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Abstract
Organizations use Web caches to avoid transferring the

same data twice over the same path. Numerous studies
have shown that forward proxy caches, in practice, incur
miss rates of at least 50%. Traditional Web caches rely on
the reuse of responses for given URLs. Previous analy-
ses of real-world traces have revealed a complex relation-
ship between URLs and reply payloads, and have shown
that this complexity frequently causes redundant trans-
fers to caches. For example, redundant transfers may re-
sult if a payload is aliased (accessed via different URLs),
or if a resource rotates (alternates between different val-
ues), or if HTTP’s cache revalidation mechanisms are not
fully exploited. We implement and evaluate a technique
known in the literature as Duplicate Transfer Detection
(DTD), with which a Web cache can use digests to de-
tect and potentially eliminate all redundant payload trans-
fers. We show how HTTP can support DTD with few
or no protocol changes, and how a DTD-enabled proxy
cache can interoperate with unmodified existing origin
servers and browsers, thereby permitting incremental de-
ployment. We present both simulated and experimental
results that quantify the benefits of DTD.

1 Introduction
Web caches are widely used to save bandwidth and im-

prove latency. However, numerous studies have shown
that, in practice, forward proxy caches (i.e., shared Web
caches used near clients) incur miss rates of 51-70%, and
byte-weighted miss rates of 64-86% [27,40]. Even warm
caches with infinite storage cannot eliminate all misses.

In this paper, we are specifically concerned with re-
dundant payload transfers, i.e., cases where a payload
is transmitted to a recipient that has previously received
it. In a traditional Web cache, each cache entry is in-
dexed by a given URL. If a subsequent request arrives
for that URL, and the cache cannot satisfy the request
(it “misses”), it forwards the request to the origin server,
which normally generates a reply containing a payload
(Section 4.2 gives a careful definition for “payload”). If

that exact payload has previously been received by the
cache, we define this as a redundant payload transfer.

Others have identified the problem of redundant pay-
load transfers on the World Wide Web, quantified its
prevalence, and explored a range of possible solutions [2,
16,28]. According to one measurement, over 20% of pay-
load transfers between origin servers and proxies are re-
dundant [16].

We do not know all causes of redundant transfers.
Many result from three common phenomena: aliasing,
in which the same content is referenced under two dif-
ferent URLs; rotation, in which the same content is refer-
enced twice under a single URL, but an intervening refer-
ence to that URL resolves to different content; and absent
or faulty metadata that causes avoidable revalidation fail-
ures.

We previously proposed a technique called Dupli-
cate Transfer Detection (DTD) [16] that allows any
Web cache to potentially eliminate all redundant pay-
load transfers, regardless of cause. DTD uses message
digests to detect redundant transfers before they occur.
In its use of digests to detect duplication, DTD is sim-
ilar to approaches developed for other contexts, e.g.,
router-to-router packet transfers [32] and file systems for
low-bandwidth environments [23]. Unlike an alternative
proposal for eliminating redundant HTTP transfers [28],
DTD does not require soft state that scales with the num-
ber of clients and the size of responses.

In [16] we did not propose a concrete protocol de-
sign or describe an implementation of DTD, nor did we
measure its impact on client latency. In this paper, we
show how one can use standard HTTP, with few or no ex-
plicit protocol changes, to support DTD without relying
on any additional semantics, naming mechanisms, valida-
tion mechanisms, or cooperation with or between origin
servers. This allows a DTD-enabled cache to interoper-
ate with unmodified existing origin servers and browsers,
thereby permitting smooth, incremental deployment. We
describe how to implement DTD in a Web cache, and re-
port on experiments showing that it can accomplish its



goal of completely eliminating redundant transfers. We
quantify the benefits of DTD using both experimental
measurements of our implementation, and simulation re-
sults.

The main contributions of this paper are a well-defined
protocol specification for DTD, the design of a real im-
plementation of DTD, and performance evaluations of
DTD.

2 Why eliminate redundant transfers?
Our DTD proposal does not reduce the number of

times an HTTP cache must contact an origin server; it
only reduces the number of response bodies that must be
transferred. What makes this worthwhile?

Eliminating redundant transfers can improve at least
four metrics:

Bandwidth: Web caches are often deployed to reduce
bandwidth requirements (over half of large compa-
nies surveyed in 1997 cited bandwidth savings as
their motivation for Web caching [11]). Redun-
dant transfers consume bandwidth and increase peak
bandwidth requirements.

Latency: Eliminating a redundant transfer can save la-
tency in two ways: directly, by making the result
available sooner (i.e., without having to wait for
the redundant transfer to finish), and indirectly, by
reducing channel utilization and thereby reducing
queueing delays for subsequent responses.

Per-byte charges: Network tariffs are often flat-rate, but
not always. In particular, wireless-data tariffs range
from a few dollars to tens of dollars per Mbyte [3].
Redundant transfers on such networks directly waste
money.

Energy: Studies have shown that energy consumption for
wireless (and hence portable) networking is at least
somewhat dependent on the amount of data trans-
ferred [10]. Eliminating some redundant transfers
might therefore improve battery life.

In our previous study, using two large real-world
traces, we showed that roughly 20% of payload trans-
fers between origin servers and proxy caches are redun-
dant [16]. Therefore, a solution to the redundant-transfer
problem could yield significant savings on some or all of
the metrics listed above. In this paper, we concentrate on
quantifying these improvements.

3 Related work
The first published suggestion to eliminate redundant

HTTP payload transfers using message digests, and a
trace-based evaluation of its impact on Web cache hit
rates, appeared in [15]. A recent unpublished undergrad-
uate dissertation [4] develops a similar idea for GPRS
Web access.

Santos & Wetherall [32] and Spring & Wetherall [33]

describe protocol-independent network-level analogues
of DTD that employ packet digests to save bandwidth.
Muthitacharoen et al. designed a network file system for
low-bandwidth environments that performs similar oper-
ations on chunks of files [23].

Web caches can use payload digests to avoid wasting
storage as well as bandwidth. We have implemented this
natural counterpart of DTD (see Section 8) but we are
not the first. Bahn et al. report that by using digests to
avoid storing redundant copies of payloads a Web cache
can reduce its storage footprint by 15% and increase its
hit rates [1]. Inktomi Corporation has patented such a
scheme [18].

A variety of “duplicate suppression” schemes have
been proposed for the Web. These differ from DTD
chiefly in that 1) they are typically end-to-end mech-
anisms requiring the participation of orgin servers,
whereas DTD can be used hop-by-hop at any level of
a cache hierarchy, 2) they avoid the extra round trip
that some variants of DTD suffer upon a miss, and
3) they can reduce but not eliminate redundant trans-
fers. Mogul [19] reviews several duplicate suppression
schemes (e.g., the Distribution and Replication Protocol
(DRP) of van Hoff et al. [38]) and reported that they im-
prove hit rates by modest margins, at best.

