
The following paper was originally published in the
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation

New Orleans, Louisiana, February, 1999

For more information about USENIX Association contact:

1. Phone: 1.510.528.8649
2. FAX: 1.510.548.5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Tapeworm: High-Level Abstractions of Shared Accesses

Peter J. Keleher
University of Maryland

Tapeworm: High-Level Abstractions of Shared Accesses

Peter J. Keleher
keleher@cs.umd.edu

Department of Computer Science
University of Maryland

College Park, MD 20742

We describe the design and use of thetapemechanism,
a new high-level abstraction of accesses to shared data
for software DSMs. Tapes can be used to “record”
shared accesses. These recordings can be used to pre-
dict future accesses. Tapes can be used to tailor data
movement to application semantics. These data move-
ment policies are layered on top of existing shared
memory protocols.

We have used tapes to create the Tapeworm prefetching
library. Tapeworm implements sophisticated rec-
ord/replay mechanisms across barriers, augments locks
with data movement semantics, and allows the use of
producer-consumer segments, which move entire modi-
fied segments when any portion of the segment is ac-
cessed. We show that Tapeworm eliminates 85% of
remote misses, reduces message traffic by 63%, and
improves performance by an average of 29% for our
application suite.

1. Introduction
This paper introduces the notion oftapes: a new high-
level abstraction that allows applications to achieve
better performance on distributed shared memory
(DSM) protocols. DSM protocols support the abstrac-
tion of shared memory to parallel applications running
on networks of workstations. The DSM abstraction
provides an intuitive programming model and allows
applications to become portable across a broad range of
environments. However, this level of abstraction pre-
vents the application from improving performance by
explicitly directing data movement. While it is rela-
tively easy to get parallel applications working on cur-
rent DSMs, it can be very difficult to achieve high per-
formance.

Tapes make this task easier by allowing the data
movement to be directed by the application at a high
level of abstraction. A tape is essentially an object that
encapsulates an arbitrary number of updates to shared
data. Tapes are created through recording of updates to
shared data made by the local process. Once created, a
tape provides a convenient way to manipulate the up-
dates. The data referenced by a tape can be sent to an-
other process. Tapes can be reshaped by changing the
set of data to which they refer. Tapes can also be added
and subtracted, allowing a single tape to describe any
arbitrary set of updates.

As a quick example, Figure 1 shows a simple use of the
tape mechanism. We defer detailed description of this
example until the next section. Essentially, however,
the example shows processP1 modifying three shared
pages while holding lockL1, followed by P2 acquiring
the same lock and reading the same three pages.

In a traditional invalidate protocol,P1’s modifications
would cause all three pages to be invalidated atP2. The
subsequent reads byP2 would each cause remote page
faults. Each fault is satisfied by retrieving a current
copy of the faulting page from a remote processor, and
hence implies at least one network RPC. After the data
is returned and copied to the correct location, page
protections are changed to allow the page to be ac-
cessed normally.

By including the code in italics, however,P1 can record
the accesses automatically, append the modified data to
the lock grant message, andupdate, rather than invali-

acq(L1)
start_recording()

w(x)
w(y)
w(z)

end_recording()
add_tape_data()

rel(L 1)
acq(L1)

r(x) miss
r(y) miss

r(z) miss

rel(L 1)

2

2

1
1

tape1 = {(1,x), (1,y), (1,z)}

req(L1)

L1,
tape1

P1 P2

Figure 1: Tapes: tape1 describes the writes performed
by P1. Subsequent misses byP2 can be avoided if the tape,
together with the data it describes, is transferred with the
lock.

date,P2‘s copy of the page. For each page fault thereby
avoided, the system eliminates both local fault-handling
overhead and network RPC’s.

The key points of this example are the following. First,
tapes allow sharing behavior to be captured at runtime.
The system needs neither compiler cooperation nor
extensive user interaction in order to determine exactly
which pieces of shared data are accessed byP1. This is
important because we do not assume any explicit asso-
ciations between synchronization and shared data, just
as no such associations are assumed in a typical multi-
threaded environment such as PTHREADS.

