a recent report [9]
claims 40 percent of Web site downtime is due to
“operations — e.g., not performing a required task or
performing one incorrectly.” Our goal is to pursue the
extent to which the data center may instead be auto-
matically reconfigured into the desired consistent
state, in keeping with the Internet architectural princi-
ple of avoiding manually specified parameters [15].

Our work also targets management of a dis-
tributed enterprise hosted in distributed data centers,
especially data centers operated under separate admin-
istrative domains by distinct service providers. For
predictions of future trading of compute power as a
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“liquid commodity” [8, 10, 19, 22] to be realized,
automated mechanisms for discovering and configur-
ing the distributed components together into a cohe-
sive enterprise are needed.

Among our first steps to address these topics is
to design a framework for discovery and configuration
of relationships among the infrastructure components,
such as applications and networking functions, partici-
pating in an Internet-based service. Because this
framework encompasses the problem of service adver-
tisement and discovery, we suggest that this frame-
work should leverage existing service discovery proto-
cols.

The rest of the document is organized as follows.
The next section describes our general approach. The
following section discusses leveraging existing proto-
cols for infrastructure discovery and describes a
design leveraging the Service Location Protocol [1].
Subsequent sections describe our prototype, related
work, and conclusions.

Automated Infrastructure Composition

This section describes our infrastructure compo-
sition framework in general, leaving aside for the
moment details of any particular technology on which
the framework may be based. We first define the con-
cepts modeled by our framework and then describe the
framework itself.

Describing an Infrastructure

The model chosen is of an enterprise described at
a high level of abstraction by the following:
Resources, generally hardware, such as general-
purpose server machines and load balancing
appliances. A resource is identified by its net-
work name (TCP/IP hostname).
Services provided by resources. We use the term
infrastructure services to distinguish these from
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the higher-level e-services that are built from
these components. An infrastructure service
may be identified both by a service type identi-
fier that describes the standard service protocol
and by a name that identifies the particular
implementation, used to discover proprietary or
version-specific features. For example, the
server named serverl27.xSP.com (a resource)
runs an HTTP server (an infrastructure service
type) that is Apache 1.3.19 (a specific imple-
mentation). Other service attributes that aid in
configuring communication with the service,
such as to identify a non-default TCP port, may
be specified along with the service identifiers.

Contexts in which the various infrastructure ser-
vices act in concert to provide higher-level
Internet services; services are tied together
through acting in a common context. A context
may be identified using an identifier, such as
the name of a particular customer in a shared
data center, that must match for disparate
infrastructure services to participate in the same
context. A context may instead be identified by
a URL that points to more detailed configura-
tion information about the context using such
formats as XML. For instance, the HTTP server
on server127.xSP.com serves Web site tom.com
(a context), and participates in the set of infras-
tructure services, also including load balancers
and a Web cache array, that cooperate to pro-
vide the tom.com e-service.

The context identifiers allow infrastructure ser-
vices to select the proper remote infrastructure ser-
vices to tie together into a higher-level service.
Through being configured into common contexts,
infrastructure services can discover the other partici-
pants in their contexts (and ignore those of other con-
texts). The various resources of a data center may act
in different contexts, such as to be partitioned among
different applications or to be employed on behalf of
different customers, and resources may act in multiple
contexts at a time, such as to be shared among multi-
ple customers.

An extension of this model is that of a “virtual
enterprise” comprised of multiple data centers, each
of which may be operated by distinct service
providers, as may occur if in the future compute
power is traded as a commodity [8, 10, 19, 22]. The
virtual enterprise need not manage, nor even be aware
of, every resource and infrastructure service in every
participating data center, but only the subset of these
with cross-data-center interactions. (It is assumed each
service provider manages the local infrastructure
according to the specifications of the virtual enterprise
customer, in order to scale to very large enterprises.)
We therefore use one “global” context for cross-data-
center relationships managed by the virtual enterprise
and one “local” context for each participating data
center that manages local resources and services for
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the virtual enterprise according to local policies. Each
infrastructure service with cross-data-center interac-
tions acts in both the global context for the virtual
enterprise and the appropriate local context for the
{virtual enterprise, data center} pair. Each infrastruc-
ture service with purely local interactions acts solely
in the local context. For example, the tom.com virtual
enterprise owns a Web switch that is programmed to
direct requests to the data centers that are currently
contracted to host the tom.com e-service. The Web
switch and the external contact points of the various
data centers (Web servers or load balancers or Web
caches and so forth) are configured in the global con-
text for tom.com. A participating data center’s infras-
tructure that supports tom.com (such as back-end Web
servers hidden behind a Web cache) is configured in
the local context for tom.com within that data center.

