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ABSTRACT

The paper presents a wireless sensor network-based mobile
countersniper system. A sensor node consists of a helmet-
mounted microphone array, a COTS MICAz mote for inter-
node communication and a custom sensorboard that imple-
ments the acoustic detection and Time of Arrival (ToA) esti-
mation algorithms on an FPGA. A 3-axis compass provides
self orientation and Bluetooth is used for communication
with the soldier’s PDA running the data fusion and the user
interface. The heterogeneous sensor fusion algorithm can
work with data from a single sensor or it can fuse ToA or
Angle of Arrival (AoA) observations of muzzle blasts and
ballistic shockwaves from multiple sensors. The system esti-
mates the trajectory, the range, the caliber and the weapon
type. The paper presents the system design and the results
from an independent evaluation at the US Army Aberdeen
Test Center. The system performance is characterized by 1-
degree trajectory precision and over 95% caliber estimation
accuracy for all shots, and close to 100% weapon estimation
accuracy for 4 out of 6 guns tested.
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1. INTRODUCTION

The importance of countersniper systems is underscored
by the constant stream of news reports coming from the
Middle East. In October 2006 CNN reported on a new tac-
tic employed by insurgents. A mobile sniper team moves
around busy city streets in a car, positions itself at a good
standoff distance from dismounted US military personnel,
takes a single well-aimed shot and immediately melts in the
city traffic. By the time the soldiers can react, they are
gone. A countersniper system that provides almost imme-
diate shooter location to every soldier in the vicinity would
provide clear benefits to the warfigthers.

Our team introduced PinPtr, the first sensor network-
based countersniper system [17, 8] in 2003. The system is
based on potentially hundreds of inexpensive sensor nodes
deployed in the area of interest forming an ad hoc multihop
network. The acoustic sensors measure the Time of Arrival
(ToA) of muzzle blasts and ballistic shockwaves, pressure
waves induced by the supersonic projectile, send the data to
a base station where a sensor fusion algorithm determines
the origin of the shot. PinPtr is characterized by high pre-
cision: 1m average 3D accuracy for shots originating within
or near the sensor network and 1 degree bearing precision
for both azimuth and elevation and 10% accuracy in range
estimation for longer range shots. The truly unique char-
acteristic of the system is that it works in such reverberant
environments as cluttered urban terrain and that it can re-
solve multiple simultaneous shots at the same time. This
capability is due to the widely distributed sensing and the
unique sensor fusion approach [8]. The system has been
tested several times in US Army MOUT (Military Opera-
tions in Urban Terrain) facilities.

The obvious disadvantage of such a system is its static
nature. Once the sensors are distributed, they cover a cer-
tain area. Depending on the operation, the deployment may
be needed for an hour or a month, but eventually the area
looses its importance. It is not practical to gather and reuse
the sensors, especially under combat conditions. Even if the
sensors are cheap, it is still a waste and a logistical problem
to provide a continuous stream of sensors as the operations
move from place to place. As it is primarily the soldiers that
the system protects, a natural extension is to mount the
sensors on the soldiers themselves. While there are vehicle-
mounted countersniper systems [1] available commercially,
we are not aware of a deployed system that protects dis-
mounted soldiers. A helmet-mounted system was developed
in the mid 90s by BBN [3], but it was not continued beyond
the Darpa program that funded it.



To move from a static sensor network-based solution to a
highly mobile one presents significant challenges. The sensor
positions and orientation need to be constantly monitored.
As soldiers may work in groups of as little as four people,
the number of sensors measuring the acoustic phenomena
may be an order of magnitude smaller than before. More-
over, the system should be useful to even a single soldier.
Finally, additional requirements called for caliber estimation
and weapon classification in addition to source localization.

The paper presents the design and evaluation of our soldier-
wearable mobile countersniper system. It describes the hard-
ware and software architecture including the custom sensor
board equipped with a small microphone array and con-
nected to a COTS MICAz mote [12]. Special emphasis is
paid to the sensor fusion technique that estimates the tra-
jectory, range, caliber and weapon type simultaneously. The
results and analysis of an independent evaluation of the sys-
tem at the US Army Aberdeen Test Center are also pre-
sented.

2. APPROACH

The firing of a typical military rifle, such as the AK47
or M16, produces two distinct acoustic phenomena. The
muzzle blast is generated at the muzzle of the gun and trav-
els at the speed sound. The supersonic projectile generates
an acoustic shockwave, a kind of sonic boom. The wave-
front has a conical shape, the angle of which depends on the
Mach number, the speed of the bullet relative to the speed
of sound.

The shockwave has a characteristic shape resembling a
capital N. The rise time at both the start and end of the
signal is very fast, under 1 usec. The length is determined by
the caliber and the miss distance, the distance between the
trajectory and the sensor. It is typically a few hundred psec.
Once a trajectory estimate is available, the shockwave length
can be used for caliber estimation.

Our system is based on four microphones connected to
a sensorboard. The board detects shockwaves and muzzle
blasts and measures their ToA. If at least three acoustic
channels detect the same event, its AoA is also computed.
If both the shockwave and muzzle blast AoA are available,
a simple analytical solution gives the shooter location as
shown in Section 6. As the microphones are close to each
other, typically 2-4”, we cannot expect very high precision.
Also, this method does not estimate a trajectory. In fact, an
infinite number of trajectory-bullet speed pairs satisfy the
observations. However, the sensorboards are also connected
to COTS MICAz motes and they share their AoA and ToA
measurements, as well as their own location and orientation,
with each other using a multihop routing service [9]. A
hybrid sensor fusion algorithm then estimates the trajectory,
the range, the caliber and the weapon type based on all
available observations.

The sensorboard is also Bluetooth capable for communi-
cation with the soldier’s PDA or laptop computer. A wired
USB connection is also available. The sensorfusion algo-
rithm and the user interface get their data through one of
these channels.

The orientation of the microphone array at the time of
detection is provided by a 3-axis digital compass. Currently
the system assumes that the soldier’s PDA is GPS-capable
and it does not provide self localization service itself. How-
ever, the accuracy of GPS is a few meters degrading the
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Figure 1: Acoustic sensorboard/mote assembly

overall accuracy of the system. Refer to Section 7 for an
analysis. The latest generation sensorboard features a Texas
Instruments CC-1000 radio enabling the high-precision radio
interferometric self localization approach we have developed
separately [7]. However, we leave the integration of the two
technologies for future work.

3. HARDWARE

Since the first static version of our system in 2003, the sen-
sor nodes have been built upon the UC Berkeley/Crossbow
MICA product line [11]. Although rudimentary acoustic sig-
nal processing can be done on these microcontroller-based
boards, they do not provide the required computational
performance for shockwave detection and angle of arrival
measurements, where multiple signals from different micro-
phones need to be processed in parallel at a high sampling
rate. Our 3rd generation sensorboard is designed to be used
with MICAz motes—in fact it has almost the same size as
the mote itself (see Figure 1).

The board utilizes a powerful Xilinx XC351000 FPGA
chip with various standard peripheral IP cores, multiple soft
processor cores and custom logic for the acoustic detectors
(Figure 2). The onboard Flash (4MB) and PSRAM (8MB)
modules allow storing raw samples of several acoustic events,
which can be used to build libraries of various acoustic signa-
tures and for refining the detection cores off-line. Also, the
external memory blocks can store program code and data
used by the soft processor cores on the FPGA.