Second, moving the data with the lock is only a per-
formance optimization, it can not cause correctness to
be violated. No damage is done ifP2 does not access
either x, y, or z. Any additional pages accessed byP2

will be demand-paged across the network when the
pages are accessed.

While tapes could be used directly by applications, they
are probably more useful when folded into specialized
synchronization libraries. Such libraries can reduce the
total application involvement to just the replacement of
calls to generic synchronization primitives with calls to
the corresponding routines in the new libraries. This
indirection allows the synchronization implementation
to be quite simple, without losing any generality.

The primary claimed advantage of DSM systems over
message-passing programming models is ease of use.
By abstracting away any need to specify data locations,
DSM systems allow parallel and distributed applica-
tions to be more simply created. Requiring applications
to contain additional annotations would seem to run
counter to this goal. However, synchronization libraries
can hide the mechanism from programmer view. The
only change needed to use tape mechanisms in these
cases is linking with a different library. Moreover, tape
mechanisms can be added to applications incremen-
tally. Applications can be developed and tested without
tapes. Since tape mechanisms do not affect correctness,
adding tape calls can not break any application that has
already been debugged.

We used tapes to implement Tapeworm, a new syn-
chronization library that is layered on top of existing
consistency and synchronization protocols in CVM [1],
a software distributed shared memory system. The use
of tapes allowed us to write Tapeworm in fewer than
400 lines of C++ code. At the same time, Tapeworm is
able to track and use very sophisticated data movement
patterns. Specifically, Tapeworm augments ordinary
locks to include data movement semantics as well as
synchronization. Tapeworm also supports producer-
consumer regions and record/replay barriers. Rec-
ord/replay barriers use recordings of data accesses from

one iteration of an application to anticipate accesses
during future iterations.

Overall, Tapeworm eliminates an average of 85% of
data misses on our suite of applications. The reduction
in misses translates into a reduction in message traffic
of 63%, and an average improvement in overall per-
formance of approximately 29%.

The rest of the paper is as follows. Section 2 discusses
the high-level semantics of tapes in a protocol-
independent fashion. Section 3 describes Tapeworm, a
high-performance synchronization library built using
tapes. Section 4 describes the requirements Tapeworm
makes on the underlying consistency protocols. Section
5 describes Tapeworm’s performance, Section 6 de-
scribes related work, and Section 7 concludes.

2. Tape semantics
Tapes are implemented as a software layer that logi-
cally resides on top of existing consistency and syn-
chronization protocols. Conceptually, at least, the tape
mechanism is independent of both the underlying pro-
tocol implementation, and of the precise application
access orderings that are being captured. In practice,
tapes are particularly well suited for the relaxed con-
sistency models discussed below.

The primary way in which we expect tapes to be used is
in augmenting invalidate protocols in softwareDSMs.
Such systems consist of a single thread or process per
machine, a shared segment that can be transparently
accessed by any of the processes, and at least a rudi-
mentary set of synchronization mechanisms. Synchro-
nization is usually implemented in addition to, rather
than on top of, the consistency mechanism. The best
page-based consistency mechanisms are based on some
form of release consistency (RC) [2] or lazy release
consistency (LRC) [3, 4]. Both allow consistency ac-
tions to be delayed until subsequent synchronizations.
These protocols are ideal for the use of tapes in that
they allow considerable freedom as to when data actu-
ally moves. Tapes could be used with more strict proto-
cols, but more work would be required to provide the
necessary hooks.

Implementation
CVM’s implementation of tapes is made efficient by
grouping logically related shared accesses into a single
access. Each process’s execution is divided into distinct
intervals, each of which is labeled with a system-unique
interval id. The exact method by which intervals are
defined is not important, although most protocols will
probably delimit intervals by synchronization events.
For example, each of the processes in Figure 1 has two

intervals, delimited by synchronization accesses to lock
L1.