An Infrastructure Composition Framework

This paper describes a protocol and framework
by which the deployment of resources, services, and
contexts is specified by management tools and discov-
ered by the affected components. There are two sets of
deployment information to manage: the persistent
instructions on how services are to be deployed, as
specified by an administrator or system management
software, and the (possible subset of these) deploy-
ments currently running. We call the former “desig-
nated deployments” and the latter “current deploy-
ments.”

Service-specific

Infrastmectore
discovery
protocal

Deplovment
Lgents

designated
deployments
Figure 1: The infrastructure composition framework.

Management tools use the protocol to initiate
changes in designated deployments. System manage-
ment tools can provide high-level interfaces to model
and modify the administrator’s (or automatic manage-
ment software’s) designated deployments. The infras-
tructure composition framework automates the process
by which the enterprise is configured to match those
intentions. The eventual goal is that the administrator
may execute a high-level command that reads some-
thing like ““add a new Web server to the tom.com con-
text”’; the management tools and the composition
framework then execute a number of configuration
steps required to make that happen. Each resource
runs one deployment agent that uses the designated
deployment information to discover that resource’s
“personality,” that is, what infrastructure services it is
to provide and in which contexts. The deployment
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agent initially queries this designated deployment
information at boot time and then subscribes to notifi-
cations of updates. The deployment agent contacts the
appropriate service- specific agents on that resource to
start, stop, and reconfigure contexts for the services as
instructed by changes in designated deployments.

Each service-specific agent thus executed then
takes the actions needed to start, stop, or reconfigure
contexts for the associated service. These changes in
current deployments are then registered using the pro-
tocol, such that other service-specific agents can con-
figure or deconfigure interactions with the redeployed
service.

A newly started service-specific agent uses the
protocol to discover other current service deployments
and configures any interactions required based on that
information. The agent also subscribes to notifications
of changes in current deployments for the relevant ser-
vice types, such that interactions can be reconfigured
on an ongoing basis.

Figure 2 depicts a general-purpose server that
runs two infrastructure services that participate in the
protocol.

server] 27 x5 com
HTTP Service HF3-Client
Agzent Service Lgent
Deployment Infrastmeture nebanarl:
Lgzent discovery protocol

Figure 2: A server resource running two services.

The deployment agent discovers that it is to start the
two services at boot time using the protocol and starts
the services; the two service agents advertise their
presence to other services and also discover and con-
figure interactions with remote services using the pro-
tocol.

Figure 3 depicts two service-specific agents, one
an HTTP load balancer and the other a firewall, react-
ing to notification of a new HTTP server deployed on
resource serverl27 in context “tom.com” (in which
context all participate).

The HTTP load balancer was originally told only
to operate in the “tom.com” context, whereupon it
discovered the appropriate set of target Web servers to
balance among. Any change in the tom.com Web
server membership is communicated to the load bal-
ancer agent so that it may update its set of targets. If
an array of load balancers is employed then each
instance may discover the other instances using our
protocol, affecting the algorithms used to divvy up
content; this is an example of discovering clustered
instances of a specific product and configuring propri-
etary interactions.
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A {resource, service type, context} 3-tuple
defines the granularity at which deployments may be
specified and discovered using the protocol, together
with more detailed information made available
through attributes associated with the tuple. The level
of abstraction represented in the protocol is quite high-
level, identifying the infrastructure services and
resources participating in an Internet service together
with basic information on how to establish communi-
cations. Further service-specific configuration infor-
mation and actions may be addressed by more specific
protocols or as extensions to this protocol through the
service attributes or context information.

Further Details on the Framework

The deployment and service-specific agents for
an appliance that do not support the infrastructure
composition protocol natively may instead run on a
nearby general-purpose server. The service-specific
agent converts between the protocol and the propri-
etary management interface for the device. For spe-
cific-purpose appliances, the services to provide may
be implicitly defined by the type of device and there-
fore the device need not query the designated set of
services to execute. If so, at boot time a query is still
generated for the resource’s designated deployment,
but only the information on designated context identi-
fiers, not the service types, is used from the query
result.

st add sermerl 27
to the targets among
which I balanece.

nnst pass traffio
for TCP port 804o

sermer] 27,

HTTPF load
halancer

nfrastricture
discovery

protocol

1serverl 27, HTTE, tortoooen}

| sermer] 27 I

Figure 3: Two services configuring new relation-
ships.