The board supports four independent analog channels sam-
pled at up to 1 MS/s (million samples per seconds). These
channels, featuring an electret microphone (Panasonic WM-
64PNT), amplifiers with controllable gain (30-60 dB) and
a 12-bit serial ADC (Analog Devices AD7476), reside on
separate tiny boards which are connected to the main sen-
sorboard with ribbon cables. This partitioning enables the
use of truly different audio channels (eg.: slower sampling
frequency, different gain or dynamic range) and also results
in less noisy measurements by avoiding long analog signal
paths.

The sensor platform offers a rich set of interfaces and can
be integrated with existing systems in diverse ways. An
RS232 port and a Bluetooth (BlueGiga WT12) wireless link
with virtual UART emulation are directly available on the
board and provide simple means to connect the sensor to
PCs and PDAs. The mote interface consists of an I°C bus
along with an interrupt and GPIO line (the latter one is used
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Figure 2: Block diagram of the sensorboard.

for precise time synchronization between the board and the
mote). The motes are equipped with IEEE 802.15.4 compli-
ant radio transceivers and support ad-hoc wireless network-
ing among the nodes and to/from the base station. The
sensorboard also supports full-speed USB transfers (with
custom USB dongles) for uploading recorded audio samples
to the PC. The on-board JTAG chain—directly accessible
through a dedicated connector—contains the FPGA part
and configuration memory and provides in-system program-
ming and debugging facilities.

The integrated Honeywell HMR3300 digital compass mod-
ule provides heading, pitch and roll information with 1°
accuracy, which is essential for calculating and combining
directional estimates of the detected events.

Due to the complex voltage requirements of the FPGA,
the power supply circuitry is implemented on the sensor-
board and provides power both locally and to the mote. We
used a quad pack of rechargeable AA batteries as the power
source (although any other configuration is viable that meets
the voltage requirements). The FPGA core (1.2 V) and I/O
(3.3 V) voltages are generated by a highly efficient buck
switching regulator. The FPGA configuration (2.5 V) and a
separate 3.3 V power net are fed by low current LDOs, the
latter one is used to provide independent power to the mote
and to the Bluetooth radio. The regulators—except the last
one—can be turned on/off from the mote or through the
Bluetooth radio (via GPIO lines) to save power.

The first prototype of our system employed 10 sensor
nodes. Some of these nodes were mounted on military kevlar
helmets with the microphones directly attached to the sur-
face at about 20 cm separation as shown in Figure 3(a). The
rest of the nodes were mounted in plastic enclosures (Fig-
ure 3(b)) with the microphones placed near the corners of
the boxes to form approximately 5 cmx 10 cm rectangles.

4. SOFTWARE ARCHITECTURE

The sensor application relies on three subsystems exploit-
ing three different computing paradigms as they are shown
in Figure 4. Although each of these execution models suit
their domain specific tasks extremely well, this diversity
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Figure 3: Sensor prototypes mounted on a kevlar
helmet (a) and in a plastic box on a tripod (b).

presents a challenge for software development and system
integration. The sensor fusion and user interface subsys-
tem is running on PDAs and were implemented in Java.
The sensing and signal processing tasks are executed by an
FPGA, which also acts as a bridge between various wired
and wireless communication channels. The ad-hoc internode
communication, time synchronization and data sharing are
the responsibilities of a microcontroller based radio module.
Similarly, the application employs a wide variety of commu-
nication protocols such as Bluetooth® and IEEE 802.14.5
wireless links, as well as optional UARTSs, I?°C and/or USB
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Figure 4: Software architecture diagram.
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The sensor fusion module receives and unpacks raw mea-
surements (time stamps and feature vectors) from the sen-
sorboard through the Bluetooth® link. Also, it fine tunes
the execution of the signal processing cores by setting pa-
rameters through the same link. Note that measurements
from other nodes along with their location and orientation
information also arrive from the sensorboard which acts as
a gateway between the PDA and the sensor network. The
handheld device obtains its own GPS location data and di-



rectly receives orientation information through the sensor-
board. The results of the sensor fusion are displayed on the
PDA screen with low latency. Since, the application is im-
plemented in pure Java, it is portable across different PDA
platforms.

The border between software and hardware is consider-
ably blurred on the sensor board. The IP cores—imple-
mented in hardware description languages (HDL) on the re-
configurable FPGA fabric—closely resemble hardware build-
ing blocks. However, some of them—most notably the soft
processor cores—execute true software programs. The pri-
mary tasks of the sensor board software are 1) acquiring
data samples from the analog channels, 2) processing acous-
tic data (detection), and 3) providing access to the results
and run-time parameters through different interfaces.

As it is shown in Figure 4, a centralized virtual register
file contains the address decoding logic, the registers for
storing parameter values and results and the point to point
data buses to and from the peripherals. Thus, it effectively
integrates the building blocks within the sensorboard and
decouples the various communication interfaces. This archi-
tecture enabled us to deploy the same set of sensors in a
centralized scenario, where the ad-hoc mote network (using
the T2C interface) collected and forwarded the results to a
base station or to build a decentralized system where the
local PDAs execute the sensor fusion on the data obtained
through the Bluetooth® interface (and optionally from other
sensors through the mote interface). The same set of regis-
ters are also accessible through a UART link with a terminal
emulation program. Also, because the low-level interfaces
are hidden by the register file, one can easily add/replace
these with new ones (eg.: the first generation of motes sup-
ported a standard pP interface bus on the sensor connector,
which was dropped in later designs).

The most important results are the time stamps of the
detected events. These time stamps and all other timing
information (parameters, acoustic event features) are based
on a 1 MHz clock and an internal timer on the FPGA. The
time conversion and synchronization between the sensor net-
work and the board is done by the mote by periodically re-
questing the capture of the current timer value through a
dedicated GPIO line and reading the captured value from
the register file through the I?C interface. Based on the the
current and previous readings and the corresponding mote
local time stamps, the mote can calculate and maintain the
scaling factor and offset between the two time domains.

The mote interface is implemented by the I1°C slave IP
core and a thin adaptation layer which provides a data and
address bus abstraction on top of it. The maximum ef-
fective bandwidth is 100 Kbps through this interface. The
FPGA contains several UART cores as well: for communi-
cating with the on-board Bluetooth® module, for control-
ling the digital compass and for providing a wired RS232
link through a dedicated connector. The control, status and
data registers of the UART modules are available through
the register file. The higher level protocols on these lines are
implemented by Xilinx PicoBlaze microcontroller cores [13]
and corresponding software programs. One of them provides
a command line interface for test and debug purposes, while
the other is responsible for parsing compass readings. By
default, they are connected to the RS232 port and to the
on-board digital compass line respectively, however, they
can be rewired to any communication interface by changing
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the register file base address in the programs (e.g. the com-
mand line interface can be provided through the Bluetooth®
channel).

Two of the external interfaces are not accessible through
the register file: a high speed USB link and the SRAM inter-
face are tied to the recorder block. The USB module imple-
ments a simple FIFO with parallel data lines connected to an
external FT245R USB device controller. The RAM driver
implements data read/write cycles with correct timing and
is connected to the on-board pseudo SRAM. These inter-
faces provide 1 MB/s effective bandwidth for downloading
recorded audio samples, for example.

