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Abstract question: How can we test the correctness of cloud sys-
tems in how they deal with the wide variety of possible
As the cloud era begins and failures become comfailure modes?

monplace, failure recovery becomes a critical factor in  To address this question, we present two advance-
the availability, reliability and performance of cloud ser ments in the current state-of-the-art of testing. First, we
vices. Unfortunately, recovery problems still take place,introduce RTE (Failure Testing Service). Unlike exist-
causing downtimes, data loss, and many other problemsng frameworks where multiple failures are only exer-
We propose a new testing framework for cloud recoverycised randomly§, 35, 38], FATE is designed taystemat-
FATE (Failure Testing Service) anBDEsSTINI (Declara- ically push cloud systems into many possible failure sce-
tive Testing Specifications). WIERTE, recovery is Sys- narios. RTE achieves this by employirfgilure IDs as a
tematically tested in the face of multiple failures. With new abstraction for exploring failures. Using failure IDs,
DESTINI, correct recovery is specified clearly, concisely, FATE has exercised over 40,000 unique failure scenarios,
and precisely. We have integrated our framework toand uncovers a new challenge: the exponential explosion
several cloud systems (e.g., HDFX]), explored over of multiple failures. To the best of our knowledge, we
40,000 failure scenarios, wrote 74 specifications, foundare the first to address this in a more systematic way than

16 new bugs, and reproduced 51 old bugs. random approaches. We do so by introducing novel pri-
oritization strategies that explore non-similar failuce s
1 Introduction narios first. This approach allows developers to explore

distinct recovery behaviors an order of magnitude faster

Large-scale computing and data storage systems, includompared to a brute-force approach.
ing clusters within Google9], Amazon EC2 1], and Second, we introduce E5TINI (Declarative Testing
elsewhere, are becoming a dominant platform for arSpecifications), which addresses the second half of the
increasing variety of applications and services. Thesehallenge in recovery testing: specification of expected
“cloud” systems comprise thousands of commodity ma-behavior, to support proper testing of the recovery code
chines (to take advantage of economies of scaldéd])  that is exercised by ATE. With existing approaches,
and thus require sophisticated and often complex disspecifications are cumbersome and difficult to write, and
tributed software to mask the (perhaps increasinglythus present a barrier to usage in practics p4, 25, 32,
poor reliability of commodity PCs, disks, and memo- 39]. To address this, BsTINI employs a relational logic
ries[4,9, 17, 19]. language that enables developers to write clear, concise,

A critical factor in the availability, reliability, and per and precise recovery specifications; we have written 74
formance of cloud services is thus how they react to fail-checks, each of which is typically about 5 lines of code.
ure. Unfortunately, failure recovery has proven to beln addition, we present several design patterns to help de-
challenging in these systems. For example, in 2009yelopers specify recovery. For example, developers can
a large telecommunications provider reported a seriougasily capture facts and build expectations, write spec-
data-loss incident7], and a similar incident occurred ifications from different viewsd.g, global, client, data
within a popular social-networking sit@9]. Bug repos-  servers) and thus catch bugs closer to the source, express
itories of open-source cloud software hint at similar re-different types of violationsd.g, data-loss, availability),
covery problems]. and incorporate different types of failuresd, crashes,

Practitioners continue to bemoan their inability to ad- network partitions).
equately address these recovery problems. For exam- The rest of the paper is organized as follows. First,
ple, engineers at Google consider the current state ofve dissect recovery problems in more detg#l)( Next,
recovery testing to be behind the timeg, [while oth-  we define our concrete goaksj, and present the design
ers believe that large-scale recovery remains underspeand implementation of ATE (§4) and DESTINI (§5). We
ified [4]. These deficiencies leave us with an importantthen close with evaluation§®) and conclusiong7).



2 Extended Motivation: Based on this study, we made several observations.

First, most of the internal protocols already anticipate

Recovery Problems failures. However, they do not cover all possible fail-
This section presents a study of recovery problemd!res, and thus exhibit problems in practice. Second,
through three different lenses. First, we recap account® number of reported issues due to multiple failures is

of issues that cloud practitioners have shared in the litStill small. In this regard, excluding our 5 submissions,
erature §2.1). Since these stories do not reflect details, the developers only had reported 3 issues, which mostly
we study bug/issue reports of modern open-source clou@ose in live deployments rather than systematic testing.
systems §2.2). Finally, to get more insights, we dissect Finally, recovery issues appeared not only in the early

a failure recovery protocokp.3). We close this section Years of the development but also recently, suggesting
by reviewing the state-of-the-art of testirfi®(4). the lack of adoptable tools that can exercise failures au-

tomatically. Reports from other cloud systems such as

" . Cassandra and ZooKeeper also raise similar issues.
2.1 Lens #1: Practitioners’ Experiences P

As well-known practitioners and academics have stated.z'3 Lens #3: Write Recovery Protocol
“the future is a world of failures everywherel]]; “re-  Given so many recovery issues, one might wonder what
liability has to come from the software9[, “recovery  the inherent complexities are. To answer this, we dis-
must be a first-class operation8][ These are but a sect the anatomy of HDFS write recovery. As a back-
glimpse of the urgent need for failure recovery as we enground, HDFS provides two write interfaces: write and
ter the cloud era. Yet, practitioners still observe recpver append. There is no overwrite. The write protocol essen-
problemsin the field. The engineers of Google’s Chubbytially looks simple, but when different failures come into
system, for example, reported data loss on four occasionge picture, recovery complexity becomes evident. Fig-
due to database recovery errof. [ In another paper, urel shows the write recovery protocol with three differ-
they reported another imperfect recovery that broughent failure scenarios. Throughout the paper, we will use
down the whole systeng]. After they tested Chubby HDFS terminology lflocks datanodes/nodesand na-
with random multiple failures, they found more prob- menodg[33] instead of GoogleFS terminology (chunks,
lems. BigTable engineers also stated that cloud sysehunk servers, and mastet().
tems see all kinds of failure® g, crashes, bad disks, e Data-Transfer Recovery: Figure 1a shows a client
network partitions, corruptions, etc.y][ other practi- contacting the namenode to get a list of datanodes to
tioners agreed, 9. They also emphasized that, as store three replicas of a blockd). The client then initi-
cloud services often depend on each other, a recoverytes the setup stage by creating a pipelii¢ and con-
problem in one service could permeate others, affecttinues with the data transfer stage), However, during
ing overall availability and reliability 7]. To conclude, the transfer stage, the third node crashes)( What
cloud systems facérequent multiple and diversefail-  Figure 1a shows is the correct behavior of data-transfer
ures B, 6, 7,9, 17]. Yet, recovery implementations are recovery. That is, the client recreates the pipeline by
rarely tested with complex failures and are not rigorouslyexcluding the dead node and continues transferring the
specified 4, 6]. bytes from the last good offseidp); a background repli-
cation monitor will regenerate the third replica.
2.2 Lens #2: Study of Bug/lssue Reports e Data-Transfer Recovery Bug: Figure 1b shows a
bug in the data-transfer recovery protocol; there is one
These anecdotes hint at the importance and complexspecific code segment that performs a bad error han-
ity of failure handling, but offer few specifics on how dling of failed data transfersa). This bug makes the
to address the problem. Fortunately, many open-sourcelient wrongly exclude the good node (Node2) and in-
cloud projects €.g, ZooKeeper 19, Cassandrad3], clude the dead node (Node3) in the next pipeline cre-
HDFS [33)) publicly share in great detail real issues en-ation (2b). Since Node3 is dead, the client recreates
countered in the field. Therefore, we performed an in-the pipeline only with the first nodesgc). If the first
depth study of HDFS bug/issue repor§.[ There are node also crashes at this point (a multiple-failure sce-
more than 1300 issues spanning 4 years of operationario), no valid blocks are stored. This implementation
(April 2006 to July 2010). We scan all issues and studybug reduces availabilityi.e., due to unmasked failures).
the ones that pertain to recovery problems due to hardvwe also found data-loss bugs in the append protocol due
ware failures. In total, there are 91 recovery issues withto multiple failures §6.2.7).
severe implications such as data loss, unavailability, core Setup-Stage Recovery: Finally, Figure 1c shows
ruption, and reduced performance (a more detailed dehow the setup-stage recovery is different than the data-
scription can be found in our technical repdr8]). transfer recovery. Here, the client first creates a pipeline