For general-purpose servers, the deployment
agent and the service-specific agents may extend the
existing means of starting and stopping services at
system startup and shutdown time, such as the UNIX
“init.d” scripts or the Windows “Services” applet.
These are manually configured methods of specifying
whether a certain service is to be started at boot time
(or during normal system operation if manually
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executed). As extended by our framework, services
may instead be started or stopped at any time based on
remote instructions. The existing service scripts or
applets may also add to their existing actions (which
include ‘startup” and ‘“‘shutdown’’) the action of
reconfiguring due to changes in the rest of the enter-
prise. We have thus far avoided any mention of spe-
cific communication protocols or encodings for the
infrastructure composition protocol. This is because
we wish to leverage existing technology for this, for
which there are a number of choices, as discussed in
the following section. The formats for specifying the
names of resources, services, and context identifiers
can vary depending on the underlying technology,
such as strings within a URL or XML-based represen-
tations. Likely network transport protocols include
UDP datagrams for local traffic and TCP for cross-
data-center or other longer-haul traffic.

Leveraging Existing Discovery Protocols

Service discovery protocols serve the purpose of
advertising information about available services, their
attributes, and their access methods to prospective
clients. Although our purposes are geared more
toward enterprise management and automated discov-
ery of relationships between component services, we
share the concerns of representing, finding, and
accessing services using standard names and
attributes. Service discovery protocols are currently a
fertile area of innovation and competition in the indus-
try; the field does not need yet another protocol that
encompasses this topic. Accordingly, our designs
incorporate existing discovery protocols and APIs for
the new purpose of infrastructure discovery, also
resisting the temptation to invent a new API that is
independent of the underlying discovery protocol.

Several existing protocols primarily target ad-
hoc, non-centrally-managed networks, such as access
to currently nearby services by mobile clients and net-
works of consumer electronics devices or office equip-
ment. Among these are the Jini Lookup Service [3],
the Simple Service Discovery Protocol (SSDP) [2],
and Salutation [5]. Protocols oriented toward discov-
ery of services in centrally managed networks include
the DNS service location resource record [7] and the
Service Location Protocol (SLP) [1]. Service adver-
tisement and discovery protocols are also a part of the
business-to-business frameworks E-Speak [4] and
Universal Description, Discovery, and Integration
(UDDI) [6]; many of our concerns regarding dynamic
reconfiguration of intra-enterprise relationships can
apply in a cross-enterprise context as well.

Our focus on enterprise management influences
our designs in certain new directions. Services form
relationships based on management policy (as
expressed in designated deployments and context
identifiers), rather than automatically choosing remote
service peers from an available pool based on service-
specific criteria (such as a print server that advertises
the proper printer capabilities) or user selection from a

172

Poynor

menu of choices. Resources are explicitly identified in
the protocol, rather than being implicitly defined in
service location identifiers, and are represented as
entities that may perform multiple services. Services
are tied together by common context identifiers. Both
current and designated service deployments are repre-
sented, such that the protocol may be used to deter-
mine the “personality” of the local resource. We also
strive for stronger consistency guarantees than certain
protocols that can deliver stale information and that do
not enforce consistency across replicated repositories,
since we should represent a consistent view of the
enterprise for agreement among the various interacting
components.

Leveraging the Service Location Protocol

This section presents an example design that
leverages the Service Location Protocol (SLP) version
2 [1], a service discovery protocol on the IETF stan-
dards track, for infrastructure service discovery. SLP
defines URL encodings for service deployments,
called Service URLs. For example, an LPR protocol
network printer named ‘“queuename” on system
“printserver” might be described by Service URL:

service:printer:lpr://printserver/queuename;)\

(media-size=na-letter)

This information is usually advertised and queried
using UDP datagrams to Directory Agents (DAs),
which function as caches for service advertisements!
Queries use LDAPv3 search predicates [25]. SLP
messages may optionally be authenticated using digi-
tal signatures such as DSA [26].

Local Infrastructure Discovery

For infrastructure discovery, we keep the infor-
mation on “designated deployments” separate from
the information on “current deployments” using a
new namespace (technically a ‘“naming authority”
string) for designated deployments named ‘“‘conf”.
Deployment agents use the “conf” namespace to dis-
cover the services to be provided by the associated
resource, then register deployed services and discover
remotely deployed services using the usual names-
paces.

