UMassAmherst

Block-switched Networks: A New Paradigm for Wireless Transport

Ming Li, Devesh Agrawal, Deepak Ganesan, and Arun Venkataramani

University of Massachusetts Amherst

What You Buy vs. What You Get

TCP performs poorly over wireless links

1. E2E Transport

- E2E rate control is error-prone
- E2E retransmissions are wasteful
- E2E route disruptions cause unavailability

1. E2E Transport

- E2E rate control is error-prone
- E2E retransmissions are wasteful
- E2E route disruptions cause unavailability

E2E Retransmissions

1. E2E Transport

- E2E rate control is error-prone
- E2E retransmissions are wasteful
- E2E route disruptions cause unavailability

2. Packet as Unit of Control

- Channel access
- Link layer ARQ

2. Packet as Unit of Control

- Channel access
- Link layer ARQ

3. Complex Cross-Layer Interaction

Link-layer ARQs/backoffs hurt TCP rate control

Hop: A Clean Slate Re-design

- End-To-End → Hop-by-Hop
- Packets

- **⇒** Blocks
- Complexity → Minimalism

Hop Design

Virtual Retransmission

Backpressure

Multi-hop

Per-hop

ACK Withholding Micro-block Prioritization

Reliable Block Transfer

Reliable Per-Hop Block Transfer

B-SYN

TXQP

B-ACK

Mechanisms

- Burst mode (TXOP)
- Block ACK based ARQ
- Benefits

Hop Design

Virtual Retransmission

Backpressure

Multi-hop

Per-hop

ACK Withholding Micro-block Prioritization

Reliable Block Transfer

Virtual Retransmission (VTX)

Mechanism

- Leverages in-network caching
- Re-transmits blocks only when unavailable in cache

Benefits

Fewer transmissions

Virtual Retransmission (VTX)

Mechanism

- Leverages in-network caching
- Re-transmits blocks only when unavailable in cache

Benefits

Fewer transmissions

Hop Design

Virtual Retransmission

Backpressure

Multi-hop

Per-hop

ACK Withholding Micro-block Prioritization

Reliable Block Transfer

Backpressure

Mechanism

Limits #outstanding_blocks per-flow at forwarder

Limit of Outstanding Blocks=2

Backpressure

Mechanism

Limits #outstanding blocks per-flow at forwarder

Benefits

Aggregate goodput without backpressure: 6Mbps

Backpressure

Mechanism

Aggregate goodput with backpressure: 10Mbps

Hop Design

Virtual Retransmission

Backpressure

Multi-hop

Per-hop

ACK Withholding Micro-block Prioritization

Reliable Block Transfer

RTS/CTS is overly conservative and incurs high overhead.

Ack Withholding

Mechanism:

Receiver withholds all but one B-ACK

Benefit:

- Low overhead
- Less conservative
- Simple

Hop Design

Virtual Retransmission

Backpressure

Multi-hop

Per-hop

ACK Withholding Micro-block Prioritization

Reliable Block Transfer

Micro-block Prioritization

Mechanisms

- Sender piggybacks small blocks to B-SYN
- Receiver prioritizes small block's B-ACK

Benefits

Low delay for small blocks

Testbed

20 nodes on the 2nd floor of UMass CS building

- Apple Mac Mini
 - Dual Core 1.8GHz, 2GB RAM, Atheros 802.11 a/b/g card

Single-flow Single-hop Performance

Single-flow Multi-hop Performance

Graceful Degradation with Loss

Emulated link layer losses at the receiver

Message Loss Rate (percent)

Scalability to High Load

30 concurrent flows

Hop achieves massive gains over TCP and is much fairer

Hop over WLAN

	Mean (kbps)	Median (kbps)
Нор	663	652
TCP	587	244
TCP+RTS/CTS	463	333

Hop improves utilization over TCP+RTS/CTS

Low Delay for Small Transfers

4 nodes perform large transfers, 1 node performs small transfer

Hop lowers delay across all file sizes

Summary of Other Results

Partitionable network

- TCP breaks down
- Hop significantly outperforms (TCP-based) DTN2.5

Network and link layer dynamics

- Hop outperforms TCP under dynamic network conditions
- Hop under 802.11g
 - Similar performance gains as in 802.11b
- Impact on VolP
 - Hop impacts concurrent VoIP slightly more than TCP, but achieves significantly higher goodput.

Related Work

Fixing E2E rate-control

- Separating loss/congestion [Snoop, WTCP, Westwood+, ATCP, TCP-ELFN]
- Network-assisted rate control [ATP, NRED, IFRC, WCP]
- Hop circumvents rate control

Backpressure

- ATM, theoretical work [Tassiulas,...]
- Tree/chain sensor data aggregation [Fusion, Flush]
- Reliable point-to-point transport [RAIN, CXCC, Horizon]
- Hop reduces backpressure overhead using blocks

Batching

- Common optimization at link [802.11e/802.11n, Wildnet, Kim08, CMAP], transport [Delayed-ACK, DTN2.5], and network [ExOR] layers
- Hop leverages batching across layers

Summary

- Block switching > packet switching
 - Key abstraction: Reliable per-hop block transfer
- Hop
 - Fast: Significant throughput, fairness, delay gains
 - Robust: Degrades gracefully to challenged networks
 - Simple: Minimizes complex cross-layer interaction

Can we have one transport protocol for diverse wireless networks? **Yes**, **we can!**

Source code at

http://hop.cs.umass.edu

UMassAmherst

The End

Questions?

Dynamic Network Conditions

- 30 concurrent flows
- Auto Bit-RateControl
- OLSR

Hop continues to significantly outperform TCP under dynamic network conditions