2 . ; 2.4.1 Failure Exploration
s2

— g0 X Developers are accustomed to easy-to-use unit-testing
s2b frameworks. For fault-injection purposes, unit tests are
e severely limited; a unit test often simulates a limited
(b) ® I, & number of failure scenarios, and when it comes to in-
—_ X - @ jecting multiple variety of failures, one common practice
s0a . is to inject a sequence odndomfailures as part of the
© IN[FF= ¢ : : X R unit test B, 35).
R1RTAT O O L To improve common practices, recent work has pro-
\ posed more exhaustive fault-injection frameworks. For
[ valid X crash ., setup example, the al.,lthOI‘S. of AFEX apd ITFI_opsgrve that the
block msg 0 number of possible failure scenarios is “infinit&Q 28].
-~ invalid —x network  __ data Thus, AFEX and LFI automatically prioritize “high-
""" block failure transfer

impact targets”€.g, unchecked system calls, tests likely
Figure 1: HDFS Write Recovery Protocol.  w, ¢,  to fail). So far, they target non-distributed systems and
R1/2, and numeric letters represent the namenode, client, rackdo not address multiple failures in detail.
number, and datanodes respectively. The client alwayssstar  Recent system model-checkers have also proposed the
the activity to the namenode first before to the datanodes.  addition of failures as part of the state exploration strate
gies R1, 37, 38, 39]. MobisT, for example, is capa-
from two nodes in Rack1 and one in Rack2). How-  ble of exercising different combinations of failuresd,
ever, due to the rack partitioning1), the client asks crashes, network failuresBgl. As we discuss later,
the namenode again for a new fresh pipelise); the  exploring multiple failures creates a combinatorial ex-
client has not transferred any bytes, and thus could staglosion problem. This problem has not been addressed
streaming from the beginning. After asking the namen-y the MopisT authors, and thus they provide a ran-
ode in several retries (not shown), the pipeline containglom mode for exploring multiple failures. Overall, we
only nodes in Racklsfb). At the end, all replicas only found no work that attempts to systematically explore
reside in one rack, which is correct because only one rackultiple-failure scenarios, something that cloud systems
is reachable during write3[]. face more often than other distributed systems in the

« Replication Monitor Bug: Although the previous case PastB, 9,17, 18],
is correct, it reveals a crucial design bug in the back-
ground replication monitor. This monitor unfortunately _ o )
only checks the number of replicas mgtthe locations. Failure injection addres;gs only half of the challengg in
Thus, even after the partitioning is lifted, the replicas ar '€COvery testing: exercising recovery code. In addition,
not migrated to multiple racks. This design bug greatlyPrOPer tests require specificationsexpected behavior

reduces the block availability if Rack1 is completely un- from those code paths. In the absence of such speci-
reachable (more if5.2.3. fications, the only behaviors that can be automatically

detected are those that interrupt testing (e.g. system fail
ures). One easy way is to write extra checks as part of
a unit test. Developers often take this approach, but the

within this protocol and other protocols. Without an ap- problem is there are many specifications to write, and if

propriate testing framework, it is hard to ensure recover)}hey are written in imperative languagesd, Java) the
code is bloated.

correctness; in one discussion of a newly proposed re= Some model checkers use existing consistency checks
covery design, a developer raised a comment: “l don't 9 y

see any proof of correctness. How do we know this willzucg a? fSCk.?’?]' a p?]welifuI:'ooI that .tc;])ntams hudn—
not lead to the same or other problemap [ reds of consistency checks. However, it has some draw-

backs. First, fsck is only powerful if the system is mature

enough; developers add more checks across years of de-

2.4 Current State of the Art: Does It Help?  velopment. Second, fsck is also often written in impera-
tive languages, and thus its implementations are complex

In the last three sections, we presented our motivatiorand unsurprisingly buggylp]. Finally, fsck can express

for powerful testing frameworks for cloud systems. A only “invariant-like” specificationsi(e., it only checks

natural question to ask is whether existing frameworkghe state of the file system, but not teeentsthat lead

can help. We answer this question in two parts: failureto the state). As we will see later, specifying recovery

exploration and system specifications. requires “behavioral” specifications.

2.4.2 System Specifications

To sum up, we have illustrated the complexity of re-
covery by showing how different failure scenarios lead
to different recovery behaviors. There are more problem



Another advanced checking approach is WiD3,[  (e.g, prioritizing non-similar failure scenarios first).
25, 38]. As the target system runs, WiDS interposes ande Numerous detailed recovery specificationsideally,
checks the system’s internal states. However, it employslevelopers should be able to write as many detailed spec-
a scripting language that still requires a check to be writ4fications as possible. The more specifications written,
ten in tens of lines of code2f, 25]. Furthermore, its the finer bug reports produced, the less time needed for
interposition mechanism might introduce another issuedebugging. To realize this, our framework must meet two
the checks are built by interposing specific implementarequirements. First, the specifications must be developer-
tion functions, and if these functions evolve, the checkdriendly (i.e., concise, fast to write, yet easy to under-
must be modified. The authors have acknowledged bustand). Otherwise, developers will be reluctant to invest
not addressed this issu24]. in writing specifications. Second, our framework must

Frameworks for declarative specifications exisig(  facilitate “behavioral” specifications. We note that ex-
Pip [32], P2 Monitor [34]). P2 Monitor only works if the isting work often focuses on “invariant-like” specifica-
target system is written in the same languagd.[ Pip  tions. This is not adequate because recovery behaves dif-
facilitates declarative checks, but a check is still writte ferently under different failure scenarios, and while re-
in over 40 lines on averag®Z%]. Also, these systems covery is still ongoing, the system is likely to go through
are not integrated with a failure service, and thus cannotransient states where some invariants are not satisfied.
thoroughly test recovery.

Overall, most existing work use approaches that could4 FATE: Failure Testing Service
result in big implementations of the specifications. Man-
aging hundreds of them becomes Compncated' and theW|th|n a distributed eXeCUtion, there are many pOintS
must also evolve as the system evolves. In practice, déi place and time where system components could fail.
velopers are reluctant to invest in writing detailed speci-Thus, our goal is to exercise failures more methodically

fications P], and hence the number of written specifica- than random approaches. To achieve this, we present
tions is typically small. three contributions: a failure abstraction for express-

ing failure scenarioss@.1), a ready-to-use failure ser-
3 Goal vice which can be integrated seamlessly to cloud sys-
oals tems §¢4.2), and novel failure prioritization strategies that

To address the aforementioned challenges, we presefiP€€d UP testing time by an order of magnitugied).

a new testing framework for cloud systemsaTE and
DESTINI. We first present our concrete goals here.