Designated and current deployments are repre-
sented as Service URLs. Information on the associated
resource and context for a service deployment is rep-
resented using attributes of the same names. Example
Service URLs for designated and current deployments,
respectively, of a service named tomapp on resource
server127 as part of the tom.com context are:

service:tomapp.conf://futureuse;\
(resource=serverl27.xSP.com), \
(contexts=tom.com)

service:tomapp://serverl27.xSP.com; \
(resource=serverl27.xSP.com), \
(contexts=tom.com)

"We disregard the SLP small network model without Di-
rectory Agents for the enterprise-class purposes of this pa-
per.
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The “futureuse” identifier is a placeholder for
the URL of further configuration information, the for-
mat of which we plan to specify in a future design
phase. Resources are explicitly identified as an actual
deployment attribute, rather than relying on the addr-
spec portion of the Service URL, to facilitate searches
on resource keys. Contexts are represented as
attributes in part so that common mechanisms for
queries on resource and context identifiers may be
employed, although mapping contexts to the SLP fea-
ture of administrative “scopes” may suffice instead.

Both designated and current deployments are
registered and unregistered using the usual SLP mech-
anisms, specifying Service URLs for the appropriate
namespaces and that include the “resource” and
“context™ attributes.

To query for deployments, we use the SLP query
by service-type name and attributes, extended to also
allow queries for service-types that include the wild-
card “*”. For example, to discover the designated ser-
vice and context deployments for a resource, a query
is sent with service-type “*.conf” and a resource
qualifier but no context qualifier. Queries for wildcard
service-types also support arbitrary service types, the
names of which are not well known but that register
well known attributes, permitting configuration depen-
dencies to be discovered. For example, a firewall can
query for all services within the contexts in which the
firewall operates, discovering the appropriate proto-
cols and ports for non-well-known service types
through the registered attributes.

Means by which software may be notified of
changes in SLP service registrations are proposed in
an [ETF draft extension [12]. As above, we extend the
design to allow subscribing to notifications of updates
to arbitrary services, without knowing the appropriate
service-type names in advance. Changes in designated
deployments need be communicated to only the
affected resources, which may need to start or stop
services accordingly. We therefore extend the design
such that subscriptions can be qualified by predicates
such as “(resource=myhostname)’’. Once the services
are actually started or stopped, the affected compo-
nents are notified of the change in actual deployment
as usual.

Distributed Infrastructure Discovery

SLP is designed to function within a single coop-
eratively managed network. We wish to adapt the pro-
tocol to represent the required service relationships
across a ‘““virtual enterprise” of distributed data cen-
ters. The two-level hierarchy of information to be
managed, one level for the local data center (for which
SLP is already designed) and one for the infrastructure
services visible across the virtual enterprise, is
expected to scale appropriately using SLP.

Preliminary designs call for at least one Virtual
Enterprise Directory Agent (VEDA) that is a reposi-
tory for information on all SLP Directory Agents
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(DAs) that participate at the global level. We call DAs
that operate in the global context “global DAs” to dis-
tinguish these from DAs that operate solely in the
local contexts of a data center, if the data center is
arranged such that there are such “local” DAs. A
VEDA is simply a global DA whose presence is guar-
anteed to exist for a sufficient period of time to “boot-
strap” a new data center into the virtual enterprise —
the distinction is necessary because we allow for the
set of participating global DAs to be highly dynamic
due to data centers joining and leaving the virtual
enterprise as conditions warrant.

Initial discovery between a VEDA and the global
DAs for a new outsourced data center joining the vir-
tual enterprise is expected to occur out-of-band, per-
haps as part of the process by which a contract is
formed between the virtual enterprise and the data
center. The new DAs and existing global DAs subse-
quently discover each other and exchange information
on the relevant service deployments using SLP DA
interaction protocols proposed in an IETF draft exten-
sion [16], further extended to encrypt communications
to avoid giving too many clues to the “black hats.”
All cross-data-center SLP traffic occurs between
global DAs; infrastructure services operating in a
global context register information with a global DA
that relays the information to remote global DAs. Fig-
ure 4 depicts Data Center Provider 2 joining a virtual
enterprise. The new data center’s global Directory
Agent announces its presence to the Virtual Enterprise
Directory Agent, which registers the new global DA
and responds with a list of global DAs for the virtual
enterprise. Only one peer DA is shown, hosted by the
same provider as the VEDA. The new and existing
DAs then exchange information on service deploy-
ments acting in the global context at the respective
data centers and configure any cross-data- center inter-
actions accordingly.