The data acquisition and signal processing paths exhibit
clear symmetry: the same set of IP cores are instantiated
four times (i.e. the number of acoustic channels) and run
independently. The signal paths "meet” only just before
the register file. Each of the analog channels is driven by
a serial A/D core for providing a 20 MHz serial clock and
shifting in 8-bit data samples at 1 MS/s and a digital poten-
tiometer driver for setting the required gain. Each channel
has its own shockwave and muzzle blast detector, which are
described in Section 5. The detectors fetch run-time param-
eter values from the register file and store their results there
as well. The coordinator core constantly monitors the detec-
tion results and generates a mote interrupt promptly upon
?full detection” or after a reasonable timeout after ”partial
detection”.

The recorder component is not used in the final deploy-
ment, however, it is essential for development purposes for
refining parameter values for new types of weapons or for
other acoustic sources. This component receives the sam-
ples from all channels and stores them in circular buffers in
the PSRAM device. If the signal amplitude on one of the
channels crosses a predefined threshold, the recorder compo-
nent suspends the sample collection with a predefined delay
and dumps the contents of the buffers through the USB link.
The length of these buffers and delays, the sampling rate,
the threshold level and the set of recorded channels can be
(re)configured run-time through the register file. Note that
the core operates independently from the other signal pro-
cessing modules, therefore, it can be used to validate the
detection results off-line.

The FPGA cores are implemented in VHDL, the PicoBlaze
programs are written in assembly. The complete configura-
tion occupies 40% of the resources (slices) of the FPGA and
the maximum clock speed is 30 MHz, which is safely higher
than the speed used with the actual device (20MHz).

The MICAz motes are responsible for distributing mea-
surement data across the network, which drastically im-
proves the localization and classification results at each node.
Besides a robust radio (MAC) layer, the motes require two
essential middleware services to achieve this goal. The mes-
sages need to be propagated in the ad-hoc multihop network
using a routing service. We successfully integrated the Di-
rected Flood-Routing Framework (DFRF) [9] in our appli-
cation. Apart from automatic message aggregation and effi-
cient buffer management, the most unique feature of DFRF
is its plug-in architecture, which accepts custom routing
policies. Routing policies are state machines that govern
how received messages are stored, resent or discarded. Ex-
ample policies include spanning tree routing, broadcast, ge-
ographic routing, etc. Different policies can be used for dif-
ferent messages concurrently, and the application is able to



change the underlying policies at run-time (eg.: because of
the changing RF environment or power budget). In fact, we
switched several times between a simple but lavish broadcast
policy and a more efficient gradient routing on the field.

Correlating ToA measurements requires a common time
base and precise time synchronization in the sensor network.
The Routing Integrated Time Synchronization (RITS) [15]
protocol relies on very accurate MAC-layer time-stamping
to embed the cumulative delay that a data message accrued
since the time of the detection in the message itself. That
is, at every node it measures the time the message spent
there and adds this to the number in the time delay slot of
the message, right before it leaves the current node. Every
receiving node can subtract the delay from its current time
to obtain the detection time in its local time reference. The
service provides very accurate time conversion (few us per
hop error), which is more than adequate for this application.
Note, that the motes also need to convert the sensorboard
time stamps to mote time as it is described earlier.

The mote application is implemented in nesC [5] and is
running on top of TinyOS [6]. With its 3 KB RAM and
28 KB program space (ROM) requirement, it easily fits on
the MICAz motes.

S. DETECTION ALGORITHM

There are several characteristics of acoustic shockwaves
and muzzle blasts which distinguish their detection and sig-
nal processing algorithms from regular audio applications.
Both events are transient by their nature and present very
intense stimuli to the microphones. This is increasingly
problematic with low cost electret microphones—designed
for picking up regular speech or music. Although mechan-
ical damping of the microphone membranes can mitigate
the problem, this approach is not without side effects. The
detection algorithms have to be robust enough to handle se-
vere nonlinear distortion and transitory oscillations. Since
the muzzle blast signature closely follows the shockwave sig-
nal and because of potential automatic weapon bursts, it is
extremely important to settle the audio channels and the
detection logic as soon as possible after an event. Also, pre-
cise angle of arrival estimation necessitates high sampling
frequency (in the MHz range) and accurate event detection.
Moreover, the detection logic needs to process multiple chan-
nels in parallel (4 channels on our existing hardware).

These requirements dictated simple and robust algorithms
both for muzzle blast and shockwave detections. Instead of
using mundane energy detectors—which might not be able
to distinguish the two different events—the applied detec-
tors strive to find the most important characteristics of the
two signals in the time-domain using simple state machine
logic. The detectors are implemented as independent IP
cores within the FPGA—one pair for each channel. The
cores are run-time configurable and provide detection event
signals with high precision time stamps and event specific
feature vectors. Although the cores are running indepen-
dently and in parallel, a crude local fusion module integrates
them by shutting down those cores which missed their events
after a reasonable timeout and by generating a single detec-
tion message towards the mote. At this point, the mote can
read and forward the detection times and features and is
responsible to restart the cores afterwards.

The most conspicuous characteristics of an acoustic shock-
wave (see Figure 5(a)) are the steep rising edges at the be-
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Figure 5: Shockwave signal generated by a 5.56 x
45 mm NATO projectile (a) and the state machine
of the detection algorithm (b).

ginning and end of the signal. Also, the length of the N-wave
is fairly predictable—as it is described in Section 6.5—and is
relatively short (200-300 ps). The shockwave detection core
is continuously looking for two rising edges within a given
interval. The state machine of the algorithm is shown in
Figure 5(b). The input parameters are the minimum steep-
ness of the edges (D, E), and the bounds on the length of
the wave (Lmin, Lmaz). The only feature calculated by the
core is the length of the observed shockwave signal.

In contrast to shockwaves, the muzzle blast signatures are
characterized by a long initial period (1-5 ms) where the first
half period is significantly shorter than the second half [4].
Due to the physical limitations of the analog circuitry de-
scribed at the beginning of this section, irregular oscillations
and glitches might show up within this longer time window
as they can be clearly seen in Figure 6(a). Therefore, the real
challenge for the matching detection core is to identify the
first and second half periods properly. The state machine
(Figure 6(b)) does not work on the raw samples directly
but is fed by a zero crossing (ZC) encoder. After the initial
triggering, the detector attempts to collect those ZC seg-
ments which belong to the first period (positive amplitude)
while discarding too short (in our terminology: garbage)
segments—effectively implementing a rudimentary low-pass
filter in the ZC domain. After it encounters a sufficiently
long negative segment, it runs the same collection logic for
the second half period. If too much garbage is discarded
in the collection phases, the core resets itself to prevent the
(false) detection of the halves from completely different pe-
riods separated by rapid oscillation or noise. Finally, if the
constraints on the total length and on the length ratio hold,
the core generates a detection event along with the actual
length, amplitude and energy of the period calculated con-
currently. The initial triggering mechanism is based on two
amplitude thresholds: one static (but configurable) ampli-
tude level and a dynamically computed one. The latter one
is essential to adapt the sensor to different ambient noise
environments and to temporarily suspend the muzzle blast
detector after a shock wave event (oscillations in the analog
section or reverberations in the sensor enclosure might oth-
erwise trigger false muzzle blast detections). The dynamic
noise level is estimated by a single pole recursive low-pass
filter (cutoff @ 0.5 kHz ) on the FPGA.
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Figure 6: Muzzle blast signature (a) produced by an
M16 assault rifle and the corresponding detection
logic (b).