¢ Target systems and users\We primarily target cloud FATE’s ultimate goal is to exercise as many combinations
systems as they experience a wide variety of failures abf failures as possible. In a sense, this is similar to model
a higher rate than any other systems in the padl. [ checking which explores different sequences of states.
However, our framework is generic and applies to otherOne key technique employed in system model checkers
distributed systems. Our targets so far are HDBY,[ s to record the hashes of the explored states. Similarly
ZooKeeper 19 and Cassandra2f]. We mainly use in our case, we introduce the conceptfafure IDs, an
HDFS as our example in the paper. In terms of usersabstraction for failure scenarios which can be hashed and
we target experienced system developers, with the goakcorded in history. A failure ID is composed of an 1/O
of improving their ability to efficiently generate tests and ID and the injected failure (Tabl®). Below we describe
specifications. these subcomponents in more detail.

e Seamless integration:Our approach requires source e I/O points: To construct a failure ID, we choose 1/0
code availability. However, for adoptability, our frame- points {.e., system/library calls that perform disk or net-
work should not modify the code base significantly. Thiswork 1/Os) as failure points, mainly for three reasons.
is accomplished by leveraging mature interposition tech+irst, hardware failures manifest into failed 1/Os. Sec-
nology (.9, AspectJ). Currently our framework can be ond, from the perspective of a node in distributed sys-
integrated to any distributed systems written in Java.  tems, I/O points are critical points that either change its
e Rapid and systematic exploration of failures: Our internal states or make a change to its outside werlgl, (
framework should help cloud system developers exploralisks, other nodes). Finally, I/O points are basic oper-
multiple-failure scenarios automatically and more sys-ations in distributed systems, and hence an abstraction
tematically than random approaches. However, a combuilt on these points can be used for broader purposes.
plete systematic exploration brings a new challenge: a Static and dynamic information: For each 1/O point,
massive combinatorial explosion of failures, which takesan I/O ID is generated from the statie.g, system call,
tens of hours to explore. Thus, our testing frameworksource file) and dynamic informatioe., stack trace,
must also be equipped with smart exploration strategiesode ID) available at the point. Dynamic information

4.1 Failure IDs: Abstraction For Failures



1/0 ID Fields Values

. Instrumented HDFS .
Static  Func. call : OutputStream.flush() Workload Driver g - 9923 Fallure
. . . . while (server injects I

Source File :  BlockRecv.java (line 45) new failurelDs) {
Dynamic Stacktrace : (the stacktrace) runWorkload();

Node Id © Node2 /I ex: hdfs.write
Domain  Source : Node2 )
specific  Dest. : Nodel . ]

Net. Mesg. : Setup Ack Figure 2: FATE Architecture.

Failure ID = hash (I/O ID + Crash ) = 2849067135
ersto insert a failure surface.g, inside a system library

Table 1: A Failure ID. A failure ID comprises an I/O 1D or at the VMM layer). We do this between the target sys-

plus the injected failure (e.g., crash). Hash is used tom@  tem and the OS librarye(g, Java SDK), for two reasons.

failure ID. For space, some fields are not shown. First, at this layer, rich domain-specific information is
available. Second, by leveraging mature instrumentation

is useful to increase failure coverage. For example, retéchnology €.g, AspectJ), adding the surface requires

covery might behave differently if a failure happens in @ medification to the code base. . .
different nodesé.g, first vs. last node in the pipeline). The failure surface has two important jobs. First, at
e Domain-specific information: To increase failure €ach I/O point, it builds the I/O ID. Second, it needs to
coverage further, an I/O ID carries domain-specific in-checkif a persistent failure injected in the past affedts th

formation; a common 1/O point could write to different /O Point (.g, network partitioning). If so, the surface
file types or send messages to different nodesTER returns an error to emulate the failure without the need
interposition mechanism provides runtime information tO talk to the server. Otherwise, it sends the I/O ID to the

available at an 1/0 point such as the target 1&0y( file ~ Server and receives a failure decision.
names, IP addresses) and the 1/0 bufteg( network The workload driver is where the developer attaches

packet, file buffer). To convert these raw information the workload to be testee @, write, append, or some se-
into a more meaningful contexe. @, “Setup Ack” in Ta- ~ duence of operations, including the pre- and post-setups)
ble 1), FATE provides an interface that developers canand specifies the maximum number of failures injected
implement. For example, given an I/O buffer of a net- P€r run. As the workload runs, the failure server receives
work message, a developer can implement the code th© 1Ds from the failure surface, combines the 1/O IDs

reverse-engineers the byte content of the message into'§th possible failures into failure IDs, and makes fail-
more meaningful message typed, “Setup Ack”). If  ure decisions based on the failure history. The workload

the interface is empty, AFE can still run (the interface driver terminates when the server does not inject a new
returns an empty domain-specific string), but failure cov-failure scenario. The failure server, workload driver, and
erage could be sacrificed. target system are run as separate processes, and they can
« Possible failure modes: Given an I/O ID, ATE gen- P& run on single or multiple machines.

erates a list of possible fallur(.as. that cogld ha_lppen on thgf_z_2 Brute-Force Failure Exploration

I/O. For example, ETE could inject a disk failure on a _ _

disk write, or a network failure before a node sends aBYy default, FATE runs in brute-force mode. ThatisaFe
message. Currently, we support six failure types: crash$ystematically explores all possible combinations of ob-
permanent disk failure, disk corruption, node-level andserved failure IDs. (The algorithm can be found in our
rack-level network partitioning, and transient failure. T technical report13]). With this brute-force mode, ATE
create a failure 1D, one failure type appropriate to thehas exercised over 40,0@@iquecombinations of one,
/0 is selected one at a time (and hence, given an 1/0 IDtWO and three failure IDs. We address this combinatorial

FaTE could produce multiple failure IDs). explosion challenge in the next sectidd ).

4.2.3 Filters

FATE uses information carried in I/O and failure IDs to

We built FATE with a goal of quick and seamless inte- jmplementfilters at the server side. A filter can be used to
gration into our target systems. Figutelepicts the four  regenerate a particular failure scenario. For example, to
components of ETe: workload driver, failure surface, regenerate the failure described in Tabjea developer
failure server, and filters. could specify a filter that will only exercise the corre-
sponding failure ID. A filter could also be used to reduce
the failure space. For example, a developer could insert
We first instrument the target systemd, HDFS) by in-  a filter that allows crash-only failures, failures only on
serting a “failure surface”. There are many possible lay-some specific I/Os, or any failures only at datanodes.