Previous studies have shown that redundant payload
transfers on the Web are caused by complexities in the re-
lationship between URLs and reply payloads (e.g., alias-
ing and rotation) [16], and by deficiencies in cache man-
agement algorithms and server-supplied metadata [41,
42].

Rhea et al. describe a sophisticated generalization of
DTD called “Value-Based Web Caching” (VBWC) [28].
Whereas DTD operates on entire payloads, VBWC de-
tects and eliminates redundant transfers at finer granular-
ity by employing fingerprints calculated on variable-sized
blocks. Block boundaries are computed as in Spring &
Wetherall’s approach [33]. In VBWC, editing a file af-
fects only payload blocks in the immediate neighborhood
of the change, ensuring that minor changes don’t elimi-
nate bandwidth savings. Rhea et al. implemented VBWC
and evaluated it by polling seventeen popular Web sites;
their evaluation also includes comparisons with delta en-
coding. They did not evaluate VBWC based on an actual
client or proxy reference stream.

DTD sometimes entails an additional round trip be-
tween client and server, but requires no additional server
state. By contrast, VBWC proxies must explicitly track
client cache state in order to avoid the extra RTT ex-
cept in rare circumstances. This is soft state, but it
scales with both the number of clients and the size of re-
sponses, which makes VBWC less easily deployable than
DTD. VBWC is also harder to evaluate using anonymized
traces, because existing traces that include only MD5



digests of response bodies cannot be used to compute
partial-payload fingerprints.

VBWC was designed to be run between an ISP’s proxy
and the end clients. While DTD can be used server-to-
client or server-to-proxy, it can also be used proxy-to-
client or proxy-to-proxy. In the latter cases, DTD im-
poses a store-and-forward cost (for computing the digest
at the first proxy) on the entire payload, while VBWC’s
store-and-forward costs are per-block and thus poten-
tially smaller. We do not yet know how significant these
overheads are.

4 Duplicate Transfer Detection
Motivated by the wish to eliminate redundant HTTP

transfers, we proposed “Duplicate Transfer Detection”
(DTD). This solution applies equally to all redundant
payload transfers, regardless of cause. Here we pro-
vide an overview of DTD (derived from [16]), and dis-
cuss several general design issues. In Section 5, we will
present a more detailed protocol design, showing how
DTD can be defined as a simple, compatible extension
to HTTP/1.1 [9].

4.1 Overview of DTD
First, consider the behavior of a traditional HTTP

cache, which we refer to as a “URL-indexed” cache, con-
fronted with a request for URL U . If the cache finds that
it does not currently hold an entry for that URL, this is a
cache miss, and the cache issues or forwards a request for
the URL towards the origin server, which would normally
send a response containing payload P. (If the cache does
hold an expired entry for the URL, it may send a “con-
ditional” request, and if the server’s view of the resource
has not changed, it may return a “Not Modified” response
without a payload.)

Now suppose that an idealized, infinite cache retains
in storage every payload it has ever received, whether or
not these payloads would be considered valid cache en-
tries. A finite, URL-indexed cache differs from this ide-
alization because it implements both an update policy (it
only stores the most recent payload received for any given
URL), and a replacement policy (it only stores a finite set
of entries).

The concept behind Duplicate Transfer Detection is
quite simple: If our idealized cache can determine, be-
fore receiving the server’s response, whether it had ever
previously received P, then we can avoid transferring that
payload. Such a cache would suffer only compulsory
misses and would never experience redundant transfers.
A finite-cache realization of DTD would, of course, also
suffer capacity misses.

How does the cache know whether it has received a
payload P before the server sends the entire response?
In DTD, the server (origin server or intermediate proxy
cache) initially replies with a digest D of the payload, and

the cache checks to see if any of its entries has a match-
ing digest value. If so, the cache can signal the server not
to send the payload (although the server must still send
the HTTP message headers, which might be different).
Thus, while DTD does not avoid the request and response
message headers for a cache miss, it can avoid the trans-
fer of any payload it has received previously. We say a
“DTD hit” occurs when DTD prevents a payload transfer
that would have occurred in a conventional URL-indexed
cache.

An idealized DTD cache stores all payloads that it has
received, and is able to look up a cached payload either
by URL or by payload digest. In particular, it does not
delete a payload P from storage simply because it has re-
ceived a different payload P′ for the same URL U . A
realistic DTD cache, with finite capacity, may eventually
delete payloads from its storage, based on some replace-
ment policy.

4.2 What is a “payload”?
We have described DTD as operating on “payloads.”

In order to precisely specify DTD, we must also precisely
specify the term “payload.” That is, over what set of bytes
is a digest calculated?

HTTP servers (the term “server” includes both origin
servers and proxies) can send response messages contain-
ing either the full current value of a resource, a partial
response containing one or more sub-ranges of the full
value, or more complex partial responses (such as with
delta encoding [21] or rsync [37]). HTTP responses can
also be encoded using various compression formats, or
with “chunked” encoding.

Whatever the format of the response, the ultimate
client almost always wants to obtain a full current value
of the referenced resource.1 One of us introduced the
term “instance” to mean “The entity that would be re-
turned in a status-200 response to a GET request, at
the current time, for [...] the specified resource,” in an
IETF standards-track document specifying how to extend
HTTP/1.1 to support “instance digests” [20]. An instance
consists of an “instance body” and some “instance head-
ers.”

Our DTD design equates “payloads” and “instance
bodies.” That is, servers provide instance digests, and a
cache entry is indexed by the digest of the instance body
it stores.

One could imagine an alternative in which DTD’s di-
gests are computed on HTTP message bodies, which
might be partial responses. However, this seems less
likely to eliminate redundant transfers; two partial re-
sponses for the same instance might not span the same
range.

The “payloads are instance bodies” model works
nicely with partial responses. For example, if a client re-



quests bytes 0-10000 of URL X , and the server responds
with a digest of the entire instance body, a DTD client
checks its cache for a matching instance digest. If such
an entry is found, the transfer can be avoided; the client
can easily extract the required byte-range from its cache
entry, rather than relying on the server’s extraction.

Nothing in the DTD design prevents a cache from com-
puting digests on non-instance data (such as partial re-
sponses, encoded responses, etc.) and matching incom-
ing instance digests against cached non-instance data.
Our intuition, however, is that such matches will occur
too rarely to justify the additional overhead.