The detection cores were originally implemented in Java
and evaluated on pre-recorded signals because of much faster
test runs and more convenient debugging facilities. Later
on, they were ported to VHDL and synthesized using the
Xilinx ISE tool suite. The functional equivalence between
the two implementations were tested by VHDL test benches
and Python scripts which provided an automated way to
exercise the detection cores on the same set of pre-recorded
signals and to compare the results.

6. SENSOR FUSION

The sensor fusion algorithm receives detection messages
from the sensor network and estimates the bullet trajectory,
the shooter position, the caliber of the projectile and the
type of the weapon. The algorithm consists of well separated
computational tasks outlined below:

1. Compute muzzle blast and shockwave directions of ar-
rivals for each individual sensor (see 6.1).

2. Compute range estimates. This algorithm can analyt-
ically fuse a pair of shockwave and muzzle blast AoA
estimates. (see 6.2).

3. Compute a single trajectory from all shockwave mea-
surements (see 6.3).

4. If trajectory available compute range (see 6.4).

else compute shooter position first and then trajectory
based on it. (see 6.4)

5. If trajectory available compute caliber (see 6.5).
6. If caliber available compute weapon type (see 6.6).
We describe each step in the following sections in detail.

6.1 Direction of arrival

The first step of the sensor fusion is to calculate the muz-
zle blast and shockwave AoA-s for each sensorboard. Each
sensorboard has four microphones that measure the ToA-s.
Since the microphone spacing is orders of magnitude smaller
than the distance to the sound source, we can approximate
the approaching sound wave front with a plane (far field
assumption).

Let us formalize the problem for 3 microphones first. Let
P1, P> and P3 be the position of the microphones ordered by
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time of arrival ¢; < t2 < t3. First we apply a simple geom-
etry validation step. The measured time difference between
two microphones cannot be larger than the sound propaga-
tion time between the two microphones:

|ti —tj| <= P = Pj|/c+e

Where c is the speed of sound and e is the maximum
measurement error. If this condition does not hold, the cor-
responding detections are discarded. Let v(z,y,2) be the
normal vector of the unknown direction of arrival. We also
use r1(z1, Y1, 21), the vector from P; to P> and ra(z2, y2, 22),
the vector from P to Ps. Let’s consider the projection of
the direction of the motion of the wave front (v) to r1 di-
vided by the speed of sound (c). This gives us how long it
takes the wave front to propagate form P; to Ps:

vr1 = c(t2 — t1)
The same relationship holds for r2 and v:
vry = c(ts — t1)
We also know that v is a normal vector:
vv =1

Moving from vectors to coordinates using the dot product
definition leads to a quadratic system:

xx1 +yy1 + zz1 = c(t2 — t1)
xx2 + yy2 + 222 = c(tz — t1)
224yt =1

We omit the solution steps here, as they are straightfor-
ward, but long. There are two solutions (if the source is on
the P1 P> Ps plane the two solutions coincide). We use the
fourth microphone’s measurement—if there is one—to elim-
inate one of them. Otherwise, both solutions are considered
for further processing.

6.2 Muzzle-shock fusion

Bullet trajectory

Figure 7: Section plane of a shot (at P) and two
sensors (at P and at P»). One sensor detects the
muzzle blast’s, the other the shockwave’s time and
direction of arrivals.

Consider the situation in Figure 7. A shot was fired from
P at time t. Both P and t are unknown. We have one muzzle
blast and one shockwave detections by two different sensors



with AoA and hence, ToA information available. The muz-
zle blast detection is at position P; with time ¢; and AoA
u. The shockwave detection is at P» with time ¢2 and AoA
v. w and v are normal vectors. It is shown below that these
measurements are sufficient to compute the position of the
shooter (P).

Let Pj be the point on the extended shockwave cone sur-
face where PP, is perpendicular to the surface. Note that
PP is parallel with v. Since Pj is on the cone surface which
hits P», a sensor at P would detect the same shockwave
time of arrival (t2). The cone surface travels at the speed of
sound (c), so we can express P using Ps:

P =P+ cu(ta —t).
P can also be expressed from P;:

P =P +cu(t1 —t)
yielding

Py +cu(ts —t) = Py + co(ta — t).
P, Pj is perpendicular to v:
(P —P)v=0
yielding
(Pr+cu(ti —t) —cv(ta —t) — P2)v =0

containing only one unknown ¢. One obtains:

P1 —Po)v
1=P2)v 4y —ty

uv—1

t=

From here we can calculate the shoter position P.

Let’s consider the special single sensor case where P; = P
(one sensor detects both shockwave and muzzle blast AoA).
In this case:

-
Since w and v are not used separately only wv, the absolute
orientation of the sensor can be arbitrary, we still get ¢ which
gives us the range.

Here we assumed that the shockwave is a cone which is
only true for constant projectile speeds. In reality, the angle
of the cone slowly grows; the surface resembles one half of
an American football. The decelerating bullet results in a
smaller time difference between the shockwave and the muz-
zle blast detections because the shockwave generation slows
down with the bullet. A smaller time difference results in a
smaller range, so the above formula underestimates the true
range. However, it can still be used with a proper decelera-
tion correction function. We leave this for future work.

6.3 Trajectory estimation

Danicki showed that the bullet trajectory and speed can
be computed analytically from two independent shockwave
measurements where both ToA and AoA are measured [2].
The method gets more sensitive to measurement errors as
the two shockwave directions get closer to each other. In
the special case when both directions are the same, the tra-
jectory cannot be computed. In a real world application,
the sensors are typically deployed on a plane approximately.
In this case, all sensors located on one ”side” of the tra-
jectory measure almost the same shockwave AoA. To avoid
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this error sensitivity problem, we consider shockwave mea-
surement pairs only if the direction of arrival difference is
larger than a certain threshold.

We have multiple sensors and one sensor can report two
different directions (when only three microphones detect the
shockwave). Hence, we typically have several trajectory can-
didates, i.e. one for each AoA pair over the threshold. We
applied an outlier filtering and averaging method to fuse to-
gether the shockwave direction and time information and
come up with a single trajectory. Assume that we have
N individual shockwave AoA measurements. Let’s take all
possible unordered pairs where the direction difference is
above the mentioned threshold and compute the trajectory
for each. This gives us at most w trajectories. A tra-
jectory is represented by one point p; and the normal vector
v; (where i is the trajectory index). We define the distance
of two trajectories as the dot product of their normal vec-
tors:

D(i, j) = viv;
For each trajectory a neighbor set is defined:
N(@) :={jID(, ) < R}

where R is a radius parameter. The largest neighbor set is
considered to be the core set C, all other trajectories are
outliers. The core set can be found in O(N?) time. The
trajectories in the core set are then averaged to get the final
trajectory.

It can happen that we cannot form any sensor pairs be-
cause of the direction difference threshold. It means all sen-
sors are on the same side of the trajectory. In this case,
we first compute the shooter position (described in the next
section) that fixes p making v the only unknown. To find
v in this case, we use a simple high resolution grid search
and minimize an error function based on the shockwave di-
rections.

We have made experiments to utilize the measured shock-
wave length in the trajectory estimation. There are some
promising results, but it needs further research.

6.4 Shooter position estimation

The shooter position estimation algorithm aggregates the
following heterogenous information generated by earlier com-
putational steps:

1. trajectory,
2. muzzle blast ToA at a sensor,

3. muzzle blast AoA at a sensor, which is effectively a
bearing estimate to the shooter, and

4. range estimate at a sensor (when both shockwave and
muzzle blast AoA are available).