Second, all modifications made to a single page during
an interval are combined into a single modification. We
can then express tapes in terms of lists of modified
pages and intervals, instead of addresses and cycle
counts1.

More specifically, a tape consists of a set ofevents,
each of which is a tuple (x,y), wherex is an interval id
andy is a set of page id’s. Hence,tape1 in Figure 1 con-
sists of the three events {(1,1), (1,2), (1,3)}. Note that
the event (and the tape) consists only of the tuple, it
does not contain the actual modifications. The actual
modifications are tracked by the underlying protocol.

The approach shown in this example has several ad-
vantages over other approaches described in the litera-
ture. Simple update protocols push modified data to
existing replicas toupdatethem, rather thaninvalidat-
ing them. The advantage of such protocols is that sub-
sequent page faults are avoided, but the lack of any
selectivity usually causes update protocols to move far
more data than invalidate protocols. Several researchers
have described more selective update protocol variants
[5-7] that might also suffice in this example. However,
these protocols effectively encode expected sharing
behavior into the underlying protocol. By making such
expectations part of the programmable protocol inter-
face, the tape mechanism has far more flexibility.

Clearly, this is not the whole picture. First,P2 might be
missing other modifications to the three pages. How-
ever, this could only occur if modifications to other
portions of the page (false sharing) are proceeding con-
currently. Otherwise,P1 would have retrieved copies
before accessing the pages itself. Second, application
programmers are unlikely to want to reason with tapes.
However, all tape references could be encapsulated into
modified synchronization routines. The sole applica-
tion-visible change would be in calling a different ver-
sion of the lock routines.

This example does not show the full generality of the
tape mechanism. Since the tape consists internally of
events, the accesses need not be to contiguous pages,
have occurred at similar times, or have been performed
by the same process. Since tapes consist only of ab-
stract descriptions of shared modifications rather than
the modifications themselves, they are relatively light-
weight and can be stored, transmitted, and otherwise
manipulated.

1 The use of the term “page” throughout this paper is a con-
vention. The units can be of any shape that can be tracked by
the underlying consistency protocol.

Tape Creation
Tapes can be created in several different ways, but the
primary method is that shown in Figure 1, e.g. record-
ing accesses over a period oftime. This method of cre-
ating tapes enables synchronization protocols to capture
dynamic access patterns at runtime, rather than relying
on the programmer or compiler to derive complete in-
formation statically.

A second method of creating tapes is for them to be
generated by hooks into the underlying consistency
protocol. While we defer full discussion of the interface
to the underlying protocol until Section 4,miss-
ing_data_tape(Extent *) is fundamental to
some of the interfaces discussed in the next section. Its
function is to create and return a tape that describes all
updates needed to validate the region of memory de-
scribed by anextent. A shared page isvalidatedby ap-
plying all updates necessary to bring the page up to
date.

Extent is short for “data extent.” An extent is an object
that names a set of pages. For example, a tape can be
flattened into an extent that contains the set of pages
accessed by the tape’s events. Assume that an extent
‘ext’ names a large data structure that resides on a set of
invalid shared pages. Pages are usually invalid because
they have been modified by remote processes, and the
remote modifications have yet to be applied locally. A
local missing_data_tape(ext) call returns a
tape that lists every such remote update that is needed
to re-validate the invalid pages. This tape can be used to
request all of the updates at once, possibly before the
data is actually needed. The result is greater latency
tolerance, and the potential for greater overlap of com-
munication and computation.

Once a tape has been created, it can be transmitted to
remote sites, flattened into an extent, pruned to contain
only notices that pertain to a given extent, or added to
another tape.

While our discussion of tapes has concentrated on write
accesses so far, analogous abstractions can be defined
for read accesses, and data requests from other proc-
esses.

3. TheTapewormLibrary
The following subsections describe three types of
Tapeworm-based synchronization interfaces that we
found useful for our application suite:record-replay
barriers, update locks, andproducer-consumer regions.