4.2 Architecture

4.2.1 Workload Driver, Failure Surface, and Server
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Figure 3: Prioritization of Pairwise Dependent and Independent Failres.
4.3 Failure Exploration Strategy information (this is an acceptable assumption since we

are dealing with distributed systems where recovery es-

Running FRATE in brute-force mode is impractical and : . . : .
. : entially manifests into 1/0s). FiguBa illustrates some
time consuming. As an example, we have run the appen 7 .

combinations of dependent failure IDs. For example,

protocol with a filter that allows crash-only failures on is dependent od or D (i.e., F will never be observed un-
disk I/Os in datanodes. With this filter, injecting two fail- b L T . .
. . ; ; lessC or D is injected). The brute-force algorithm will
ures per run gives 45 failure IDs to exercise, which leads " .. . : . . 2
us to 1199 combinations that take more than 2 hours tmefﬂmently exercise all six possible combination,
run. Without the filter (e., including network 1/0s and E, CE, DECF angF. dent fail introd
other types of failures) the number will further increase.  1° prlorr1|t|ze epig ent a|burhe IDs, \l/ve Intro l;]ce a
This introduces the problem of exponential explosion ofSatedy that we caliecovery-behavior clusteringThe
multiple failures, which has to be addressed given thegoal is to prioritize “non-similar” failure scenarios first

fact that we are dealing with large code base where aH—hI? ||ntu(|;|on (;sﬁthat non-S|m|Iarbfa;:Iur_e scene(ljrlos typi-
experiment could take more than 5 seconds pereum ( (l;ahy ea to di berent recovery:j ehaviors, an re(:]co;/glry
due to pre- and post-setup overheads). ehaviors can be represented as a sequence of failure

Among the 1199 experiments, 116 failed; if recoveryIDS' Thus, to perfqrm the cl_ustering, we first run a com-
is perfect, all experiments should be successful. DebugP!ete Set of experiments witbnly onefailure per run,
ging all of them led us to 3 bugs as the root causes. NowA"d I €ach run we record tisebsequerfailure IDs.
we can concretely define the challenggan FATE ex- We formally define subsequent failure IDs as all ob-
ercise a much smaller number of combinations and finds€rved IDs after the injected failure up to the point where
distinct bugs faster?This section provides some solu- the system enters thgtable state That is, recording re-
tions to this challenge. To the best of our knowledge, weFOVery only up to the end of the protocd.g, write)
are the first to address this issue in the context of disiS Not enough. This is because a failed I/O could leave
tributed systems. Thus, we also hope that this challenggome “garbage” that is only cleaned up by some back-
attracts system researches to present other alternativesground protocols. For example, a failed I/O could leave

To address this challenge, we have studied the prop? Plock with an old generation timestamp that should be
erties of multiple failures (for simplicity, we begin with cleaned up by the background replication monitor (out-
two-failure scenarios). A pair of two failures can be cate-Side the scope of the write protocol). Moreover, different
gorized into two typespairwise dependerndpairwise failures cpuld leave different typgs of garbage, and thus
independentailures. Below, we describe each category!€ad to different recovery behaviors of the background
along with the prioritization strategies. Due to space con.Protocols. By capturing subsequent failure IDs until the
straints, we could not show the detailed pseudo-code, angfable state, we ensure more fine-grained clustering.
thus we only present the algorithms at a high-level. We The exact definition of stable state might be different
will evaluate the algorithms in Sectidh3. We also em- across different systems. For HDFS, our definition of
phasize that our proposed strategies are built on top o$table state is: &TE reboots dead nodes if any, removes
the information carried in failure IDs, and hence displaytransient failuresg.g, network partitioning), sends com-

the power of failure IDs abstraction. mands to the datanodes to report their blocks to the na-
o _ menode, and waits until all datanodes receive a null com-
4.3.1 Pairwise Dependent Failures mand {.e., no background jobs to run).

A pair of failure IDs is dependent if the second ID is  Going back to FigureSa, the created mappings be-
observedonly if the failure on the first ID idgnjected  tween the first failures and their subsequent failure IDs
observing the occurrence of a failure ID does not necesare: {A— E}, {B— E}, {C— E, F}, and{D— E, F}. The
sarily mean that the failure must be injected. The keyrecovery behaviors then are clustered into ty®}, and
here is to use observed 1/Os to capture path coveraggE, F}. Finally, for each recovery cluster, we pick only



one failure ID on which the cluster is dependent. The fi-for exploring failures. KBTE is also equipped with pri-
nal prioritized combinations are marked with bold edgesoritization strategies that prioritize failure scenartoat

in Figure3a. That is, ARTE only exercisesAE, CE, and  result in distinct recovery actions. Our approaches are
CF. Note thatE is exercised as a second failure twice be-not sound; however by experience, all bugs found with

cause it appears in different recovery clusters. brute-force are also found with prioritization (more in
§6.3). If developers have the time and resources, they
4.3.2 Pairwise Independent Failures could fall back to brute-force mode for more confidence.

A pair of failure IDs is independent if the second ID is fSOI far, we haye only eﬁplained our ?Ig(()jritﬂms for tr\:vo-
observed even if the first ID inot injected. This case allure scenarios. We have generalized them to three-

is often observed when the same piece of code runs i;‘.f:\ilure, but cannot pre_ser_lt them dug to space constraints.
parallel, which is a common characteristic found in dis-One fundamental limitation .OTAEFE 'S.the absence of
tributed systemsg( g, two phase commit, leader election, /o _reorderln_g B8, and thus it is possmle that_some or
HDFS write and append). FiguBb illustrates a scenario denngs of failures are not exermsgd. Adopting .relzlated
where the same 1/0 pointsandB are executed concur- f[echnlques from existing worl3p] will be be beneficial
rently in three noded.€., A1, A2, A3, B1, B2, B3). Let’s Inour case.

name these two I/O pointsandB as static failure points, ) )

or SFP in short (as they exclude node ID). With brute- 5 DESTINI : Declarative Testing

force exploration, ETE produces 24 combinations (the e :

12 bi-directional edges in Figuigb). In more general, Sp@CIfIC&tIOI’]S

there areS P2 x N (N — 1) combinations, wher&/ and  agter failures are injected, developers still need to check
SFP are the number of nodes and static failure points refor system correctness. As described in the motivation
spectively. To reduce this quadratic growth, we introduce(s2 4, DesTINI attempts to improve the state-of-the-
two levels of prioritization: one for reduciny (N — 1) art of writing system specifications. In the following
and the other foS " P?. sections, we first describe the architectu§g.q), then
ToreduceV (N —1), we leverage the property 8fm-  present some examplei(2), and finally summarize the
metric code(i.e, the same code that runs concurrently advantages§6.3. Currently, we target recovery bugs
in different nodes). Because of this property, if a pairthat reduce availability g.g, unmasked failures, fail-
of failures has been exercised at two static failure pointstop) and reliability ¢.g, data-loss, inconsistency). We

of two specific nodes, it is not necessary to exercise thgeave performance and scalability bugs for future work.
same pair for other pairs of nodes. For example1i2

has been exercised, it is not necessary to\nBs, A2B1, 5.1 Architecture

A2B3, and so on. As a result, we have reduéédv — 1)

(i.e., any combinations of two nodes) to just one(a At the heart of IESTINI is Datalog, a declarative rela-

pair of two nodes); théV does not matter anymore. tional logic language. We chose the Datalog style as it
Although the first level of reduction is significant, has been successfully used for building distributed sys-

FATE still hits the S F P2 bottleneck as illustrated in Fig- tems B, 26] and for verifying some aspects of system

ure3c. Here, instead of having two static failure points, correctnesse.g, security 12, 31]). Unlike much of that

there are four, which leads to 16 combinations. To re-work, we are not using Datalog to implement system in-

duceSF P2, we utilize the behavior clustering algorithm ternals, but only to write correctness specifications that

used in the dependent case. That is, if injecting failureare checked relatively rarely. Hence we are less depen-