Some sensors report only ToA, some has bearing esti-
mate(s) also and some has range estimate(s) as well, depend-
ing on the number of successful muzzle blast and shockwave
detections by the sensor. For an example, refer to Figure 8.
Note that a sensor may have two different bearing and range
estimates. 3 detections gives two possible AoA-s for muz-
zle blast (i.e. bearing) and/or shockwave. Furthermore, the
combination of two different muzzle blast and shockwave
AoA-s may result in two different ranges.



bullet trajectory

.[6

shooter position

Figure 8: Example of heterogenous input data for
the shooter position estimation algorithm. All sen-
sors have ToA measurements (¢1,t2,1s,t4,%5), one sen-
sor has a single bearing estimate (v2), one sensor has
two possible bearings (vs,v3) and one sensor has two
bearing and two range estimates (v1,v],r1,77)

In a multipath environment, these detections will not only
contain gaussian noise, but also possibly large errors due to
echoes. It has been showed in our earlier work that a similar
problem can be solved efficiently with an interval arithmetic
based bisection search algorithm [8]. The basic idea is to
define a discrete consistency function over the area of inter-
est and subdivide the space into 3D boxes. For any given
3D box, this function gives the number of measurements
supporting the hypothesis that the shooter was within that
box. The search starts with a box large enough to contain
the whole area of interest, then zooms in by dividing and
evaluating boxes. The box with the maximum consistency
is divided until the desired precision is reached. Backtrack-
ing is possible to avoid getting stuck in a local maximum.

This approach has been shown to be fast enough for on-
line processing. Note, however, that when the trajectory
has already been calculated in previous steps, the search
needs to be done only on the trajectory making it orders of
magnitude faster.

Next let us describe how the consistency function is cal-
culated in detail. Consider B, a three dimensional box, we
would like to compute the consistency value of. First we
consider only the ToA information. If one sensor has mul-
tiple ToA detections, we use the average of those times, so
one sensor supplies at most one ToA estimate. For each
ToA, we can calculate the corresponding time of the shot,
since the origin is assumed to be in box B. Since it is a box
and not a single point, this gives us an interval for the shot
time. The maximum number of overlapping time intervals
gives us the value of the consistency function for B. For a
detailed description of the consistency function and search
algorithm, refer to [8].

Here we extend the approach the following way. We mod-
ify the consistency function based on the bearing and range
data from individual sensors. A bearing estimate supports
B if the line segment starting from the sensor with the mea-
sured direction intersects the B box. A range supports B,
if the sphere with the radius of the range and origin of the
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sensor intersects B. Instead of simply checking whether the
position specified by the corresponding bearing-range pairs
falls within B, this eliminates the sensor’s possible orienta-
tion error. The value of the consistency function is incre-
mented by one for each bearing and range estimate that is
consistent with B.

6.5 Caliber estimation

The shockwave signal characteristics has been studied be-
fore by Whitham [20]. He showed that the shockwave period
T is related to the projectile diameter d, the length [, the
perpendicular miss distance b from the bullet trajectory to
the sensor, the Mach number M and the speed of sound c.
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Figure 9: Shockwave length and miss distance re-
lationship. Each data point represents one sensor-
board after an aggregation of the individual mea-
surements of the four acoustic channels. Three
different caliber projectiles have been tested (196
shots, 10 sensors).

To illustrate the relationship between miss distance and
shockwave length, here we use all 196 shots with three differ-
ent caliber projectiles fired during the evaluation. (During
the evaluation we used data obtained previously using a few
practice shots per weapon.) 10 sensors (4 microphones by
sensor) measured the shockwave length. For each sensor,
we considered the shockwave length estimation valid if at
least three out of four microphones agreed on a value with
at most 5 microsecond variance. This filtering leads to a
86% report rate per sensor and gets rid of large measure-
ment errors. The experimental data is shown in Figure 9.
Whitham’s formula suggests that the shockwave length for a
given caliber can be approximated with a power function of
the miss distance (with a 1/4 exponent). Best fit functions
on our data are:

50 cal: T = 237.75b0-2059
7.62 mm: T = 178.11p°-1996
5.56 mm: T = 144.39p°-1757

To evaluate a shot, we take the caliber whose approxi-
mation function results in the smallest RMS error of the
filtered sensor readings. This method has less than 1% cal-
iber estimation error when an accurate trajectory estimate
is available. In other words, caliber estimation only works
if enough shockwave detections are made by the system to
compute a trajectory.



6.6 'Weapon estimation

We analyzed all measured signal characteristics to find
weapon specific information. Unfortunately, we concluded
that the observed muzzle blast signature is not characteristic
enough of the weapon for classification purposes. The reflec-
tions of the high energy muzzle blast from the environment
have much higher impact on the muzzle blast signal shape
than the weapon itself. Shooting the same weapon from dif-
ferent places caused larger differences on the recorded signal
than shooting different weapons from the same place.

speed (m/s)

200 300

range (m)

400

Figure 10: AK47 and M240 bullet deceleration mea-
surements. Both weapons have the same caliber.
Data is approximated using simple linear regression.
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Figure 11: M16, M249 and M4 bullet deceleration
measurements. All weapons have the same caliber.

Data is approximated using simple linear regression.

However, the measured speed of the projectile and its cal-
iber showed good correlation with the weapon type. This
is because for a given weapon type and ammunition pair,
the muzzle velocity is nearly constant. In Figures 10 and
11 we can see the relationship between the range and the
measured bullet speed for different calibers and weapons.
In the supersonic speed range, the bullet deceleration can
be approximated with a linear function. In case of the
7.62 mm caliber, the two tested weapons (AK47, M240) can
be clearly separated (Figure 10). Unfortunately, this is not
necessarily true for the 5.56 mm caliber. The M16 with its
higher muzzle speed can still be well classified, but the M4
and M249 weapons seem practically undistinguishable (Fig-
ure 11). However, this may be partially due to the limited
number of practice shots we were able to take before the
actual testing began. More training data may reveal better
separation between the two weapons since their published
muzzle velocities do differ somewhat.
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The system carries out weapon classification in the follow-
ing manner. Once the trajectory is known, the speed can be
calculated for each sensor based on the shockwave geometry.
To evaluate a shot, we choose the weapon type whose de-
celeration function results in the smallest RMS error of the
estimated range-speed pairs for the estimated caliber class.

7. RESULTS

An independent evaluation of the system was carried out
by a team from NIST at the US Army Aberdeen Test Center
in April 2006 [19]. The experiment was setup on a shooting
range with mock-up wooden buildings and walls for sup-
porting elevated shooter positions and generating multipath
effects. Figure 12 shows the user interface with an aerial
photograph of the site. 10 sensor nodes were deployed on
surveyed points in an approximately 30x30 m area. There
were five fixed targets behind the sensor network. Several
firing positions were located at each of the firing lines at
50, 100, 200 and 300 meters. These positions were known
to the evaluators, but not to the operators of the system.
Six different weapons were utilized: AK47 and M240 fir-
ing 7.62 mm projectiles, M16, M4 and M249 with 5.56mm
ammunition and the .50 caliber M107.

Note that the sensors remained static during the test. The
primary reason for this is that nobody is allowed downrange
during live fire tests. Utilizing some kind of remote con-
trol platform would have been too involved for the limited
time the range was available for the test. The experiment,
therefore, did not test the mobility aspect of the system.