These mechanisms were carefully constructed in order
to accommodate weak memory consistencies. We as-
sume lazy release consistency (LRC) in this work, but
the same interface will handle almost any other memory

model. The key point about LRC is that consistency
information (invalidations) only moves with synchroni-
zation. The invalidate signal corresponding to a modifi-
cation of a shared page only arrives at a process when
that process synchronizes with respect to the process
that performed the modification. Thus, new invalida-
tions can be expected to arrive with synchronization.

In all cases, we rely on the underlying protocol layer to
ensure correctness, regardless of when data arrives.
Section 4 describes the demands that this requirement
places on the underlying protocol.

3.1 Record-Replay Barriers
The most simple way in which we expect tapes to be
used is inrecordingdata movement in the first iteration
of an iterative scientific application andreplaying it in
future iterations. Much of the remote latency can be
hidden by sending the data before it is needed. Figure 2
shows pseudo-code for a simple grid application. Each
process iteratively computes new values for all of the
elements that it owns, using barriers and a temporary
array to synchronize the read and write accesses to the
shared array.

The only difference between this code and code written
for a non-Tapeworm system are that the barrier calls are
to specialized versions, rather than to the generic
cvm_barrier().

Pseudo-code for each process’s barrier routine is shown
in Figure 3. The purpose is to selectively send updates
to remote processes before they are requested. Each
process identifies data to be flushed to other processes
by crossing the set of locally-created modifications with
the set of data requested by other processes, and as-
suming that sharing patterns are static.

Each process records locally-created modifications, as
well as data requests from other processes. This allows
a process to directly track the data that will be needed
by other processes during the next iteration. Tracking
writes allows a process to identify new local modifica-
tions. Crossing such requests with the tape of local
modifications allows us to create descriptions of the
data that needs to be sent to other processes.

In more detail, each process useswriteTape to rec-
ord local writes andreqTape to record requests dur-
ing any single iteration. ThereqExtents[] array is
used to hold the set of all pages that each process has
ever requested. The barrier procedure starts by flatten-
ing the remote request tape to sets of pages requested
by each remote process. Each such set is unioned with
the set of all previous pages requested by that process.
The tape of local writes is then crossed with each such
set to create a new tape naming the set of modifications
that needs to be flushed to the corresponding process.
C++’s operator overloading allows addition of a tape
and an extent to be interpreted as “create a copy of the
input tape, such that only pages described in the extent
are included.” For each such tape that is non-empty, a
message is created, populated with the tape, and sent to
the corresponding process.

This code assumes static access behavior. Applications
with dynamic sharing patterns will only benefit to the
extent that there is overlap between the sets of data ac-
cessed by consecutive iterations. Record/replay barriers
for dynamic sharing patterns would only maintain ex-
tent information about recent iterations, rather than
about all as in the static case.

3.2 Update locks
Update locks are modifications of the globally exclu-
sive locks common to many parallel programming envi-
ronments. Update locks use tapes and extents to com-
bine data movement with synchronization transfers.
Rather than using separate protocol transactions for
synchronization and for data, update locks attempt to
piggyback the data movement on top of existing syn-
chronization messages. Tapes and extents are used to

while (TRUE) {
tape_barrier();
forall i,j {

temp[i][j] = arr[i-1][j] + arr[i+1][j];
}
tape_barrier()
forall i,j {

arr[i][j] = temp[i][j];
}

}

Figure 2: Red/black stencil.

Tape reqTape; /* records requests from other procs */
Tape writeTape; /* records local writes */
Extent reqExtents[NUM_PROCESSES];

tape_barrier()
{

writeTape.stop_writing();
reqTape.stop_reading();

for proc in (all processes) {
reqExtents[proc] += reqTape.flatten(proc);

Tape *out = writeTape + reqExtents[proc];
if (!out->empty()) {

create message, add tape, and send toproc
}

}

barrier();

reqTape.reset(); reqTape.start_reading();
writeTape.reset(); writeTape.start_writing();

}

Figure 3: Record/replay implementation

identify and communicate the updates that are needed
to validate shared data.