VEDA | - 1 New DA registration
2. Listof-Glohal Ds
D ' Di
3. Glohal deployment registrations
Data Center . % Data Center ]
. Provider 1 . Provder 2

Figure 4: New data center joins the virtual enterprise.

Prototype Results

We prototyped a single-data-center subset of the
framework, without support for cross-data-center
interactions. The prototype infrastructure composition
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protocol is based on OpenSLP 0.9.1 [23], an open
source implementation of SLPv2, modified to support
wildcard service queries as described previously. We
also added a temporary measure for proposed deploy-
ment update notification extensions [11] not available
at this time. The temporary mechanism simply exe-
cutes the local deployment agent upon any service
registration or deregistration received by a Directory
Agent. Each resource therefore runs a DA (this is not
normally the case in an SLP network); all updates are
broadcast to each DA through DA interaction proto-
cols built into OpenSLP. The deployment agent in turn
informs each local service- specific agent of each
update, which, of course, does not scale to realistically
sized networks.

The resource and service components participat-
ing in the protocol are:

e An ipfw/ipchains firewall (and Network
Address Translation in the future) on an intelli-
gent network interface card in an HP J5000 PA-
RISC server running HP-UX 11.0. All traffic to
the following three systems is routed through
this firewall.

¢ An NFS file server and boot server for the fol-
lowing two systems on an IA32 server running
Linux 2.4.3.

e Two Apache 1.3.19 Web servers on two 1A32
servers running Red Hat Linux 6.2. These sys-
tems boot over the network using Etherboot
4.6.3 and mount their file systems over NFS
from the above boot/file server.

The above four server systems each run an SLP
Directory Agent and have installed the infrastructure
composition framework deployment agent and the
appropriate service-specific agents. The deployment
agent and the service-specific agents are implemented
as bash/POSIX shell scripts to match the language of
the existing service startup/shutdown scripts shipped
with the operating systems (this is a somewhat clumsy
language for this purpose; use of languages specifi-
cally targeted at configuration such as GNU cfengine
[28] could prove beneficial). SLP registrations and
queries are accomplished from a shell script by run-
ning a utility named slptool from the OpenSLP pack-
age that allows SLP protocol actions to be expressed
as run string parameters. The service-specific agents
leverage the existing system startup/shutdown scripts
(such as /etc/rc.d/init.d/nfs on Linux) to start and stop
the associated services.

The server systems execute the local deployment
agent at boot time to configure and start any services
that participate in our framework. The deployment
agent then queries the SLP “.conf” namespace to
determine the designated services to start on the local
resource, executing the service-specific script for each
such service. The deployment agent is also called
upon each change in designated or current deploy-
ments among the four systems, passing this informa-
tion to the service-specific scripts.
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In the absence of any fancier tools that abstract
away the details of SLP syntax, we use the slptool util-
ity to configure designated service deployments for
any of the four systems. For example, an Apache Web
server is started on system App4139 and configured
for customer paladin.com using the following com-
mand on any of the systems:

slptool register http-server.conf:\
apache//App4139 ‘‘(resource=App4l139),\
(contexts=paladin.com) '’

Upon receipt of the above registration, the SLP
Directory Agent on App4139 runs our deployment
agent, passing it the above information. The deploy-
ment agent in turn executes the http- server/apache
service-specific script. That script configures an
Apache “virtual host” for paladin.com (a mapping of
the paladin.com domain name to a set of Web content
and other Web site configuration information; there
may be many virtual hosts served by the same Apache
server) by modifying the httpd.conf file. The service-
specific script also starts or restarts Apache using
Jusr/local/apache/bin/apachect] and registers the new
current Apache deployment using an slptool command
similar to the above but without the ““.conf” names-
pace.

The firewall service-specific agent is notified of
the new http-server deployment on App4139, and
opens access to TCP port 80 on App4139 via an
ipchains command if not already. Conversely, if the
http-server on that system is deregistered, access to the
port is blocked.