During the one day test, there were 196 shots fired. The
results are summarized in Table 1. The system detected all
shots successfully. Since a ballistic shockwave is a unique
acoustic phenomenon, it makes the detection very robust.
There were no false positives for shockwaves, but there were
a handful of false muzzle blast detections due to parallel
tests of artillery at a nearby range.

Shooter | Local- | Caliber | Trajectory | Trajectory | Distance | No.

Range | ization | Accu- Azimuth Distance Error of
(m) Rate racy Error (deg) | Error (m) (m) Shots
50 93% 100% 0.86 0.91 2.2 54
100 100% 100% 0.66 1.34 8.7 54
200 96% 100% 0.74 2.71 32.8 54
300 97% 97% 1.49 6.29 70.6 34
All 96% 99.5% 0.88 2.47 23.0 196

Table 1: Summary of results fusing all available sen-
sor observations. All shots were successfully de-
tected, so the detection rate is omitted. Localization
rate means the percentage of shots that the sensor
fusion was able to estimate the trajectory of. The
caliber accuracy rate is relative to the shots localized
and not all the shots because caliber estimation re-
quires the trajectory. The trajectory error is broken
down to azimuth in degrees and the actual distance
of the shooter from the trajectory. The distance er-
ror shows the distance between the real shooter po-
sition and the estimated shooter position. As such,
it includes the error caused by both the trajectory
and that of the range estimation. Note that the tra-
ditional bearing and range measures are not good
ones for a distributed system such as ours because
of the lack of a single reference point.
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Figure 12: The user interface of the system show-
ing the experimental setup. The 10 sensor nodes
are labeled by their ID and marked by dark circles.
The targets are black squares marked T-1 through
T-5. The long white arrows point to the shooter po-
sition estimated by each sensor. Where it is miss-
ing, the corresponding sensor did not have enough
detections to measure the AoA of either the muz-
zle blast, the shockwave or both. The thick black
line and large circle indicate the estimated trajec-
tory and the shooter position as estimated by fusing
all available detections from the network. This shot
from the 100-meter line at target T-3 was localized
almost perfectly by the sensor network. The caliber
and weapon were also identified correctly. 6 out of
10 nodes were able to estimate the location alone.
Their bearing accuracy is within a degree, while the
range is off by less than 10% in the worst case.

The localization rate characterizes the system’s ability to
successfully estimate the trajectory of shots. Since caliber
estimation and weapon classification relies on the trajectory,
non-localized shots are not classified either. There were 7
shots out of 196 that were not localized. The reason for
missed shots is the trajectory ambiguity problem that occurs
when the projectile passes on one side of all the sensors. In
this case, two significantly different trajectories can generate
the same set of observations (see [8] and also Section 6.3).
Instead of estimating which one is more likely or displaying
both possibilities, we decided not to provide a trajectory at
all. It is better not to give an answer other than a shot
alarm than misleading the soldier.

Localization accuracy is broken down to trajectory accu-
racy and range estimation precision. The angle of the es-
timated trajectory was better than 1 degree except for the
300 m range. Since the range should not affect trajectory
estimation as long as the projectile passes over the network,
we suspect that the slightly worse angle precision for 300 m
is due to the hurried shots we witnessed the soldiers took
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near the end of the day. This is also indicated by another
datapoint: the estimated trajectory distance from the ac-
tual targets has an average error of 1.3 m for 300 m shots,
0.75 m for 200 m shots and 0.6 m for all but 300 m shots.
As the distance between the targets and the sensor network
was fixed, this number should not show a 2x improvement
just because the shooter is closer.

Since the angle of the trajectory itself does not charac-
terize the overall error—there can be a translation also—
Table 1 also gives the distance of the shooter from the es-
timated trajectory. These indicate an error which is about
1-2% of the range. To put this into perspective, a trajec-
tory estimate for a 100 m shot will very likely go through or
very near the window the shooter is located at. Again, we
believe that the disproportionally larger errors at 300 m are
due to human errors in aiming. As the ground truth was
obtained by knowing the precise location of the shooter and
the target, any inaccuracy in the actual trajectory directly
adds to the perceived error of the system.

We call the estimation of the shooter’s position on the
calculated trajectory range estimation due to the lack of a
better term. The range estimates are better than 5% ac-
curate from 50 m and 10% for 100 m. However, this goes
to 20% or worse for longer distances. We did not have a
facility to test system before the evaluation for ranges be-
yond 100 m. During the evaluation, we ran into the prob-
lem of mistaking shockwave echoes for muzzle blasts. These
echoes reached the sensors before the real muzzle blast for
long range shots only, since the projectile travels 2-3x faster
than the speed of sound, so the time between the shockwave
(and its possible echo from nearby objects) and the muzzle
blast increases with increasing ranges. This resulted in un-
derestimating the range, since the system measured shorter
times than the real ones. Since the evaluation we finetuned
the muzzle blast detection algorithm to avoid this problem.

Distance | M16 | AK47 | M240 | M107 | M4 | M249 | M4-M249
50m 100% | 100% [ 100% [ 100% | 11% | 25% 94%
100m 100% | 100% [ 100% [ 100% | 22% | 33% 100%
200m 100% | 100% [ 100% [ 100% | 50% | 22% 100%
300m 67% | 100% 83% 100% | 33% 0% 57%

All 96% | 100% 97% 100% | 23% | 23% 93%

Table 2: Weapon classification results. The percent-
ages are relative to the number of shots localized and
not all shots, as the classification algorithm needs to
know the trajectory and the range. Note that the
difference is small; there were 189 shots localized
out of the total 196.

The caliber and weapon estimation accuracy rates are
based on the 189 shots that were successfully localized. Note
that there was a single shot that was falsely classified by the
caliber estimator. The 73% overall weapon classification ac-
curacy does not seem impressive. But if we break it down
to the six different weapons tested, the picture changes dra-
matically as shown in Table 2. For four of the weapons
(AK14, M16, M240 and M107), the classification rate is al-
most 100%. There were only two shots out of approximately
140 that were missed. The M4 and M249 proved to be too
similar and they were mistaken for each other most of the
time. One possible explanation is that we had only a limited
number of test shots taken with these weapons right before
the evaluation and used the wrong deceleration approxima-
tion function. Either this or a similar mistake was made



since if we simply used the opposite of the system’s answer
where one of these weapons were indicated, the accuracy
would have improved 3x. If we consider these two weapons
a single weapon class, then the classification accuracy for it
becomes 93%.

Note that the AK47 and M240 have the same caliber
(7.62 mm), just as the M16, M4 and M249 do (5.56 mm).
That is, the system is able to differentiate between weapons
of the same caliber. We are not aware of any system that
classifies weapons this accurately.

7.1 Single sensor performance

As was shown previously, a single sensor alone is able
to localize the shooter if it can determine both the muzzle
blast and the shockwave AoA, that is, it needs to measure
the ToA of both on at least three acoustic channels. While
shockwave detection is independent of the range—unless the
projectile becomes subsonic—, the likelihood of muzzle blast
detection beyond 150 meters is not enough for consistently
getting at least three per sensor node for AoA estimation.
Hence, we only evaluate the single sensor performance for
the 104 shots that were taken from 50 and 100 m. Note that
we use the same test data as in the previous section, but we
evaluate individually for each sensor.