Auto-locks
Auto-locks attempt to exploit static access patterns by
using past behavior to predict and eliminate memory
faults during later lock synchronizations. The assump-
tion is that the set of pages accessed during then+1th

acquire of any lock is similar or identical to the set of
pages accessed during thenth acquire of the same lock.
Hence, we can avoid remote faults by ensuring that the
pages accessed during the last lock acquisition (of the
same lock) are valid when the lock acquisition is ac-
complished.

There are two sets of updates that need to be retrieved
in order to prevent these remote faults. LetS be the set
of pages that the requestor will access while holding the
lock. This is the set of pages that the auto-lock mecha-
nism will attempt to validate. The necessary updates
can be divided intomiss(S) andnew(S) . Miss(S)
consists of updates known (but not present locally) be-
fore the lock grant returns, whereasnew(S) consists
of new updates learned about from information piggy-
backed on the lock grant. The former set is empty if the
pages in S are all valid when the lock acquisition be-
gins.

Consider the example in Figure 4. For the sake of sim-
plicity, assume thatx is a single page. Prior to per-
forming its second lock acquisition,P1’s copy of page x
is invalid because the preceding barrier disseminated an

invalidation resulting fromP2’s update.P1’s miss(S)
therefore consists ofupd 2(x) .

The new(S) set comes about because weakly-
consistent protocol implementations often append con-
sistency information to existing synchronization com-
munication. In Figure 4, the lock grant atP1’s second
lock acquisition returns knowledge of a third update,
upd 3(x) . Hence, this latter update constitutes
new(s) at the lock grant. All of the updates in either
set are needed in order to validate the pages inS.

Figure 5 shows the code used to implement auto-locks
in Tapeworm, lacking only comments and error-
checking code. Each of the five routines is an upcall
from the underlying implementation into the protocol
code. The first four execute on the requestor’s side, the
last is executed by the previous holder of the lock.
Tapeworm is implemented as part of a tapes protocol
that specializes the default multi-writer LRC protocol.
Therefore, all upcalls from CVM first call the Tape-
worm routines, and then fall through to the corre-

P1 P2

acq(L1)
upd1(x)
rel(L 1)

P3

acq(L1)

upd2(x)
rel(L 1)

acq(L1)

upd3(x)
rel(L 1)

miss(S) = upd2(x)
acq(L1)

new(S) = upd3(x)
upd4(x)
rel(L 1)

x = 0 x = 0 x = 0

Figure 4: Auto-locks

Tape writes;
Extent lockExtent;

/* executed by prospective holder of the lock*/
void Tapeworm::lock_entry(int id)
{

writes.reset(); writes.start_writing();
}

void Tapeworm::add_to_lock_request(Msg *msg, int id)
{

Tape *empty = tape->missing_data_tape(lockExtent);
msg->add(tape, (char *)empty, empty->size());
msg->add(type_extent, (char *) lockExtent, lockExtent ->size());

}

void Tapeworm::read_from_lock_grant(Msg *msg, int id)
{

read_data(msg);
}

void Tapeworm::lock_release(int id)
{

writes.end_writing();
lockExtent = writes.flatten();

}

/* executed by last holder of the lock*/
void Tapeworm::add_to_lock_grant(Msg *msg, int pid)
{

Tape outTape;

outTape = *(Tape *)msg->retrieve(type_tape)) {
if (extent = msg->retrieve(type_extent)) {

iMan->new_interval();
outTape += get_new_tape(pid, extent);

}
outTape.add_data(msg);

}

Figure 5: Auto Lock Implementation

sponding LRC routines that maintain memory consis-
tency.