The Web content for each customer is mounted
over NFS from the file server. The NFS clients on the
two Web server systems and the NFS server on the file
server are services that participate in our framework.
An NFS client operating in the paladin.com context
locates the NFS server for paladin.com using an SLP
query for the filesys-server:nfs service and mounts
from the server hostname and file path as returned in
the query results. The NFS server discovers the con-
figured NFS clients through a query for filesys-
client.confinfs registrations and allows access to the
appropriate file system for the resources thus identi-
fied. Both NFS clients and servers are notified of
updates in deployments and respond accordingly, and
so a client will unmount a file system from a deregis-
tered server and re-mount from a newly registered
server; a server will drop access for a deregistered
client and add access for a new client.

To move the paladin.com Web site from one Web
server to the other, the old filesys-client:nfs and http-
server:apache entries are deregistered (or modified to
drop the paladin.com context) and new entries are reg-
istered for the new resource (or existing entries are
modified to add the paladin.com context). The recon-
figurations that ensue are as follows:

¢ The NFS server revokes access to paladin.com
files for the old Web server system and grants
access to the new system.
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¢ The paladin.com files are unmounted from the
old Web server system and are mounted on the
new system.

e The Apache virtual host configuration for pal-
adin.com on the old Web server is removed and
a new virtual host is created on the new server.

e If there are no more contexts for the old
Apache to serve then the Apache server is shut
down and the firewall blocks port 80. If the
new Apache server is not yet running it is
started and the firewall opens port 80.

The above actions can be triggered by a com-
mand of form “move web site paladin.com from
serverl to server2.” The full set of actions has been
observed to occur in less than two seconds. Add such
components as network address translation, HTTP
load balancing, Web caches, application servers and
database servers, VLANSs, and so forth to the picture
and we can assert that the infrastructure composition
framework results in a real benefit even for infrastruc-
tures that change only infrequently.

The prototype uses diskless servers such that in
the future the protocol may also trigger software
deployment activities. A notification to act in a new
context causes the server to assemble and boot soft-
ware needed to serve the associated context (such as
the appropriate operating system and Web server soft-
ware), in addition to mounting the appropriate files
over NFS as currently prototyped. This is to be
accomplished through a software deployment service
that associates the context identifiers with NFS mount
points for the OS, applications, and data, together with
other configuration information required to deploy a
new instance of a software stack previously config-
ured for that context.

Another future direction is to represent depen-
dencies between service reconfigurations on the local
resource, such as to ensure each service using the file
systems for a context have completed reconfiguration
out of that context before the file systems are
unmounted by the file system client. We are also look-
ing at publishing additional service/context-specific
configuration information over HTTP from URLs
associated with the context identifiers. For example,
when the service-specific agent for the Apache Web
server is instructed to act in a new context it looks up
such information as the administrator’s e-mail address
and authorization rules at URL http://context/config/
http-server/apache.xml .

Related Work

We have previously discussed comparisons
between our enterprise infrastructure composition pro-
tocol and a number of industry service discovery pro-
tocols, which function mainly for users to discover
available end user services or for connecting office
equipment or personal technology devices. In addition
to these, the Secure Service Discovery Service (SSDS)

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Automating Infrastructure Composition for Internet Services

of the UCB Ninja research project [8] targets users
locating end user services over a wide area. Future
directions for the Ninja project are to support purchas-
ing services and compute power as commodities, at
which time we can expect there will be an even
stronger parallel to our work.

The IBM Océano research project [21] tackles a
problem shared with our work: reconfiguring
resources of a single data center that are dynamically
allocated among multiple customers according to
demand. For example, their paper mentions automati-
cally reprogramming VLAN-based networks using
SNMP when a server is reallocated among customers.
The Muse project at Duke University [27] reprograms
switches to serve requests from dynamic server sets
allocated among customers. Their paper also discusses
use of diskless servers for the same purposes of effi-
cient reallocation across software environments as in
our work. Further information on the protocols and
mechanisms by which notification of state changes is
performed and reconfigurations are triggered in these
projects is not available to us at this time, but it seems
a standards-based solution as we propose would fit
perfectly.