4.3 Deployment of DTD
DTD is best thought of as a hop-by-hop optimization

of HTTP caching,2 which can be implemented between
any HTTP server and client (either one of which could
be a proxy; DTD can be implemented between any data
sender and receiver). In particular, DTD can be deployed
unilaterally by an organization that controls both browser
and proxy caches, e.g., AOL or MSN. It can also be
deployed incrementally by any implementor of clients,
servers, or proxies, because it is always optional for either
end of a transfer. In the experiments described in Sec-
tion 9 we demonstrate that DTD can be enabled purely
through proxy modifications, if the origin server supports
digest generation.

DTD’s main requirement for server implementors is to
compute and send instance digests. The algorithm used to
compute the digest value D must not use too much server
CPU time, and the digest representation must not con-
sume too many bytes, or else the cost of speculatively
sending digests will exceed the benefits of the DTD hits.
Also, the digest must essentially never yield collisions,
or else the client could end up with the wrong payload.
A cryptographic hash algorithm such as MD5 [29] might
have the right properties. We will assume the use of MD5
for this paper; Section 10.1 covers some issues in the
choice of digest algorithm.

Note that DTD does not inherently require the client to
compute any digests, if all servers send digests. However,
to check against transmission errors or servers sending
bogus digests, clients should probably compute digests
anyway (see Section 10).

5 Protocol design issues
Our previous paper [16] briefly covered protocol de-

sign issues for DTD. In this section, we expand that
discussion, including mechanisms for suppressing data
transfer and specific HTTP mechanisms to support DTD.

5.1 Options for suppressing data transfer
One key aspect of DTD is the mechanism by which the

client avoids receiving a payload, if the digest D matches
an existing cache entry. This could be accomplished by

deferring the transfer until the digest can be checked, or
by aborting the transfer in progress if the digest matches
some cache entry.

In the first category of approaches, the server sends the
response headers but defers sending the payload until the
client sends an explicit “proceed” message. In the other
category, the server sends the payload immediately after
the headers, but stops if the client sends an “abort” mes-
sage. The “proceed” model imposes an extra round-trip
time (RTT) on every cache miss, but never sends any re-
dundant payload bytes. The “abort” model imposes no
additional delays, but the abort message may fail to reach
the server in time to save any bandwidth. Thus, the choice
between alternatives requires consideration not only of
implementation issues, but also of the magnitude of the
RTT, and whether one is more concerned with optimiz-
ing bandwidth utilization or latency.

Each of these basic models allows several alternatives.
These include:

Pure-proceed: Upon receiving the client’s request, the
HTTP server replies only with the HTTP headers
(including digest D). The client sends a “proceed”
message if D is not found in its cache, and the server
sends the HTTP body (payload). Otherwise, no fur-
ther messages are sent.

Proceed/don’t bother: In the pure-proceed alternative,
the server might need to buffer responses indefi-
nitely, waiting for a possible “proceed” message.
The “proceed/don’t bother” alternative addresses
this concern by allowing the client to send a “don’t
bother” message, if digest D does match a cache en-
try; the message allows the server to free the buffer
more quickly.

Auto-proceed for short responses: The proceed model
risks exchanging an extra set of headers and de-
laying an extra RTT. For short payloads, the trans-
fer time saved by a DTD hit might not be worth
this overhead. The server could optimize the short-
payload case by sending the payload immediately
for payload sizes below a threshold.

Abort: The server sends the payload immediately after
the HTTP headers (as in normal HTTP operation).
The client sends a special HTTP “abort” message if
digest D matches a cache entry, telling the server to
terminate the transfer as soon as possible.

Note that in the proceed model, not every payload need
be delayed. Web pages often include multiple images;
for example, we previously found 8.5 image references
per HTML reference in an uncached reference stream,
and 1.9 images per HTML reference in a client-cached
stream [16]. A client that pipelines [26] its requests for
images can also pipeline its “proceed” messages. Thus,
the extra RTT delay can be amortized over all of the im-



ages on a Web page, rather than being paid once per im-
age.

In this paper, we examine only the pure-proceed
model, for reasons of space and simplicity.

5.2 Extending HTTP to support DTD
The changes required to extend HTTP/1.1 [9] to sup-

port DTD depend on which transfer-suppression ap-
proach is chosen. The “pure proceed” approach to DTD
can be implemented without any changes to HTTP/1.1
beyond existing IETF standards-track proposals.

The client first uses mechanisms specified in the Pro-
posed Standard for instance digests [20] to obtain current
instance headers, including an instance digest. It obtains
these via a HEAD request, which prevents the server from
sending an instance body [9, Section 9.4]. If the client
finds no cache entry with a matching instance digest, or
if a non-DTD server fails to return a digest, the client
simply issues a GET request to obtain the full instance
body.

This protocol design, while simple, has several draw-
backs:

• It potentially adds one extra RTT per miss: The
client sends both a HEAD and a GET request on a
DTD miss, so this could add an extra RTT of la-
tency per request. In practice, most HTTP requests
are for images embedded in HTML pages, which al-
lows an HTTP/1.1 client to pipeline some or all of a
page’s image requests in one transmission (and the
server can likewise batch the HEAD and GET re-
sponses). So for typical compound Web pages the
pure-proceed approach adds at most two additional
mandatory RTTs: one for the HTML container and
one more for all of the embedded images.

• It adds an extra set of request and response head-
ers per miss: This cuts into the bandwidth savings
offered by DTD. Therefore, DTD is not worth do-
ing if the mean savings (in response-body bytes) is
smaller than the sum of the mean request and re-
sponse header lengths (see Section 6.1).

• It depends on request idempotency: If the
(HEAD, GET) sequence had different side effects
than a single GET request on the same URI,
this would give DTD incorrect semantics. The
HTTP/1.1 specification recommends that “the GET
and HEAD methods SHOULD NOT have the sig-
nificance of taking an action other than retrieval,” [9,
Section 9.1.1], but some sites might ignore this rec-
ommendation. If so, DTD clients might need to
apply some heuristics, such as not issuing the ex-
tra HEAD request on URLs containing “?”, or (per-
haps) using DTD only for embedded images.

• The server might never send a digest: HTTP
servers are not required to send instance digests,

and there is no (current) mechanism to discover if
a server would ever send one. The client could thus
incur all of the costs listed above, with respect to a
given server, without ever gaining a benefit. Clients
might need to cease using this DTD approach with
any server that fails to send a digest after some
threshold number of requests.