Table 3 summarizes the results broken down by the ten
sensors utilized. Since this is now not a distributed system,
the results are given relative to the position of the given sen-
sor, that is, a bearing and range estimate is provided. Note
that many of the common error sources of the networked
system do not play a role here. Time synchronization is
not applicable. The sensor’s absolute location is irrelevant
(just as the relative location of multiple sensors). The sen-
sor’s orientation is still important though. There are several
disadvantages of the single sensor case compared to the net-
worked system: there is no redundancy to compensate for
other errors and to perform outlier rejection, the localiza-
tion rate is markedly lower, and a single sensor alone is not
able to estimate the caliber or classify the weapon.

Sensor id 1 2 3 5 7 8 9 10 11 12
Loc. rate 44% | 37% [ 53% | 52% | 19% [ 63% | 51% | 31% | 23% | 44%
Bearing (deg) | 0.80 | 1.25 | 0.60 | 0.85 | 1.02 | 0.92 | 0.73 [ 0.71 | 1.28 | 1.44
Range (m) 3.2 6.1 4.4 4.7 4.6 4.6 4.1 5.2 4.8 8.2

Table 3: Single sensor accuracy for 108 shots fired
from 50 and 100 meters. Localization rate refers to
the percentage of shots the given sensor alone was
able to localize. The bearing and range values are
average errors. They characterize the accuracy of
localization from the given sensor’s perspective.

The data indicates that the performance of the sensors
varied significantly especially considering the localization
rate. One factor has to be the location of the given sen-
sor including how far it was from the firing lines and how
obstructed its view was. Also, the sensors were hand-built
prototypes utilizing nowhere near production quality pack-
aging/mounting. In light of these factors, the overall av-
erage bearing error of 0.9 degrees and range error of 5 m
with a microphone spacing of less than 10 cm are excellent.
We believe that professional manufacturing and better mi-
crophones could easily achieve better performance than the
best sensor in our experiment (>60% localization rate and
3 m range error).
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Interestingly, the largest error in range was a huge 90 m
clearly due to some erroneous detection, yet the largest bear-
ing error was less than 12 degrees which is still a good indi-
cation for the soldier where to look.

The overall localization rate over all single sensors was
42%, while for 50 m shots only, this jumped to 61%. Note
that the firing range was prepared to simulate an urban
area to some extent: there were a few single- and two-storey
wooden structures built both in and around the sensor de-
ployment area and the firing lines. Hence, not all sensors had
line-of-sight to all shooting positions. We estimate that 10%
of the sensors had obstructed view to the shooter on aver-
age. Hence, we can claim that a given sensor had about 50%
chance of localizing a shot within 130 m. (Since the sensor
deployment area was 30 m deep, 100 m shots correspond to
actual distances between 100 and 130 m.) Again, we empha-
size that localization needs at least three muzzle blast and
three shockwave detections out of a possible four for each per
sensor. The detection rate for single sensors—corresponding
to at least one shockwave detection per sensor—was practi-
cally 100%.
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Figure 13: Histogram showing what fraction of the
104 shots taken from 50 and 100 meters were local-
ized by at most how many individual sensors alone.
13% of the shots were missed by every single sen-
sor, i.e., none of them had both muzzle blast and
shockwave AoA detections. Note that almost all
of these shots were still accurately localized by the
networked system, i.e. the sensor fusion using all
available observations in the sensor network.

It would be misleading to interpret these results as the
system missing half the shots. As soldiers never work alone
and the sensor node is relatively cheap to afford having ev-
ery soldier equipped with one, we also need to look at the
overall detection rates for every shot. Figure 13 shows the
histogram of the percentage of shots vs. the number of in-
dividual sensors that localized it. 13% of shots were not
localized by any sensor alone, but 87% was localized by at
least one sensor out of ten.

7.2 Error sources

In this section, we analyze the most significant sources of
error that affect the performance of the networked shooter
localization and weapon classification system. In order to
correlate the distributed observations of the acoustic events,
the nodes need to have a common time and space reference.
Hence, errors in the time synchronization, node localization
and node orientation all degrade the overall accuracy of the
system.



Our time synchronization approach yields errors signif-
icantly less than 100 microseconds. As the sound travels
about 3 cm in that time, time synchronization errors have a
negligible effect on the system.

On the other hand, node location and orientation can have
a direct effect on the overall system performance. Notice
that to analyze this, we do not have to resort to simula-
tion, instead we can utilize the real test data gathered at
Aberdeen. But instead of using the real sensor locations
known very accurately and the measured and calibrated al-
most perfect node orientations, we can add error terms to
them and run the sensor fusion. This exactly replicates how
the system would have performed during the test using the
imprecisely known locations and orientations.

Another aspect of the system performance that can be
evaluated this way is the effect of the number of available
sensors. Instead of using all ten sensors in the data fusion,
we can pick any subset of the nodes to see how the accuracy
degrades as we decrease the number of nodes.

The following experiment was carried out. The number
of sensors were varied from 2 to 10 in increments of 2. FEach
run picked the sensors randomly using a uniform distribu-
tion. At each run each node was randomly "moved” to a
new location within a circle around its true position with
a radius determined by a zero-mean Gaussian distribution.
Finally, the node orientations were perturbed using a zero-
mean Gaussian distribution. Each combination of parame-
ters were generated 100 times and utilized for all 196 shots.

The results are summarized in Figure 14. There is one 3D
barchart for each of the experiment sets with the given fixed
number of sensors. The x-axis shows the node location error,
that is, the standard deviation of the corresponding Gaus-
sian distribution that was varied between 0 and 6 meters.
The y-axis shows the standard deviation of the node orien-
tation error that was varied between 0 and 6 degrees. The
z-axis is the resulting trajectory azimuth error. Note that
the elevation angles showed somewhat larger errors than the
azimuth. Since all the sensors were in approximately a hori-
zontal plane and only a few shooter positions were out of the
same plane and only by 2 m or so, the test was not sufficient
to evaluate this aspect of the system.

There are many interesting observation one can make by
analyzing these charts. Node location errors in this range
have a small effect on accuracy. Node orientation errors, on
the other hand, noticeably degrade the performance. Still
the largest errors in this experiment of 3.5 degrees for 6
sensors and 5 degrees for 2 sensors are still very good.

Note that as the location and orientation errors increase
and the number of sensors decrease, the most significantly
affected performance metric is the localization rate. See
Table 4 for a summary. Successful localization goes down
from almost 100% to 50% when we go from 10 sensors to
2 even without additional errors. This is primarily caused
by geometry: for a successful localization, the bullet needs
to pass over the sensor network, that is, at least one sensor
should be on the side of the trajectory other than the rest
of the nodes. (This is a simplification for illustrative pur-
poses. If all the sensors and the trajectory are not coplanar,
localization may be successful even if the projectile passes
on one side of the network. See Section 6.3.) As the num-
bers of sensors decreased in the experiment by randomly
selecting a subset, the probability of trajectories abiding by
this rule decreased. This also means that even if there are
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Figure 14: The effect of node localization and orien-
tation errors on azimuth accuracy with 2, 4, 6 and
8 nodes. Note that the chart for 10 nodes is almost
identical for the 8-node case, hence, it is omitted.



many sensors (i.e. soldiers), but all of them are right next to
each other, the localization rate will suffer. However, when
the sensor fusion does provide a result, it is still accurate
even with few available sensors and relatively large individ-
ual errors. A very few consistent observation lead to good
accuracy as the inconsistent ones are discarded by the al-
gorithm. This is also supported by the observation that for
the cases with the higher number of sensors (8 or 10), the
localization rate is hardly affected by even large errors.