Distributed infrastructure composition applies to
various technologies termed ‘“metacomputing”, “grid
computing”, and “peer-to-peer”. Although these
technologies are primarily aimed at assembling large-
scale computing power for supercomputing applica-
tions or at wide-area resource sharing or collaboration,
the focus is beginning to also include enterprise appli-
cations and service providers. The emphasis is on such
resource-oriented topics as discovery, description,
allocation, and quality of service. Generally, applica-
tions employ new distributed resource access middle-
ware or adaptations of existing distributed computing
APIs such as MPI and CORBA. Darwin [18] concen-
trates on network resource management for distributed
service providers; resources are tied together in a ““vir-
tual mesh” through brokers. Globus [19] and Legion
[20] implement distributed computing middleware,
including resource brokering and mechanisms for
ongoing discovery of information on various aspects
of resources in the distributed system, based on such
protocols as LDAP and NIS. Our work differs from
these in that it is focused on automated composition of
service components in an enterprise infrastructure
rather than on automated composition of resource
components of a distributed application (over a par-
tially pre-configured infrastructure). But it doesn’t
seem a far reach to adapt these technologies for our
purposes. An automated infrastructure composition
framework could complement these technologies for
applications that interact with a dynamic set of peer
applications or underlying infrastructure services. This
could be achieved by extending the middleware asso-
ciated with the technology or by leveraging emerging
service discovery standards as we propose, with a pos-
sible advantage for lighter-weight standards-based
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protocols that may lend themselves to use in a wider
variety of devices.

Certain of these projects, and others such as the
IETF Middlebox Communication Working Group
[13], deal with protocols for communication of policy
and/or quality of service information regarding a par-
ticular networking packet flow among the devices that
participate in the conversation. For example, the
appropriate firewall ports may be automatically
opened for the duration of an IP telephony session.
Automated configuration of end-to-end infrastructure
for a particular service conversation is analogous to
our goals of automated configuration of an enterprise
infrastructure according to management policy, and
may be a point of further future investigation. A num-
ber of projects, including FLASH [17] and previous
work at NASA Ames [24], distribute service configu-
ration files from a central repository, using facilities
such as ONC NIS or UNIX r-commands (rcp, et al).
The main goal is to keep multiple systems in sync
rather than to dynamically form associations between
systems, although such concerns as locating appropri-
ate NFS servers do appear (the NASA Ames setup
uses DNS resource records for this purpose, assuming
the information does not change very often). These
systems deal primarily with higher-level services con-
figured using files and running on general- purpose
servers that support file systems and file transfer pro-
tocols over an enterprise network that has been previ-
ously composed. The central site publishes detailed
service-specific configuration information, rather than
generalized information that is interpreted by service-
specific agents on the remote nodes.

Conclusions

We have described a framework for automated
discovery and configuration of the designated deploy-
ment of services on a resource based on centralized
management instructions, and for automated configu-
ration of interdependencies between infrastructure ser-
vices. The management instructions describe desig-
nated service deployments in high-level terms
(“deploy an Apache Web server on system server127
for customer tom.com”); the framework automates the
process whereby the various enterprise components
are reconfigured to match these instructions. Informa-
tion on the membership of resources and services, as
discovered through common context identifiers, is
often sufficient to automate configuration of interac-
tions between services, and can serve as a starting
point for discovering more specific service configura-
tion information via the published attributes and via
descriptions associated with the published context
identifiers.

We suggest that a standardized infrastructure
subscribing to such a framework instead of proprietary
administration interfaces would play a key role in
more quickly reconfigurable, and more reliably recon-
figurable, enterprise networks and services that scale
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to very large networks by distributing configuration
intelligence among the various participant services.
This technology can also serve as a foundation for vir-
tual enterprise networks comprised of resources from
a possibly dynamic set of disparate administrative
domains by automatically configuring interactions
needed across domains. We further propose extending
existing statically configured mechanisms for starting
and stopping services in general-purpose operating
systems to handle such dynamism.

Existing service discovery protocols may be
readily adapted for these purposes. It is our position
that use of lightweight and standards-aligned protocols
encourages adoption in the widest variety of devices
and applications. In the case of the Service Location
Protocol, proposed extensions for deployment notifi-
cation subscriptions and for Directory Agent interac-
tions, together with further recommendations in this
paper for wildcard service queries and subscription
predicates, would greatly enhance its usefulness for
disseminating the information needed for automated
infrastructure composition.
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Availability

Bug fixes to OpenSLP developed during this
effort have been contributed back to OpenSLP.
OpenSLP enhancements and source code and docu-
mentation for the software used in our prototyping
may be downloaded at http://www.hpl.hp.com/personal/
Todd Poynor/. There may also be a future effort to
provide these features in Kempf & Associates SLP for
Win32, see http://www.moeller-antik.com/"guttman/kaslp.
htm.
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