The data structures consists ofwrites , a tape used to
record local modifications to shared memory, and
lockExtent , an extent used to remember the set of
pages accessed the last time the lock was held. The
code starts recording modifications in
lock_entry(), and stops inlock_release() .
The add_to_lock_request() routine is called
just before the lock request messages are sent. The auto
lock routine adds an extent and a tape to this message.
The extent is derived from thewrites tape created
during the previous lock access. The tape, created by
missing_data_tape() , names all updates needed
in order to validate the region covered by the extent. In
other words, if pagex of the extent’s region is currently
invalid, the tape specifies all updates that need to be
applied tox in order to re-validate it.

The routine add_to_lock_grant() is called by
the lock granter. This routine first retrievesmiss(S)
from the message and then createsnew(S) by
get_new_tape() to the extent sent in the request.
These two tapes are added together, potentially result-
ing in a tape that includes modifications from several
different processes. Finally,add_data() is used to
load the tape data into the reply.

Finally, the requesting process usesread_data() to
read and apply all updates from a message. If all has
gone well, read_data() will also re-validate the
entire shared region named bylockExtent .

User Locks
The second type of update locks,user locks, replace the
implicit arguments of auto-locks with explicit buffer
and length arguments. User locks are useful when the
shared data accessed while a specific lock is held will
change in some well-known manner. The interface to
user locks include a simple buffer pointer and length.
These parameters allow the program to specify a single
contiguous section of shared memory that is likely to be
accessed while the lock is held. Inside the lock opera-
tor, the region is converted to an extent, which provides
an efficient and portable representation of the set of
pages covered by the region.

This extent is used to createmiss(S) as above. It is
also appended to the lock request in order to identify
new(S) . These quantities are handled similarly to the
corresponding quantities in auto-locks.

User locks might be less accurate in anticipating data
accesses than auto-locks. Programmers are often inac-
curate, and locks may guard accesses to non-contiguous

regions of shared data. Auto-locks can also accommo-
date slowly changing access patterns by using only re-
cent data to inform subsequent lock requests.

3.3 Producer-Consumer Regions
Many applications exhibit producer-consumer interac-
tions. In these applications, one processproducesa
region of memory that isconsumedby another process
at an arbitrary later time. These types of communication
are difficult to anticipate because the producer-
consumer connections are often dynamic and can have
low locality. If such regions are multiple pages, the
consumer usually must fetch updates to each page sepa-
rately, as the pages are accessed.

Tapes and extents can be used to aggregate these trans-
fers by recording writes at the producer end, flattening
the resulting tape to an extent, and storing it with the
region pointer. When a process subsequently consumes
the data by removing the pointer from the central re-
pository, it also retrieves the corresponding extent.

Figure 6 shows the implementation of producer-
consumer regions in Tapeworm. The application regis-
ters the region by bracketing its writes with
start_produce() and end_produce() calls.
In addition to stopping the recording, the latter enters
the resulting tape into an ordinary queue. CVM first
vectors page fault requests to the tape protocol, pro-
viding an opportunity to search the queue for a tape that
contains the requested page. If the page is found, the
entire region’s data is appended to the reply message.
While the total data transferred is the same as if the
pages were transferred one at a time, the benefits of
aggregating multiple requests into one can be signifi-
cant.

start_produce()
{

tape.reset(); tape.start_recording();
}

end_produce()
{

tape.stop_recording();
queue.add(tape);

}

Tapeworm::page_request (int pg_id, Msg *msg)
{

if (Tape *tape = queue.search(pg_id)) {
tape->add_data(msg);

}
}

Figure 6: Producer-consumer regions

4. Low-Level Support for Tape Protocols
Our tapes implementation is layered on top of CVM
[1], a software DSM that supports multiple protocols
and consistency models. CVM is written entirely as a
user-level library and runs on most UNIX-like systems.
CVM was created specifically as a platform for proto-
col experimentation.