ID A1 results in the same recovery behavior as in inject-dent on the efficiency of current Datalog engines, which

ing B1, then we cluster them togethére(, only one of  are still evolving B].

them needs to be exercised). Put simply, the goal is to In terms of the architecture, B3 TINI is designed such

reduceSF P to SF P.jystereq, Which will reduce the in-  that developers can build specifications from minimal in-

put to the quadratic explosior.g, from 4 to 2 resulting  formation. To supportthis, BsTINIcomprises three fea-

in 4 uni-directional edges as depicted in Figcd. In  tures as depicted in Figure First, it interposes network

practice, we have seen a reduction from fift€giP to ~ and disk protocols and translates the available informa-

eight SFP.iustered- tion into Datalog events(g, cnpEv). Second, it records
failure scenarios by havingafe inform DESTINI about
4.4 Summary failure events€.g, fateEv). This highlights that ETE

and DesTINI must work hand in hand, a valuable prop-
We have introducedATE, a failure testing service capa- erty that is apparent throughout our examples. Finally,
ble of exploring multiple, diverse failures in systematic basedonly on events, it records facts, deduces expecta-
fashion. IRTE employs failure IDs as a new abstraction tions of how the system should behave in the future, and



5.2.1 Specifying Data-Transfer Recovery

DESTINI

stateY(..)  cnpEv(..), stateX(..); DEesTINI facilitates five important elements of recovery

specifications: checks, expectations, facts, precise fail
fateEv(...)T ure events, and check timings. Here, we present these
3 elements by specifying the data-transfer recovery proto-
N , /LD_] FATE ' col (Figurela); this recovery is correct if valid replicas
are stored in the surviving nodes of the pipeline.
e Checks: To catch violations of data-transfer recov-

Figure 4: DESTINI Architecture. ery, we start with a simple high-leveheck(al), which
says “upon block completion, throw an error if there is
compares the two. a node that is expected to store a valid replica, but actu-

ally does not.” This rule shows how a check is composed
of three elements: thexpectatior(expectedNodes), fact
(actualNodes), andcheck timing(canomplete).
In DESTINI, specifications are formally written as Data- e Expectations: The expectationekpectedNodes) is de-
log rules. A rule is essentially a logical relation: duced from protocol eventa2-a8). First, without any
failure, the expectation is to have the replicas in all the
nodes in the pipelinea@); information about pipeline
nodes are accessible from the setup reply from the na-
This Datalog rule consists of a head tabler{) menode to the cliena@). However, if there is a crash,
and predicate tables in the bodynfEv and statey). the expectation changes: the crashed node should be re-
The head is evaluated when the body is true. Tu-moved from the expected nodesd). This implies that
ple variables begin with an upper-case letter)( A  an expectation is also basedfailure events
don't care variable is represented with an underscore Failure events: Failures in different stages result in
(). A comma between predicates represents conjunddifferent recovery behaviors. Thus, we must know pre-
tion. “:="is for assignments. We also provide some cisely when failures occur. For data-transfer recovery,
helper libraries §til.strLib() to manipulate strings). we need to capture the current stage of the write pro-
Lower case variablesifg) represent integer or string cess and only change the expectation if a crash occurs
constants. All upper case lettengo({-1n) are Datalog within the data-transfer staggdteCrashNode happens
keywords. Events are in italic. To help readers trackatstg==2 in rule a4). The data transfer stage is deduced
where events originate from, an event name begins within rulesa5-a8: the second stage begins after all acks from
one of these labelscnp, dnp, cdp, ddp, fs, which  the setup phase have been received.
stand for client-namenode, datanode-namenode, client- Before moving on, we emphasize two important ob-
datanode, datanode-datanode, and file system protocodervations here. First, this example shows hower
respectively (Figurd). Non-event (non-italic) heads and and DesTiNI must work hand in hand. That is, recovery
predicates are essentially database tables with primarypecifications require a failure service to exercise them,
keys defined in some schemas (not shown). A table thaind a failure service requires specifications of expected
starts witherr represents an error.¢,, if a specification  failure handling. Second, with logic programming, de-
is broken, the error table is non-empty, implying the ex-velopers can easily build expectations only from events.

5.1.1 Rule Syntax

errX(P1,P2,P3) :- cnpEv(P1), NOT-IN stateY(P1,P2,_),
P2 == img, P3 := Util.strLib(P2);

istence of one or more bugs). e Facts: The fact GctualNodes) is also built from events
(a9-al6); specifically, by tracking the locations of valid
5.2 DESTINI Examples replicas. A valid replica can be tracked with two pieces

of information: the block’s latest generation time stamp,
This section presents the powerful features afsbini ~ which DESTINI tracks by interposing two interfaceaq
via four examples of HDFS recovery specifications. Inandal0), and meta/checksum files with the latest genera-
the first example, we present five important componentﬁon timestamp, which are obtainable from file operations
of recovery specification$$.2.1). To help simplify the (all-al5. With this information, we can build the run-
complex debugging process, the second example showine fact: the nodes that store the valid replicas of the
how developers can incrementally add tighter specificablock @16).
tions §5.2.2. The third example presents specificationse Check timings: The final step is to compare the ex-
that incorporate a different type of failure than the first pectation and the fact. We underline that the timing of
two examplesd5.2.3. Finally, we illustrate how devel- the check is important because we are specifyaugpv-
opers can refine existing specificatiofs.@.4. ery behaviors unlike invariants which must be true at



Section5.2.1 Data-Transfer Recovery Specifications
al errDataRec (B, N) cnpComplete (B), expectedNodes (B, N), NOT-IN actualNodes (B, N);
a2 pipeNodes (B, Pos, N) cnpGetBlkPipe (UFile, B, Gs, Pos, N);
a3 expectedNodes (B, N) pipeNodes (B, Pos, N);
ad DEL expectedNodes (B, N) fateCrashNode (N), pipeStage (B, Stg), Stg == 2,
expectedNodes (B, N);
a5 setupAcks (B, Pos, Ack) cdpSetupAck (B, Pos, Ack);
a6 goodAcksCnt (B, COUNT<Ack>) setupAcks (B, Pos, Ack), Ack == ’0K’;
a7 nodesCnt (B, COUNT<Node>) pipeNodes (B, _, N, .);
a8 pipeStage (B, Stg) :— nodesCnt (NCnt), goodAcksCnt (ACnt), NCnt == Acnt, Stg := 2;
a9 blkGenStamp (B, Gs) :=  dnpNeztGenStamp (B, Gs);
al0  blkGenStamp (B, Gs) - cnpGetBlkPipe (UFile, B, Gs, _, );
all diskFiles (N, File) :=  fsCreate (N, File);
al2 diskFiles (N, Dst) :=  fsRename (N, Src, Dst), diskFiles (N, Src);
al3 DEL diskFiles (N, Src) :=  fsRename (N, Src, Dst), diskFiles (N, Src);
ald fileTypes (N, File, Type) :— diskFiles(N, File), Type := Util.getType(File);
al5 blkMetas (N, B, Gs) :- fileTypes (N, File, Type), Type == metafile,
B := Util.getBlk(File), Gs := Util.getGs(File);
alé actualNodes (B, N) :- blkMetas (N, B, Gs), blkGenStamp (B, Gs);
Section5.2.2 Tighter Specifications for Data-Transfer Recovery
bl errBadAck (Pos, N) :=  cdpDataAck (Pos, ’Error’), pipeNodes (B, Pos, N), liveNodes (N);
b2 liveNodes (N) :=  dnpRegistration (N);
b3 DEL 1liveNodes (N) :=  fateCrashNode (N);
b4 errBadConnect (N, TgtN) :=  ddpDataTransfer (N, TgtN, Status), liveNodes (TgtN),
Status == terminated;
Section5.2.3 Rack-Aware Policy Specifications
cl warnSingleRack (B) :- rackCnt (B, 1), actualRacks (B, R), connectedRacks (R, OtherR);
c2 actualRacks (B, R) :- actualNodes (B, N), nodeRackMap (N, R);
c3 rackCnt (B, COUNT<R>) :- actualRacks (B, R);
cd DEL connectedRacks (R1, R2) :- fatePartitionRacks (R1, R2);
c5 erriRackOnCompletion (B) :=  cnpComplete (B), warnSingleRack (B);
c6 erriRackOnStableState (B) :—  fateStableState (_), warnSingleRack (B);
Section5.2.4 Refining Log-Recovery Specifications
d1 errLostUFile (UFile) :— expectedUFile (UFile), NOT-IN ufileInNameNode (UFile);
d2 ufileInNameNode (UFile) ** :- ufileInNnFile(F, NnFile), (NnFile == img || NnFile == log ||
NnFile == img2);
d3 ufileInNameNode (UFile) :- ufileInNnFile (F, img2), logRecStage (Stg), Stg == 4;
44 ufileInNameNode (UFile) :— ufileInNnFile (F, img) , logRecStage (Stg), Stg != 4;
1) ufileInNameNode (UFile) :— ufileInNnFile (F, log) , logRecStage (Stg), Stg != 4;