Figure 1 shows an example of the HTTP messages be-
tween a client and server for a DTD miss. For a DTD
hit, the second pair of messages would simply be omit-
ted. The Want-Digest and Digest headers are de-
scribed in RFC 3230 [20]; all other headers are standard
in HTTP/1.1 [9].

Using Want-Digest and Digest is the “right” im-
plementation of DTD, because it works even for partial-
content responses, is extensible to digest algorithms other
than MD5, and avoids unnecessary digest computations
at the origin server. But since RFC 3230 is not widely
implemented, we tested DTD using the Content-MD5

support available in major Web servers (e.g., Apache and
IIS). This is sub-optimal because it does not allow the
server to avoid computing MD5s when the client has no
use for them.

The pure-proceed approach is equally usable hop-by-
hop or end-to-end, because any intermediate proxy can
generate or check digests. (A proxy-to-proxy imple-
mentation must use Digest because HTTP/1.1 [9, sec-
tion 14.15] specifically prohibits proxies from adding
Content-MD5.) Note that proxy-to-client or proxy-to-
proxy DTD could impose an extra store-and-forward de-
lay, while the first proxy computes the digest header.
(Some existing proxies might already buffer short re-
sponses, in any case.)

6 Trace-based performance analysis
Section 9 presents measured performance of an actual

DTD implementation. However, those measurements are
driven from a synthetic reference stream, which can-
not prove how frequent redundant transfers are in real-
world workloads. Here we analyze two real-world traces
to show how many redundant transfers, and how many
bytes, could be eliminated by DTD.

Relatively few existing client and proxy HTTP traces
include the response body digests we needed for our anal-
ysis. For example, the trace used by Douglis et al. [5]
may have been lost in a disk crash; other such traces
are unavailable due to proprietary considerations. We
re-analyzed the anonymized client and proxy traces from
our prior study [16]. These were collected, respectively,
at WebTV Networks in September 2000 and at Com-
paq Corporation in early 1999. The WebTV trace was
made with client caches disabled; both traces were made
without proxy caching. Both traces include an MD5 di-
gest for each payload transferred. The WebTV trace in-



First client request: Second client request:
HEAD /images/logo.gif HTTP/1.1 GET /images/logo.gif HTTP/1.1

Host: example.com Host: example.com

Want-Digest: MD5

Second server response:
First server response: HTTP/1.1 200 OK

HTTP/1.1 200 OK Date: Tue, 30 Jul 2002 18:30:06 GMT

Date: Tue, 30 Jul 2002 18:30:05 GMT Digest: md5=HUXZLQLMuI/KZ5KDcJPcOA==

Digest: md5=HUXZLQLMuI/KZ5KDcJPcOA== Cache-control: max-age=3600

Cache-control: max-age=3600 ETag: "xyzzy"

ETag: "xyzzy"

(message body omitted)

Figure 1: Example of HTTP messages (pure-proceed approach).

cludes 326 million references from 37 thousand clients
to 33 million URLs on 253 thousand servers over sixteen
days; the Compaq trace includes 79 million references
from 22 thousand clients to 20 million URLs on 454 thou-
sand servers over 90 days. Many further details of these
traces are described in [16] and are omitted here for space
reasons.

Given a request for URL X that results in reply instance
body B, the following properties may or may not hold:

i) there exists some URL Y such that Y 6= X and B was
the most-recent instance body for Y .

ii) there exists some URL Z such that Z 6= X and B was
a past instance body for Z, but not the most recent.

iii) B was a past instance body for X , but not the most
recent.

iv) B was the most recent instance body for X .

Properties (iii) and (iv) are mutually exclusive, but any
other combination is possible, so a total of twelve pos-
sibilities exist: a given transaction might have none of
these properties (if it has never been seen before), or sev-
eral at once (e.g., both most recent for X and most recent
for Y 6= X).

We analyzed both the WebTV and Compaq traces ac-
cording to this categorization. The results are in Tables 1
and 2 respectively. The cold-start results cover the en-
tire traces. Consistent with our earlier methodology [16],
for the warm-start results we (only somewhat arbitrarily)
warm the simulated cache with the first 186 million ref-
erences (for WebTV) or 50 million references (for Com-
paq).

In the WebTV warm-start results, 10% of the trans-
fers involve payloads never before seen in the trace (“new
payloads”); these will miss in any kind of cache. An-
other 87% have property (iv), for which a traditional, in-
finite cache with perfect revalidation would avoid a pay-
load transfer. (This “hit rate” seems high, but remember
that the WebTV trace was made with client caches dis-
abled.) The remainder, about 3%, are transfers that DTD
would avoid. In other words, a traditional URL-indexed
cache would see a miss rate of at least 13%, compared

to a DTD-cache miss rate of 10%; DTD would eliminate
23% of a conventional cache’s misses.

In the Compaq warm-start results, 37% are new pay-
loads, and 55% have property (iv). The remainder, about
8%, are transfers that DTD would avoid. A traditional
cache would see a miss rate of 45%, versus a DTD-cache
miss rate of 37%; DTD would eliminate roughly 18% of
a conventional cache’s misses for this trace.

If we restrict the DTD implementation to save at most
one entry per URL (i.e., to store no more entries than
a traditional cache), then the DTD cache will require
transfers for properties (ii) and (iii), but will still avoid
transfers for property (i). In this situation, DTD would
avoid 2.6% of the transfers in the WebTV trace, and 5.8%
of the transfers in the Compaq trace, assuming a warm
cache. (These values are the sums of the Warm-start
Transfers column for rows where property (i) holds and
property (iv) does not.)

Weighting the results by bytes transferred better de-
scribes bandwidth savings, of course. Looking just at
the warm-cache data, new (i.e., mandatory-transfer) pay-
loads account for 30% of the WebTV bytes, and 57% of
the Compaq bytes. Variations of property (iv), hits for a
perfect traditional cache, account for 64% of the WebTV
bytes, and 34% of the Compaq bytes. The transfers that
DTD would avoid account for 5% of the WebTV bytes,
and 9% of the Compaq bytes.

In other words, a traditional URL-indexed cache would
see a byte-weighted miss rate of at least 36% for the
WebTV trace, compared to a DTD-cache miss rate of
30% (66% vs. 57% for the Compaq trace). In terms of
the reduction in the number of bytes sent from the ori-
gin server, DTD would save (relative to a URL-indexed
cache) 15% for the WebTV trace, and 14% for the Com-
paq trace.