New CVM consistency protocols are created by deriv-
ing classes from the basePage and Protocol classes.
Only those methods that differ from the base class's
methods need to be defined in the derived class. The
underlying system calls protocol hooks before and after
page faults, synchronization, and I/O events. Since
many of the methods are inlined, the resulting system is
able to perform within a few percent of a severely op-
timized commercial system running a similar protocol.
Although CVM was designed to take advantage of gen-
eralized synchronization interfaces, as well as to use
multi-threading for latency toleration, we use neither of
these techniques in this study.

While tapes are conceptually independent of both the
programming model and the particular protocol imple-
mentation, the underlying consistency protocol and
system architecture must provide some basic support.
Table 1 summarizes the required interfaces to the con-
sistency mechanism and to the messaging subsystem.
Those rows marked with a ‘c’ are requirements specific
to the consistency protocol itself. Those marked with an
‘m’ are other hooks for creating and handling commu-
nication, or message, events.

4.1 Interactions with the consistency protocol
Tapeworm is layered on top of a consistency protocol,
it is not a consistency protocol itself. In CVM’s imple-
mentation, Tapeworm is a subclass of LmwProtocol,
which is derived from the base Protocol class.
LmwProtocol is the base multi-writer LRC protocol

used by both CVM and TreadMarks [6]. All protocol
calls other than those listed in the last two rows of
Table 1 are passed directly through to LmwProtocol.
Those in the last two rows are handled first by Tape-
worm, and then passed down to the lower level. Porting
Tapeworm to another protocol would require changing
the base class, and re-implementing the functions in the
first two rows of Table 1.

Missing_data_tape() and get_new_tape()
are functions provided by the underlying protocol to
Tapeworm, and were discussed in Section 3. The pri-
mary requirement that they impose on the underlying
protocol is aversioningcapability. This is the ability to
generate update summaries, to apply them at remote
sites, and to ensure that consistency is not violated
throughout. In LRC, shared updates are summarized as
diffs [8], and can easily be added to messages and ap-
plied at remote sites. Consistency correctness is pre-
served because diffs carry enough consistency informa-
tion to determine when and where they should be ap-
plied.

This requirement can be problematic in the case of sin-
gle-writer protocols like sequentially consistent page-
based protocols [9]. Such protocols provide no way to
determine whether a given copy of an object is current
or not. However, single-writer protocols with support
for object versions, i.e. the single-writer LRC protocol
[1], provide the necessary basic mechanisms.

The next set of routines start and stop recording of vari-
ous types of accesses to shared memory. The imple-
mentation of these routines is dependent on the under-
lying protocol. In the case of CVM’s multi-writer pro-
tocol, requestaccesses are recorded by maintaining a
log of data requests during the recorded interval.Read
accesses are recorded by read faults during the recorded
interval. Note that this approach does not necessarily
capture every page that is accessed because faults do

Interface Type Description

Tape *missing_data_tape(Extent *) c Return tape describing updates needed to validate extent.

Tape *get_new_tape(Extent *) c Return tape describing “new” updates (see Section 3.2).

Tape::(start|stop)_(reading|requesting|writing)() c Record accesses to shared memory.

Extent *Tape::flatten() c Return an extent describing pages mentioned by the tape.

Tape::add_data(Msg *),
Tape::read_data(Msg *)

c, m Add updates described by tape to message, read any such
updates from message and incorporate into shared data.

msg->add(msg_type, char *, int)
msg->retrieve(msg_type, char **, int *)

m Allows arbitrary data to be added and retrieved from Msg
objects.

Protocol::fault(int pg)
Protocol::page_request(Msg *, int)

c, m Upcalls to Tapeworm for local page faults and requests for
local data from remote sites.

Protocol::add_to_lock_request(Msg *, int)
Protocol::add_to_lock_grant(Msg *, int)
Protocol::read_from_lock_request(Msg *, int)
Protocol::read_from_lock_grant(Msg *, int)

m
Allows data to be piggybacked on top of existing synchro-
nization messages.

Table 1: Low-Level Support for Tapes(‘c’ – consistency, ‘m’ – message)

not occur for valid pages. Additionally, this information
is maintained with page granularity.Write accesses are
recorded by maintaining a record of newly created
diffs[8]. A diff is a data structure used by the underlying
system to summarize modifications to a specific page.