Table 2: Sample Specifications. The table lists all the rules we wrote to specify the problémSection5.2; RulesaX, bX,
cX, anddx are for Section$.2.1 5.2.2 5.2.3 and5.2.4respectively. All logical relations are built only from eus (in italic). The
shaded rows indicate checks that catch violations. A chielyes starts witherr. Tuple variables, Gs, N, Pos, R, Stg, NnFile,
andUFile are abbreviations for block, generation timestamp, nodsijton, rack, stage, namenode file, and user file respdgtive
others should be self-explanatory. Each table has primaggidefined in a schema (not showri}.) Ruledz2 is refined ind3 to
d5; these rules are described more in our short papbf][



all time. Not paying attention to this will result in false _Time, Events, and Errors

Warnings (_e_' there is a period of time when recovery is tl: Client asks the namenode for a block ID and the nodes.
ongoing and specifications are not met). Thus, we need cnpGetBlkPipe (usrFile, blkx, gsi, 1, N1);
precise events to signal check times. In this example, the ~ c"PGetBlkPipe (usrFile, blkx, gsi, 2, N2);

. . . . cnpGetBlkPipe (usrFile, blk_x, gsl, 3, N3);
check time s at block completiorpConplete in al). t2: Setup stage begins (pipeline nodes setup the files).

5.2.2 Debugging with Tighter Specifications fsCreate (N1, tmp/blk_x_gsl.meta);
fsCreate (N2, tmp/blk_x_gsl.meta);
The rules in the previous section capture the high-level fsCreate (N3, tmp/blk_x_gsl.meta);
objective of HDFS data-transfer recovery. After we ran t3: Client receives setup acks. Data transfer begins.
FATE to cover the first crash scenario in Figulde (for cdpSetupAck (blkx, 1, OK);
simplicity of explanation, we exclude the second crash), cdpSetupAck (blkx, 2, 0K);
rule al throws an error due to a bug that wrongly ex- cdpSetupAck (blk.x, 3, 0K);
cludes the good second node (Figdtein §2.3. Al- t4: FATE crashes N3Got error (b4).

fateCrashlNode (N3);
errBadConnect (N1, N2); // should be good
t5: Client receives an errorneous ackot error (b1).
cdpDatadck (2, Error);
errBadAck (2, N2); // should be good
t6: Recovery begins. Get new generation time stamp.

though the check unearths the bug, it doespinpoint
the bug (.e., answemwhythe violation is thrown).

To improve this debugging process, we added more
detailed specifications. In particular, from the events tha
DESTINI logs, we observed that the client excludes the

second node in the next pipeline, which is possible if the dnpleztGenStamp (blk x, gs2);
client receives a bad ack. Thus, we wrote another check7: Only N1 continues and finalizes the files.
(b1) which says “throw an error if the client receives a fsCreate (N1, tmp/blk_x_gs2.meta);
bad ack for a live node”h1's predicates are specified fsRename (N1, tmp/blk x_gs2.meta,
in b2 andb3). Note that this check is written from the current/blk_x_gs2.meta) ;
client’s view while ruleal from theglobal view t8: Client marks completionGot error (a1).
The new check catches the bug closer to the source. cnpComplete (blkx);
but also raises a new question: Why does the client re errDataRec (blkx, N2); // should exist

ceive a bad ack for the second node? One logical exTgple 3: A Timeline of DESTINI Execution.  The
planation is because the first node cannot communicatgpe shows the timeline of runtime events (italic) and ero
to the second node. Thus, we ea3|!y added many checkShaded). Tighter specifications capture the bug earlier in
that cat(?h ur}expected bad connections sudiashich ~ time. The tuples (strings/integers) are real entries (ratable
finally pinpoints the bug: the second node, upon seeing,ames). For space, we do not show block-file creations (but
a failed connection to the crashed third node, incorrectly, . meta files) nor how the rules in Table are populated.
closes the streams connected to the first node; note that
this check is written from thdatanode’s view

In summary, more detailed specifications prove to bea minimum of two available racks. But, if only one rack
valuable for assisting developers with the complex de- ' '

bugging process. This is unlikely to happen if a check!s reachable, it is acceptable to use one rack temporar-

. T . ily. To express this, rulel throws a warning if a block’s
implementation is long. But with BsTINI, a check can Y P N 9

. . rack could reach another rack, but the block’s rack count
be expressed naturally in a small number of logical re-

. ) 4 is one (rulex2-c4 provide topology information, which
Ia_t|ons. Moreover, checks can be written from dn‘f_erentis initialized when the cluster starts and updated when
views (e.g, global, client and datanode as showraih

b1, b4 respectively). Tabl@ shows a timeline of when FATE creates a rack partition). This warning becomes a

; : . hard erroronlyif it is true upon block completio or
these various checks are violated. As shown, tighter y b P o)

. . . . stable stategf). Note again how these timings are im-
specifications essentially fill the “explanation gaps” be- o) g g

. . . ortantto preventfalse errors; while recovery is ongoing,
;Vﬁg:;he injected failure and the wrong final state of theFeplicas are still being re-shuffled into multiple racks.

With these checks, BsTINI found the bug in Fig-
ure 1c (§2.3), a critical bug that could greatly reduce
In this example, we write specifications for the HDFS availability: all replicas of a block are stored in a sin-
rack-aware replication policy, an important policy for gle rack. Note that the bug does not violate the comple-
high availability [LO, 33]. Unlike previous examples, this tion rule (because the racks are still partitioned). But, it
example incorporates network partitioning failure mode.does violate the stable state rule because even after the
According to the HDFS architect83], the write pro-  network partitioning is removed, the replication monitor
tocol should ensure that block replicas are spread acrostoes not re-shuffle the replicas.