6.1 Overheads from the proceed model
Because the proceed model for DTD causes an ex-

tra pair of request and response headers when the digest
does not match, to evaluate the overall byte-transfer sav-
ings for this model we must compare the bytes saved by
DTD (for properties (ii) and (iii)) with the number of



property Cold-start Cold-start Warm-start Warm-start
iv iii ii i Transfers % MBytes % Transfers % MBytes % Current reply payload was...
0 0 0 0 36,573,310 11.22 609,935 32.40 13,915,207 9.94 245,010 30.40 never returned before
0 0 0 1 6,047,586 1.85 39,205 2.08 2,332,816 1.67 15,735 1.95 most-recent for other URL
0 0 1 0 94,375 0.03 1,937 0.10 43,313 0.03 1,066 0.13 returned for other URL, not most recent
0 0 1 1 2,070,537 0.64 8,820 0.47 908,075 0.65 3,715 0.46
0 1 0 0 1,048,493 0.32 35,074 1.86 465,865 0.33 16,906 2.10 returned for current URL, not most recent
0 1 0 1 129,349 0.04 3,089 0.16 62,776 0.04 1,551 0.19
0 1 1 0 150,533 0.05 2,189 0.12 67,477 0.05 1,093 0.14
0 1 1 1 681,840 0.21 3,350 0.18 309,030 0.22 1,655 0.21
1 0 0 0 131,262,060 40.26 662,120 35.17 52,607,080 37.56 272,289 33.79 most recent for current URL
1 0 0 1 138,927,549 42.61 490,892 26.08 64,263,811 45.88 231,911 28.78
1 0 1 0 290,628 0.09 2,202 0.12 168,472 0.12 1,143 0.14
1 0 1 1 8,784,417 2.69 23,740 1.26 4,916,756 3.51 13,857 1.72

326,060,677 1,882,552 140,060,678 805,928 Totals

Table 1: WebTV trace categorization.

property Cold-start Cold-start Warm-start Warm-start
iv iii ii i Transfers % MBytes % Transfers % MBytes % Current reply payload was...
0 0 0 0 30,591,044 38.77 512,562 59.53 10,575,651 36.58 182,372 56.56 never returned before
0 0 0 1 3,504,391 4.44 49,967 5.80 1,291,369 4.47 21,793 6.76 most-recent for other URL
0 0 1 0 148,533 0.19 1,357 0.16 49,339 0.17 490 0.15 returned for other URL, not most recent
0 0 1 1 604,076 0.77 2,721 0.32 229,799 0.79 1,146 0.36
0 1 0 0 1,554,331 1.97 10,521 1.22 612,795 2.12 3,741 1.16 returned for current URL, not most recent
0 1 0 1 130,356 0.17 1,010 0.12 48,965 0.17 430 0.13
0 1 1 0 164,992 0.21 1,091 0.13 62,984 0.22 432 0.13
0 1 1 1 264,100 0.33 1,812 0.21 112,359 0.39 789 0.24
1 0 0 0 20,492,740 25.97 166,360 19.32 7,230,114 25.01 59,824 18.55 most recent for current URL
1 0 0 1 19,126,071 24.24 106,183 12.33 7,587,555 26.24 47,811 14.83
1 0 1 0 165,425 0.21 943 0.11 65,695 0.23 397 0.12
1 0 1 1 2,167,290 2.75 6,442 0.75 1,046,725 3.62 3,198 0.99

78,913,349 860,970 28,913,350 322,421 Totals

Table 2: Compaq trace categorization.

extra header bytes spent on the new-payload transfers.
We can ignore property (iv) by assuming that these ref-
erences could be cache hits. DTD (warm-start) saves a
mean of 3036 bytes of payload transfer for each new-
payload reference in the WebTV trace (warm-start), and
2857 bytes for each new-payload reference in the Com-
paq trace. These savings are much larger than the mean
request+response header sizes reported in previous stud-
ies (e.g., [6, 13]) 3 so the proceed model does not waste
too much of the potential savings.

DTD requires digests in response headers (for MD5,
24 bytes plus about 10 bytes of syntax overhead), which
further reduces savings. However, digests are useful for
integrity checks, and so might be sent even without DTD.

6.2 If-None-Match with multiple entity tags
HTTP/1.1 supports the use of entity tags to vali-

date cache entries: a server may provide an instance-
specific entity tag in the ETag response header, and a
client may send this entity tag back to the server in an
If-None-Match request header to check if its cache en-
try is still valid. If-None-Match may carry multiple en-
tity tags, in which case the server can return “304 Not
Modified” (along with the current entity tag) if any of

those tags is current.
This feature would allow a non-DTD cache to avoid

transfers when property (iii) holds. Referring to the
warm-start columns in Tables 1 and 2, we see that this
could avoid at most 0.6% of the transfers and 2.6% of the
bytes for the WebTV trace, and 2.9% of the transfers and
1.7% of the bytes for the Compaq trace.

However, these are upper bounds, since this simple
analysis assumes that every response carries an entity tag,
and the servers always use exactly one entity tag per dis-
tinct instance body. Neither is true in practice; only 66%
of the responses in the WebTV trace carried entity tags,
and we know that some servers can assign different en-
tity tags to identical instance bodies. In summary, DTD
avoids transferring significantly more bytes than could be
avoided using multiple entity tags in If-None-Match.

6.3 Multiple cache entries per URL?
The full benefit of DTD accrues when the cache stores

more than one payload per URL. The most natural clean-
slate DTD cache design treats payloads rather than URLs
as the basic storage type. URLs are merely one way to
index into this underlying store; payload digests are an-
other. The cache may therefore store multiple payloads



for a given URL, and also payloads that are not the most-
recent response for any URL (as in the case of rotated
resources). These properties, while desirable, might be
difficult to retrofit onto some legacy cache implementa-
tions; how much do they help? It helps for references
that have either property (ii) or (iii) while having neither
property (i) nor (iv). These represent just 0.4% of the
warm-start transfers in the WebTV trace, but 2.5% of the
warm-start transfers in the Compaq trace, so it probably
is useful to store multiple payloads per URL.

7 Model-based latency analysis
The analysis in Section 6 concentrates on the number

of bytes that could be saved using DTD, which may be
of economic interest to network operators. End users,
however, care more about latency. Predicting the latency
effects of change to Web protocols can be difficult, since
so many variables can affect overall latency.

We have developed a simple model for understanding
when pure-proceed DTD might improve latency over a
traditional Web cache. This model ignores issues such as
response pipelining, network congestion, TCP algorithms
such as slow-start, and correlations of the hit ratio and
duplication ratio with other parameters, but it can help
guide intuition.