Errors/Sensors | 2 4 6 8 10
0 m, 0 deg 54% | 87% | 94% | 95% | 96%
2 m, 2 deg 53% | 80% | 91% | 96% | 96%
6m, 0 deg | 43% | 79% | 88% | 94% | 94%
0 m, 6 deg 44% | 78% | 90% | 93% | 94%
6 m, 6 deg 41% | 73% | 85% | 89% | 92%

Table 4: Localization rate as a function of the num-
ber of sensors used, the sensor node location and
orientation errors.

One of the most significant observations on Figure 14 and
Table 4 is that there is hardly any difference in the data for
6, 8 and 10 sensors. This means that there is little advantage
of adding more nodes beyond 6 sensors as far as the accuracy
is concerned.

The speed of sound depends on the ambient temperature.
The current prototype considers it constant that is typically
set before a test. It would be straightforward to employ
a temperature sensor to update the value of the speed of
sound periodically during operation. Note also that wind
may adversely affect the accuracy of the system. The sensor
fusion, however, could incorporate wind speed into its cal-
culations. It would be more complicated than temperature
compensation, but could be done.

Other practical issues also need to be looked at before a
real world deployment. Silencers reduce the muzzle blast
energy and hence, the effective range the system can de-
tect it at. However, silencers do not effect the shockwave
and the system would still detect the trajectory and caliber
accurately. The range and weapon type could not be esti-
mated without muzzle blast detections. Subsonic weapons
do not produce a shockwave. However, this is not of great
significance, since they have shorter range, lower accuracy
and much less lethality. Hence, their use is not widespread
and they pose less danger in any case.

Another issue is the type of ammunition used. Irregular
armies may use substandard, even hand manufactured bul-
lets. This effects the muzzle velocity of the weapon. For
weapon classification to work accurately, the system would
need to be calibrated with the typical ammunition used by
the given adversary.

8. RELATED WORK

Acoustic detection and recognition has been under re-
search since the early fifties. The area has a close rele-
vance to the topic of supersonic flow mechanics [20]. Fansler
analyzed the complex near-field pressure waves that occur
within a foot of the muzzle blast. Fansler’s work gives a
good idea of the ideal muzzle blast pressure wave without
contamination from echoes or propagation effects [4]. Ex-
periments with greater distances from the muzzle were con-
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ducted by Stoughton [18]. The measurements of the ballistic
shockwaves using calibrated pressure transducers at known
locations, measured bullet speeds, and miss distances of 3 -
55 meters for 5.56 mm and 7.62 mm projectiles were made.
Results indicate that ground interaction becomes a problem
for miss distances of 30 meters or larger.

Another area of research is the signal processing of gunfire
acoustics. The focus is on the robust detection and length
estimation of small caliber acoustic shockwaves and muz-
zle blasts. Possible techniques for classifying signals as ei-
ther shockwaves or muzzle blasts includes short-time Fourier
Transform (STFT), the Smoothed Pseudo Wigner-Ville dis-
tribution (SPWVD), and a discrete wavelet transformation
(DWT). Joint time-frequency (JTF) spectrograms are used
to analyze the typical separation of the shockwave and muz-
zle blast transients in both time and frequency. Mays con-
cludes that the DWT is the best method for classifying sig-
nals as either shockwaves or muzzle blasts because it works
well and is less expensive to compute than the SPWVD [10].
The edges of the shockwave are typically well defined and
the shockwave length is directly related to the bullet char-
acteristics. A paper by Sadler [14] compares two shockwave
edge detection methods: a simple gradient-based detector,
and a multi-scale wavelet detector. It also demonstrates how
the length of the shockwave, as determined by the edge de-
tectors, can be used along with Whithams equations [20] to
estimate the caliber of a projectile. Note that the available
computational performance on the sensor nodes, the limited
wireless bandwidth and real-time requirements render these
approaches infeasible on our platform.

A related topic is the research and development of experi-
mental and prototype shooter location systems. Researchers
at BBN have developed the Bullet Ears system [3] which has
the capability to be installed in a fixed position or worn by
soldiers. The fixed system has tetrahedron shaped micro-
phone arrays with 1.5 meter spacing. The overall system
consists of two to three of these arrays spaced 20 to 100
meters from each other. The soldier-worn system has 12
microphones as well as a GPS antenna and orientation sen-
sors mounted on a helmet. There is a low speed RF connec-
tion from the helmet to the processing body. An extensive
test has been conducted to measure the performance of both
type of systems. The fixed systems performance was one or-
der of magnitude better in the angle calculations while their
range performance where matched. The angle accuracy of
the fixed system was dominantly less than one degree while
it was around five degrees for the helmet mounted one. The
range accuracy was around 5 percent for both of the sys-
tems. The problem with this and similar centralized sys-
tems is the need of the one or handful of microphone arrays
to be in line-of-sight of the shooter. A sensor networked
based solution has the advantage of widely distributed sens-
ing for better coverage, multipath effect compensation and
multiple simultaneous shot resolution [8]. This is especially
important for operation in acoustically reverberant urban
areas. Note that BBN’s current vehicle-mounted system
called BOOMERANG, a modified version of Bullet Ears,
is currently used in Iraq [1].

The company ShotSpotter specializes in law enforcement
systems that report the location of gunfire to police within
seconds. The goal of the system is significantly different
than that of military systems. Shotspotter reports 25 m
typical accuracy which is more than enough for police to



respond. They are also manufacturing experimental soldier
wearable and UAV mounted systems for military use [16],
but no specifications or evaluation results are publicly avail-
able.

9. CONCLUSIONS

The main contribution of this work is twofold. First, the
performance of the overall distributed networked system is
excellent. Most noteworthy are the trajectory accuracy of
one degree, the correct caliber estimation rate of well over
90% and the close to 100% weapon classification rate for 4 of
the 6 weapons tested. The system proved to be very robust
when increasing the node location and orientation errors and
decreasing the number of available sensors all the way down
to a couple. The key factor behind this is the sensor fusion
algorithm’s ability to reject erroneous measurements. It is
also worth mentioning that the results presented here corre-
spond to the first and only test of the system beyond 100 m
and with six different weapons. We believe that with the
lessons learned in the test, a consecutive field experiment
could have showed significantly improved results especially
in range estimation beyond 100 m and weapon classification
for the remaining two weapons that were mistaken for each
other the majority of the times during the test.

Second, the performance of the system when used in stan-
dalone mode, that is, when single sensors alone provided
localization, was also very good. While the overall localiza-
tion rate of 42% per sensor for shots up to 130 m could be
improved, the bearing accuracy of less than a degree and
the average 5% range error are remarkable using the hand-
made prototypes of the low-cost nodes. Note that 87% of
the shots were successfully localized by at least one of the
ten sensors utilized in standalone mode.

We believe that the technology is mature enough that
a next revision of the system could be a commercial one.
However, important aspects of the system would still need
to be worked on. We have not addresses power manage-
ment yet. A current node runs on 4 AA batteries for about
12 hours of continuous operation. A deployable version of
the sensor node would need to be asleep during normal op-
eration and only wake up when an interesting event occurs.
An analog trigger circuit could solve this problem, however,
the system would miss the first shot. Instead, the acoustic
channels would need to be sampled and stored in a circular
buffer. The rest of the board could be turned off. When
a trigger wakes up the board, the acoustic data would be
immediately available. Experiments with a previous gener-
ation sensor board indicated that this could provide a 10x
increase in battery life. Other outstanding issues include
weatherproof packaging and ruggedization, as well as inte-
gration with current military infrastructure.
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