5.2.3 Specifying Rack-Aware Replication Policy



5.2.4 Refining Specifications prioritization strategiess6.3), the number of specifica-
tions we have written and their reusabilitye(4), the
number of new bugs we have found and old bugs repro-
duced £6.5), and the implementation complexityg.6).
Since we currently only test reliability (but not per-
rmance), it is sufficient to runATe, DESTINI, and the

In the second exampl&gq.2.2, we demonstrated how
developers camcrementally addletailed specifications.
In this section, we briefly show how developers ozine

existing specifications (an extensive description can b?o

found in our short papedf]). ) o
Here, we specify the HDFS log-recovery process infarget systems as separate processes on asmgle machine;

order to catch data-loss bugs in this protocol. The high_network and disk failures are emulated (manifested as

level check @1) is fairly simple: “a user file is lost if it Java I/O exceptions), and crashes are emulated with pro-

does not exist at the namenode.” To capture the facts, wieSS crashes. NeyerthelessTEand DESTINI can run

wrote ruled2 which says at any time user files should On separate machines.

exist in the union of all the three namenode files used in

log recovery.” With these rules, we found a data-loss bug®-1 ~ Target Systems and Protocols

that accidentally deletes the metadata of user files. BURN

the error is only throwrat the endof the log recover € have integratedA7E and DESTINI to three cloud
r y W . g Very. systems: HDFS33] v0.20.0 and v0.20.2+320 (the latter
processi(e., the rules are not detailed enough to pinpoint

. . . is released in Feb. 2010 and used by Cloudera and Face-
the bug). We then refined rul to reflect in detail the i
four stages of the proces$3to d5). That is, depending book), ZooKeeper]9] v3.2.2 (Dec. 2009), and Cassan

on the stage, user files are expected to be in a diI"ferenqral P9 v0.6.1 (Apr. 2010). We have run our _frame-
work on four HDFS workloads (log recovery, write, ap-

subset of the three files. With these refined specifications o .

the data-loss b as captured in between stage 3 and end, and replication monitor), one ZooKeeper work-
ugw puredt W 9 ad (leader election), and one Cassandra workload (key-

value insert). In this paper, we only present exten-

5.3 Summary of Advantages sive evaluation numbers for HDFS. For Cassandra and

Throughoutthe examples, we have shown the advantagé0Keeper, we only present partial results.
of DESTINI: it facilitates checks, expectations, facts,

failure events, and precise timings; specifications can b&.2 Multiple-Failure Bugs

written from different views €.g, global, client, datan-
ode); different types of violations can be specifiedy(
availability, data-loss); different types of failures dam
incorporated €.g, crashes, partitioning); and specifica-
tions can be incrementally added or refined. Overal
the resulting specifications are clear, concise, and pre-
cise, which potentially attracts developers to write many6'2'1 Append Bugs

specifications to ease complex debugging process. ANVe begin with a multiple-failure bug in the HDFS ap-
of these are feasible due to three important propertiepend protocol. Unlike write, append is more complex
of DESTINI: the interposition mechanism that translatesbecause it must atomically mutate block replicag] [

disk and network events; the use of relational logic lan-HDFS developers implement append with a custom pro-
guage which enables us to deduce complex states onlycol; their latest append design was written in a 19-page
from events; and the inclusion of failure events from thedocument of prose specification2?]. Append was fi-
collaboration with BTE.  Besides these advantages, nally supported after being a top user demand for three
adopting DESTINI requires one major effort: develop- years B6]. As a note, Google FS also supports append,
ers need to reverse-engineer raw /O informatiery{  but its authors did not share their internal desity@ [

I/0 buffer, stack trace) collected from the Java-based in- |n the experiment setup, a block has three replicas in
terposition mechanism into semantically-richer Datalogthree nodes, and thus should survive two failures. On
events €.9, cnpComplete). However, we hope that this append, the three nodes form a pipeline. N1 starts a
effort will also be useful for other debugging techniquesthread that streams the new bytes to N2 and then N1 ap-

The uniqueness of our framework is the ability to explore
multiple failures systematically, and thus catch corner-
case multiple-failure bugs. Here, we describe two out of
Lfive multiple-failure bugs that we found.

that need detailed I/O information. pends the bytes to its block. N2 crashes at this point, and
N1 sends a bad ack to the client, but does not stop the
6 Evaluation thread. Before the client continues streaming via a new

pipeline, all surviving nodes (N1 and N3) must agree on
We evaluate KTE and DESTINI in several aspects: the the same block offset (themcoffset process). In this
general usability for cloud system$6(1), the ability to  process, each node stops the writing thread, verifies that
catch multiple-failure bugs§6.2), the efficiency of our the block’s in-memory and on-disk lengths are the same,



broadcasts the offset, and picks the smallest offset. How- _Workload #F STR #EXP ~ FAIL  BUGS

ever, N1 might have not updated the block’s in-memory ~ Append 2 BF 1199 116 3
length, and thus throws an exception resulting in the new PR 2 17 3
pipeline containing only N3. Then, N3 crashes, and the APpend 3 PBFE 7gfg 36?;’ 2
pipeline is empty. The append fails, but worse, the block :

. . . “ p . . Write 2 BF 524 120 2
in N1 (still alive) becomes “trapped1.¢., inaccessible). PR 49 57 5
After FATE ran all the background protocols.§, lease Write 3 BF 3991 911 =

recovery), the block is still trapped and permanently in- PR 333 82 *o
accessible. We have submitted a fix for this b2 [

o _ _ Table 4: Prioritization Efficiency. The columns from left
6.2.2 Combinations of Different Failures to right are the number of injected failures per run (F), expl

We have also found a new data-loss bug due to a sg@tion strategy (STR), combinations/experiments (EXaHed
quence oflifferentfailure modes, more specifically, tran- experiments (FAIL), and bugs found (BUGS). BF and PR stands
sient disk failure (#1), crash (#2), and disk Corruptionfor brute-force and prioritization respectively. Note thhe
(#3) at the namenode. The experiment setup was that tH1g counts are only due to two and three failures and depend
namenode has three replicas of metadata files on thred the filter (i.e., there are more bugs than shown).Bugs in
disks, and one disk is flaky (exhibits transient failuresthree-failure experiments are the same as in two-failureson
and corruptions). When users store new files, the nat ") This high number is due to a design bug; we used triaging
menode logs them to all the disks. If a digkq, Disk1) o help us classify the bugs (not shown).

returns a transient write error (#1), the namenode will ex- . .
clude this disk; future writes will be logged to the other IS that the latter is the same for brute-force and prior-
two disks (.e., Disk1 will contain stale data). Then, the !lization. Tabled shows the result of running the two
namenode crashes after several updates (#2). When tMerkloads with two and three failures per run, and with

namenode reboots, it will load metadata from the disk? llghtweight filter (crash-only failures on disk 1/Os in

that has the latest update time. Unfortunately, the file thafi@t@nodes); without this filter, the number of brute-force

carries this information is not protected by a checksum EXPeriments is too large to debug. In short, the table

Thus, if this file is corrupted (#3) such that the updateShOWS that our prioritization strategies reduce the total
time of Disk1 becomes more recent than the other twolUmber of experiments by an order of magnitude (the

then the namenode will load stale data, and flush the stalfgsting time for the workloads in Tabieis reduced from

data to the other two disks, wiping out all recent updates2® hours to 2.5 hours). - In addition, from our experience