Given these parameters:
RT T = round trip time, cache to server
BW = effective link bandwidth, bits/sec

Lresp = response length, bits
HRConv = conventional-cache hit ratio

HRDTDonly = DTD-only hit ratio
Tlookup = Cache-lookup latency

then we can derive these latencies (if we over-simplify by
assuming that HTTP headers are negligible in length):

TConvHit = Tlookup

TConvMiss = Tlookup +RTT +Lresp/BW

TDTDonlyHit = Tlookup +RTT +TConvHit

TDTDMiss = Tlookup +RTT +TConvMiss

The extra RTT in TDTDonlyHit and TDTDMiss comes from
the HEAD operation that a DTD cache performs af-
ter the conventional lookup misses. The extra Tlookup
in TDTDonlyHit and TDTDMiss comes from the need to do
lookups both on the URL and the digest in those cases.

We simplify by assuming that Tlookup = 0, a reasonable
approximation for a well-implemented cache.

We can then express the expected latencies for conven-
tional and DTD caches:

EConv = HRConv ×TConvHit

+(1−HRConv)TConvMiss

Break-even response size (bytes)
Scenario RTT Bandwidth WebTV Compaq
Cellphone 100ms 10Kb/s 415 549
Modem 100ms 56Kb/s 2325 3075
DSL 30ms 384Kb/s 4783 6325
WAN 42ms 6000Kb/s 104629 138367

Table 3: Examples of model output.

EDTD = HRConv ×TConvHit

+HRDTDonly ×TDTDonlyHit

+(1− (HRConv +HRDTDonly))TDTDMiss

DTD improves the expected latency if EDTD < EConv,
which (by algebra) is true if

BW <
Lresp ×HRDTDonly

RT T (1− (HRConv +HRDTDonly))
(1)

DTD is thus more likely to pay off as the effective
link bandwidth and/or RTT decrease, and as the transfer
length and hit ratios increase.

We evaluated Equation 1 using warm-cache hit-ratio
values taken from the WebTV and Compaq trace analy-
ses in Tables 1 and 2 and various combinations of RTT
and bandwidth. Table 3 shows the results for several
scenarios: “cellphone,” “modem,” “DSL,” and “WAN,”
corresponding respectively to the results shown later in
Figures 4(a), 4(b), 4(c), and 6. The break-even response
sizes shown in the table imply that DTD would improve
latency on cellphone and modem links, and perhaps on
DSL links, given the typical mean response sizes sum-
marized in Table 4 of [16]. DTD would hurt latency on
high-speed WAN links except if its use were restricted to
relatively large responses.

8 Implementation design and experience
Most of the new code required for DTD, using the pro-

ceed model, is located in cache implementations. (We
also needed server support for digests; we relied on ex-
isting support for Content-MD5, which is only partially
appropriate; see Section 5.2.) Both clients (browsers)
and proxies have caches; for our experiments, we limited
ourselves modifying a proxy cache server. By running a
“private” proxy cache co-located with a browser, we can
emulate most of the benefits of integrating DTD into a
browser cache. (It should be simpler to add DTD to a
browser cache than it was to add it to a proxy cache.)

We chose to implement the pure-proceed approach to
DTD as modifications to the Squid proxy server [34]
(version 2.4.STABLE7). Our code is available from
http://devel.squid-cache.org/dtd/. The major
changes we made are:

• Creating a “payload” datatype separate from a cache
entry. This inverts the existing data-structure depen-
dence between a payload and a URL.



• Indexing into the payload database by digest as well
as by URL.

• Generating a preliminary HEAD request to obtain
the server’s digest.

• Checking the returned digest for DTD-related
HEAD requests, and generating a GET request if the
digest is not found in the cache, or if no digest is re-
turned.

Our modified Squid uses “Duplicate Storage Avoid-
ance” (DSA). Each distinct payload (i.e., with a given di-
gest) is stored only once; if the payload is current for sev-
eral URLs, the URL-indexed entries incorporate the pay-
load by reference (see http://devel.squid-cache.

org/dsa/).
The DTD and DSA changes together involve about

3420 lines of mostly simple but tedious “diffs” to Squid;
much of the new code represents modified versions of ex-
isting Squid code. About one third of the new lines are
pre-processor directives (e.g., “#ifdef”).

A cache that supports partial content (HTTP status-
206 responses) must be careful not to associate an entire-
instance digest with a stored partial-instance body, or else
DTD could unwittingly supply incomplete bodies. Our
implementation does not yet support partial content.

In hindsight, the choice to modify Squid may have
been a mistake. The existing Squid code is extremely
complex and hard to understand, and we found many
bugs in our own code that resulted from our failure to
maintain poorly documented invariants expected by the
rest of Squid. We know some bugs remain.

9 Experimental results
The analysis in Section 6, based on traces of real users,

predicts the bandwidth savings from DTD, but cannot tell
us how DTD affects latency. To help answer this ques-
tion, we ran experiments using our modified version of
Squid.

9.1 Experimental design
We tested our DTD implementation in two different

environments The first was an “Emulated-WAN” envi-
ronment, in which the two systems (server, proxy+client)
were physically close, and connected by a 10 Mbit/sec
LAN. We then emulated a variety of WAN environments
using the Dummynet [30] feature of FreeBSD, which al-
lowed us to choose a variety of latency and bandwidths
between the server and proxy, enabling us to measure
how DTD performance varies with network characteris-
tics. The second was a “Real-WAN” environment, using
a server at Worcester Polytechnic Institute (WPI) in Mas-
sachusetts, while the DTD-capable proxy and the client
ran on a system at the University of Michigan.

In our tests, we ran the proxy (modified or unmodified)
on the same system as the client, to simulate the use of a

client cache with or without support for DTD. All sys-
tems were otherwise unloaded, except for the real-WAN
origin server.

All of the hosts ran Linux, except for the emulated-
WAN server which ran FreeBSD. The server at WPI uses
Apache/1.3.12, while the emulated-WAN server uses
Apache/2.0.47. For the emulated-WAN experiments, the
proxy/client was a 550 MHz Pentium III and the server
was a 466 MHz AlphaServer DS10L. For the real-WAN
experiments, the proxy/client was a 4-CPU 450 MHz
Pentium II and the server was a 600 MHz Pentium III.

We measured a mean RTT of 42 msec for the real-
WAN path, and approximate effective bandwidths from
6.1 to 7.7 Mbits/sec. In the emulated-WAN tests, we used
Dummynet to impose symmetric RTTs of 0, 30, and 100
msec, and bandwidth limits of 10K, 56K, 384K, 1.5M,
and 10M bits/sec.

We ran trials with file (body) sizes (not including
HTTP headers) of 2i bytes, for i = 10,11, . . . ,20; i.e., be-
tween 1KB and 1MB.4 Each file byte was derived from
a pseudo-random number generator, thus making it diffi-
cult for any network element (such as a modem) to com-
press the files and change their effective transfer sizes.