One could argue that this case is rare, but cloud-scale dé° bugs are missing. Again, we cannot prove that our
ployments cause rare bugs to surface; a similar case @PProach is sound; developers could fall back to brute-

corruption did occur in practice]. Moreover, data-loss orce for more confidence. Tabiealso highlights the
bugs are serious one27, 29, 30]. exponential explosion of combinations of multiple fail-

ures; the numbers for three failures are much higher than
6.3 Prioritization Efficiency those for two failure;e(.g, 7720 vs. 1119). So fqr, we
only cover up to 3 failures, and our techniques still scale

When RATE was first deployed without prioritization, we  yeasonably welli(e., they still give an order of magni-
exercised over 40,000 unique combinations of failuresy,de improvement).

which combine into 80-hour of testing time. Thousands
of experiments failed (probably only due to tens of bugs).6
Although 80 hours seems a reasonable testing time to un-
earth crucial reliability bugs, this long testing time only In the last six months, we have written 74 checks on top
covers several workloads; in reality, there are more work-of 174 rules for a total of 351 lines (65 checks for HDFS,
loads to test. In addition, as developers modify their2 for ZooKeeper, and 7 for Cassandra). We want to em-
code, they likely to prefer faster turn-around time to find phasize that(% ratio displays how BSTINI empow-

new bugs from their new changes. Overall, this long testers specification reuse€., building more checks on top
ing is an overwhelming situation, but which fortunately of existing rules). As a comparison, the ratio for our first
unfolds into a good outcome: new strategies for multiple-check §5.2.1in Table2) is 16:1, but the ratio now is 3:1.
failure prioritization. Table 5 compares BSTINI with other related work.

To evaluate our strategies, we first focused only on twaoT he table highlights that BsTiNI allows a large number
protocols (write and append) because we need to connf checks to be written in fewer lines of code. We want to
pare the brute-force with the prioritization results. More note that the number of specifications we have written so
specifically, for each method, we count the number offar only represents six recovery protocols; there are more
combinations and the number of distinct bugs. Our hopéhat can be specified. As time progresses, we believe the

4 Specifications



Type Framework #Chks Lines/Chk 6.5 New Bugs and Old Bugs Reproduced
S/l D3S P4 10 53

D/l Pip[32] 44 43 We have tested HDFS for over eight months and sub-
S/l WiDS [25] 15 29 mitted 16 new bugs, out of which 7 uncovered design
D/D P2 Monitor B4] 11 12 bugs {.e., require protocol modifications) and 9 uncov-

D/’ DESTINI 74 5 ered implementation bugs. All have been confirmed by

the developers. For Cassandra and ZooKeeper, we ob-
Table 5: DESTINI vs. Related Work. The table com- served some failed experiments, but since we do not have
paresDESTINIwith related work. D, S, and | represent declar- the chance to debug all of them, we have no new bugs to
ative, scripting, and imperative languages respectiv&iy. im- report.
plies specifications in X language for systems in Y language. To further show the power of our framework, we ad-
We divide existing work into three classes (S/I, D/D, D/I). dress two challenges: Canfe reproduce all the failure
scenarios of old bugs? CareBTINI facilitate specifica-
simplicity offered by DEsTINI will open the possibility tions that catch the bugs? Before proposing our frame-
of having hundreds of specifications along with more re-work for catching unknown bugs, we wanted to feel con-
covery specification patterns. fident that it is expressive enough to capture known bugs.
To show how our style of writing specifications is ap- We went through the 91 HDFS recovery issug8.2)
plicable to other systems, we present in more detail som@nd selected 74 that relate to our target worklo§6sl.

specifications we wrote for ZooKeeper and Cassandra. FATE is able to reproduce all of them; as a proof, we

have created 22 filters (155 lines in Java) to reproduce all
6.4.1 ZooKeeper the scenarios. Furthermore, we have written checks that

could catch 46 old bugs; since some of the old bugs have
We have integrated our framework to ZooKeepE¥]{  been fixed in the version we analyzed, we introduced ar-
We picked two reported bugs in the version we analyzediificial bugs to test our specifications. For ZooKeeper and
Let's say three nodes N1, N2, and N3, participate in aCassandra, we have reproduced a total of five bugs.
leader election, aniti(N1) < id(N2) < id(N3). If N3

crashes at any pointin this process, the expected behavi .

is to have N1 and N2 form a 2-quorum. However, there is%r'6 FATE and DESTINI Complexity
a bug that does not anticipate N3 crashing at a particulagate comprises generic (workload driver, failure server,
point, which causes N1 and N2 to continue nominatingfajlure surface) and domain-specific parts (workload
N3 in ever-increasing rounds. As a result, the electionyriver, 1/0 IDs). The generic part is written in 3166 lines
process never terminates and the cluster never becomgs java. The domain-specific parts are 422, 253, and
available. To catch this bug, we wrote an invariant vio- 357 |ines for HDFS, ZooKeeper and Cassandra respec-
lation “a node chooses a winner of a round without en-jyely: the part for HDFS is bigger because HDFS was
suring that the chosen leader has in itself voted in theyr first target. EsTINI'S implementation cost comes
round.” The other bug involves multlp|e failures and Canfrom the translation mechanisr@al)' The generic part

be caught with an addition of just one check; we reusqs 506 lines. The domain-specific parts are 732 (more
rules from the first bug. So far, we have written 12 rulescomplete), 23, and 35 lines for HDFS, ZooKeeper, and

for ZooKeeper. Cassandra respectivelyaE and DESTINI interpose the
target systems with AspectJ (no modification to the code
6.4.2 Cassandra base). However, it was necessary to slightly modify the

We have also done the same for Cassané@} [and systems (less than 100 I!nes) for two purposes. defer-
. i . ring background tasks while the workload is running and
picked three reported bugs in the version we analyzed. In :

. sending stable-state commands.
Cassandra, the key-value insert protocol allows users to
specify a consistency level such @s:, quorum, Or all,
which ensures that the client waits until the key-value7  Conclusion and Future Work
has been flushed on at least one, N/2 + 1, or all N nodes
respectively. These are simple specifications, but agaiffhe scale of cloud systems — in terms of both infrastruc-
due to complex implementation, bugs exist and break théure and workload — makes failure handling an urgent
rules. For example, at level1, Cassandra could incor- challenge for system developers. To assist developers in
rectly return a success even when only one replica haaddressing this challenge, we have presentetk fand
been completed. ATE is able to reproduce the failure DESTINI as a new framework for cloud recovery testing.
scenarios and BsTINI is equipped with 7 checks (in 12 We believe that developers need boiTE and DESTINI

rules) to catch consistency-level related bugs. as a unified framework: recovery specifications require



a failure service to exercise them, and a failure servicg13]
requires specifications of expected failure handling.

Beyond finding problems in existing systems, we be-
lieve such testing is also useful in helping to generat

: . 14]

new ideas on how to build robust, recoverable systems:.
For example, one new approach we are currently inves-
tigating is the increased use péssimisnto avoid prob- [15]
lems during recovery. For example, HDFS lease recov-
ery would have been more robust had it not trusted as[—m]
pects of the append protocol to function correctl§.p).
Many other examples exist; only through further care-[17]
ful testing and analysis will the next generation of cloudjig]

systems meet their demands. (16]
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