For each combination of network characteristics and
body size, we ran experiments using three different proxy
configurations: no proxy, unmodified Squid, and our
DTD-capable modified Squid proxy. With unmodified
Squid, we ran trials where the references were arranged
to be compulsory cache misses, and trials where the ref-
erences were guaranteed to be cache hits. With our DTD-
capable Squid, we ran compulsory-miss, guaranteed-hit,
and DTD-only-hit trials; the last category were references
where we arranged that the cache contained an entry with
a matching digest value, but not a matching URL. We ar-
ranged compulsory cache misses by restarting the proxy
software with a cold cache as necessary; we arranged
guaranteed hits by careful choice of the reference se-
quence, and by ensuring that the working set was much
smaller than the cache size.

In each set of experiments, we measured end-to-end
response time using httperf [22]. This program reports
the latency between issuing a request and receiving the
first byte of the response headers (time-to-first-byte, or
TTFB), as well as the latency between receiving the first
byte of the response headers and the last byte of the re-
sponse body (transfer duration, or TD). For the 1KB body
size, the headers and body might fit into one packet, in
which case TD would be negligible. The total response
latency is thus TTFB+TD. In each trial, we used httperf
to fetch “bunches” of 10 distinct files with the same
length.

For a given network configuration, we measure laten-
cies for one bunch for each combination of body size and
proxy configuration, then repeat that set of measurements



N times. Results in this paper show the mean for N = 9
unless otherwise noted.

9.2 Measured overheads
The use of a proxy server introduces overheads that

would not be present if our DTD implementation were
integrated into a client cache. Also, Squid is known
to add significant latency due to fundamental design
choices [17]. We can estimate the overheads imposed by
our implementation strategy of using Squid rather than
an integrated client cache; we do this by comparing the
no-proxy latencies with the latencies for cache-miss re-
trievals via unmodified Squid.
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Figure 2: Overhead imposed by unmodified Squid

Figure 2 shows the overheads imposed by unmodified
Squid connected to the server over both a full-speed LAN
and over the WAN path described above. In the LAN
case, Squid adds almost no latency larger than the trial-to-
trial measurement errors (which cause some of the nega-
tive “overheads” in Figure 2(a); these errors are below
2% of the total latencies). Overheads from our WAN
tests (Figure 2(b)) are harder to interpret, although us-
ing unmodified Squid seems to consistently improve the
transfer times for most body sizes. This effect also holds
when we run experiments using an emulated WAN with
similar delay and bandwidth. We cannot offer a plausible
explanation, but because most of the results in this pa-
per compare performance for our modified Squid against
the unmodified version, rather than against the no-proxy
case, we leave this mystery to others.

On our LAN, the TTFB latency difference between
a Squid miss and a no-proxy operation, for most body

sizes, is about 1 msec. This places an upper bound on the
cache-lookup latency, because Squid imposes other over-
heads beyond this lookup, and so confirms our assump-
tion in Section 7 that the lookup latency is negligible.

DTD requires the origin server to send the digest of
the payload (body). In our experiments, we use the
MD5 digest algorithm, whose computation imposes some
cost [36]. In principle, servers could cache MD5 compu-
tations for frequently-accessed content. Also, Moore’s
Law suggests that MD5 computation will decline in cost
relative to speed-of-light latencies. However, current
servers (such as Apache) do not cache MD5 values, so the
use of DTD adds this computational overhead. We quan-
tified the cost by comparing the latencies for no-proxy
retrievals with and without MD5 computation enabled at
the Apache server.
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Figure 3: Overhead for MD5 computation

Figure 3 shows the overheads that MD5 imposes for a
LAN-based, proxyless configuration. For bodies smaller
than 128 KBytes, the overheads are negligible (under 3
msec). For larger bodies, MD5 computation adds mea-
surable overhead, but still less than a tenth of the absolute
response time (e.g., 1218 msec for 1024-byte bodies).
The increase in response time is smaller than the increase
in TTFB for these larger sizes, probably because the MD5
pass effectively prefetches the file into the server’s file
buffer; this prefetching (as Figure 3 implies) makes the
TCP transfer slightly more efficient.

9.3 Emulated-WAN experiments
Figure 4 shows time-to-first-byte and total re-

sponse time results, in the left and right columns
respectively, for selected emulated-WAN experiments.
For reasons of space, we only show results for:
(RT T = 100msec, 10Kbits/sec), a plausible cell-
phone link; (RT T = 100msec, 56Kbits/sec), a typ-
ical dialup modem; (RT T = 30msec, 384Kbits/sec),
a DSL connection to a regional server; and (RTT =
100msec, 10Mbits/sec), a bad case for DTD because the
RTT and bandwidth are both high.

For all combinations of network parameters that we
tested, the TTFB latency for a DTD-only hit is slightly
above one RTT (approximately the TTFB of a cache
miss), as we would expect from the cost of the HEAD
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(a) 100 msec RTT, 10 Kbits/sec (body size limited to 128 KBbytes, to keep experiment durations reasonable)
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(b) 100 msec RTT, 56 Kbits/sec (e.g., typical modem)
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(c) 30 msec RTT, 384 Kbits/sec (e.g., typical DSL)
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(d) 100 msec RTT, 10 Mbits/sec (bad case for DTD)

Figure 4: Emulated-WAN results

operation. The total response latency for a DTD-only
hit is also approximately one RTT, because no body is
transferred from origin server to cache. (The cache is co-
located with the client, so there is almost no transfer cost
between those agents.)

The total latency for compulsory miss by a DTD-
capable cache will be one RTT higher than that of a
traditional cache. This is clearly visible in the left col-
umn of figures (the log scale makes it less visible in the
right column, where results are sometimes dominated by



bandwidth-induced delays). This is a penalty that a DTD
cache must make up by its improved latency on DTD-
only hits, with respect to the conventional misses that
they displace.

A DTD-only hit should never have a higher total la-
tency than a conventional miss by a non-DTD cache, but
it can be much lower if the conventional miss incurs a
large transfer cost. For example, in Figure 4(a–c), at a
body size of just 8 KBytes, the total latency is signifi-
cantly lower for a DTD-only hit than for a conventional
miss. In Figure 4(d), however, DTD shows no latency
benefit except for very large body sizes, because the high
bandwidth minimizes transfer cost, while the high RTT
dominates total latency.

Note that while Figure 4 shows that DTD-only hits can
be much faster than the conventional misses they replace,
without knowing the various hit ratios (see Section 7) one
cannot infer whether DTD provides a net benefit.

9.4 Real-WAN experiments
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Figure 5: Real WAN – Time-to-first-byte results
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Figure 6: Real WAN – total response time results

Figure 5 and 6 show, respectively, the time-to-first-byte
and total response time results for our real-WAN experi-
ments. (In this experiment, N = 21.) These results agree
quite closely with our emulated-WAN results (not shown
in Figure 4) for similar RTT and bandwidth.

9.5 Implications of results
Our experimental results generally confirm the analytic

model in Section 7, although our experiments do not at-

tempt to model miss ratios.
We can evaluate whether DTD is beneficial at a par-

ticular point in the parameter space. For this example,
we assume the miss ratios reported from the WebTV
trace in Section 6, 10% for a DTD client cache vs.
13% for a conventional client cache, and assume that
these ratios are independent of response size. Using
the results in Figure 4(b), a modem user with (RT T =
100msec, 56Kbits/sec) who retrieves a number of 8
KByte files would have a mean expected latency im-
provement using DTD of about 15 msec (compared to an
overall expected mean, without DTD, of 185 msec). The
same user retrieving a number of 32 KByte files would
see a mean improvement of 126 msec (vs. an overall non-
DTD mean of 661 msec).

A user on a slower network, with (RT T =
100msec, 10Kbits/sec), would see even larger improve-
ments from DTD. However, a user of our relatively good
WAN connection would see a net latency loss from DTD
for body sizes below a break-even point of about 64
KBytes. Since most Web responses are smaller than that,
on good WAN links one might only want to use DTD for
special tasks such as downloading software (the original
motivation for DRP [38]).

10 Security considerations
Measures that improve the performance of computing

systems often create subtle security vulnerabilities, and
caching is a prime example. Timing attacks on processor
memory hierarchies have been known for decades, e.g.,
the famous TENEX password attack [35, pp. 183–4]. Re-
cently Felten et al. have described variants applicable to
Web caching [8]. DTD adds at least two additional secu-
rity problems.

First, if an attacker can generate payload digest col-
lisions, then she can cause a DTD proxy to deliver in-
correct payloads. The details are omitted here but are
available in [14]. The attack is straightforward and can
be prevented through the use of secure message digest
functions (see Section 10.1).

A more subtle problem involves information leakage;
interestingly, the attack does not rely on timing informa-
tion of any kind.5 A server can exploit DTD to learn the
contents of a client’s cache:

1. User Bob’s browser and the nosy.com server em-
ploy DTD.

2. Bob issues a request for uninteresting URL
http://nosy.com/humdrum.html.

3. nosy.com replies with digest(naughty.gif), even
though it never receives or serves requests for this
interesting payload.

4. Bob’s browser fails to retrieve the full payload,
thereby revealing that Bob already has it.



Sophisticated implementations of this attack might em-
ploy JavaScript within HTML pages to systematically
search a client’s cache for interesting payloads, analo-
gous to the timing attacks described by Felten et al. [8].
Attacks of this form can be detected easily, by simply re-
trieving a full payload and verifying the digest previously
obtained from the server. Furthermore such attacks can
be avoided if the client simply refrains from employing
DTD when communicating with untrusted sites. Another
possible countermeasure is to employ DTD only within
sites; in the example above, Bob’s browser would always
fetch payloads except when it found a match supplied by
the same server. This ensures that DTD reveals nothing
about Bob’s surfing that the server doesn’t already know.
However this approach may severely limit the benefits
of DTD, because most aliasing occurs across sites rather
than within sites [16].

10.1 Choice of digest algorithm
DTD would be unreliable if the digest function were

prone to accidental collisions under normal usage. MD5
might not be sufficient for widespread deployment; if not,
one could achieve an arbitrarily low rate of accidental col-
lisions by increasing the hash size, at the cost of slightly
higher overheads. (Henson [12] discusses some risks as-
sociated with digest-based protocols; we disagree with
some of the conclusions in that paper.)

DTD would be vulnerable to attack if it were computa-
tionally feasible to generate digest collisions deliberately.
Our work has assumed the use of MD5 [29], but MD5’s
collision-resistance has been questioned [31]. Other al-
gorithms, such as SHA1 [24], might be more appropriate.

11 Future work
We see many possible extensions of this work. We

would like to explore and evaluate the protocol alterna-
tives in Section 5, and perhaps to unify DTD with similar
techniques such as rsync [37]. We would also like to see
the trace-based analysis of Section 6 applied to a broader
set of traces. One could also improve on our synthetic
benchmarks by using miss-ratio and response-length dis-
tributions taken from traces.

Neither our model nor the original Squid code base
supports pipelining, which is known to benefit HTTP per-
formance in general [25], and ought to improve the trade-
off in favor of DTD; evaluation of a pipelined DTD cache
would require shifting to a new code base.

Because a DTD cache, unlike a traditional cache,
might store multiple entries per URL, cache replacement
policies designed for traditional caches might interact
poorly with DTD. We suspect that the most natural re-
placement policy for DTD is to redefine an existing pol-
icy with respect to unique instances rather than to URLs.
While we have not yet evaluated such policies, we be-
lieve that a DTD cache with such a policy will not suffer a

higher miss rate than a conventional URL-indexed cache
with the analogous policy.

12 Summary and conclusions
This paper has described how Duplicate Transfer

Detection can be implemented in HTTP without ex-
plicit protocol changes, and briefly sketched several al-
ternative designs. We showed, using two real-world
traces, how DTD could reduce miss rates and bandwidth
requirements—14% to 15% of the bytes transferred in
our traces. We provided a simple model to show when
use of DTD should reduce expected latency relative to a
conventional cache. We described a simple implementa-
tion of DTD for Squid. Using tests of real and emulated
WANs, we showed measurements that clarify the condi-
tions under which DTD reduces overall latency. For real-
istic hit ratios and response sizes, DTD does provide a net
latency benefit for some common network environments.
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Notes
1In some rare cases, the client may only want to render a well-

defined sub-part, such as a chapter of a PDF file.
2The “proceed” model, described in Section 5.1, also supports end-

to-end use.
3We based this conclusion on other traces, because the Compaq trace

does not include this data, and the header-size data in the WebTV trace
appears to be unreliable, possibly the result of incorrect logic for record-
ing header lengths in the trace-gathering process.

4Most Web responses are at the low end of this range; we previously
summarized results from several traces showing mean sizes between
6,054B and 21,568B, and medians between 1,821 and 4,346B [16].

5We thank Flavia Peligrinelli Ribeiro for pointing out this attack. As
far as we can determine [7, 39], this form of attack has not previously
been reported in the literature.