Tape::flatten() returns an extent that lists the
pages named by the accesses in the corresponding tape.
Tape::add_data() and Tape::read_data()
are functions provided by the underlying protocol to
Tapeworm. They allow Tapeworm to copy the data
named by a tape into or out of network messages.

Protocol::fault() and Proto-
col::page_request() are upcalls from the DSM
to a protocol, in this case Tapeworm. Tapeworm spe-
cializes these calls to track accesses to shared pages.
Protocol::fault() is called at local accesses to
pages with the wrong permissions, i.e. reading an inva-
lid page or writing a page without permission. Tape-
worm uses this call to track reads and writes to shared
pages. TheProtocol::page_request() func-
tion is called when a remote site requests local data.
This is used both for tracking requests (as with rec-
ord/replay barriers), and for identifying and handling
accesses by a consumer to producer/consumer regions.

4.2 Interactions with the message subsystem
Independent of the consistency protocol, Tapeworm
must also have access to the messaging layer in order to
add and retrieve data to existing messages, as well as to
create Tapeworm-specific messages. The callsmsg-
>add() and msg->retrieve() allow arbitrary
data to be added and retrieved from CVMMsg objects.
While Msgobjects are specific to CVM, the same func-
tionality could be made available without reference to
specific message objects. However, this method would
be less clear, so we have left the interface unchanged.

The last row of Table 1 shows upcalls from the DSM
system to the consistency protocol. These are inter-
cepted by CVM to provide hooks into existing mes-
sages. By adding data to these messages, Tapeworm
can often avoid creating messages itself.

5. Performance evaluation
This section describes the performance of several appli-
cations, both with and without the use of Tapeworm’s

new synchronization primitives. Section 5.1 describes
our experimental environment and Section 5.2 gives an
overview of our application suite. The rest of the sub-
sections describe the impact of Tapeworm on perform-
ance. Since each application was chosen to provide a
different challenge to the synchronization library, we
describe our results one application at a time rather than
all at once.

5.1 Experimental environment
We ran our experiments over CVM’s lazy multi-writer
protocol on an eight-processor IBM SP-2. Each node is
a 66.7 MHz POWER2 processor. The processors are
connected by a 40 MByte/sec switch. The operating
system is AIX 4.1.4.

CVM runs on UDP/IP over the switch. Lock acquires
are implemented by sending a request message to the
lock manager, which forwards the request on to the last
requestor of the same lock. This takes either two or
three messages, depending on whether the manager is
also the last owner of the lock. Two-hop lock acquires
take 779µsecs, while three-hop lock acquires take 1185
µsecs. Simple page faults across the network require
1576 µsecs. Page fault times are highly dependent on
the cost of mprotect calls (15µsecs) and the cost of
handling signals at the user level (120µsecs). Minimal
8-processor barriers cost 1176µsecs.

5.2 Application suite
Our application suite consists of one branch-and-bound
lock application, TSP, one producer-consumer divide-
and-conquer application, QS, two applications that
combine both locks and barriers, Water (Water-
Nsquared from SPLASH-2 [10]) and Spatial (Water-
Spatial from SPLASH-2), one tree-structured barrier
application, Barnes (also from SPLASH-2), and gauss
(gaussian elimination with partial pivoting). While
these applications are meant to be in some sense “repre-
sentative," their more important common attribute was
that each had characteristics that illustrate one or more
facets of tape behavior. Note that there certainly exist
applications for which tapes do not improve perform-
ance. Performance can even degrade if the access pat-
terns assumed by the tape mechanisms called by an
application do not match the actual sharing patterns in
the application.

Improvement
App. Input Set APIs Used

Speedup Msgs Misses Bytes
Water 5 iters, 512 mols lock, bar 14% 42% 83% 0%
TSP 18 cities lock 7% 79% 94% 9%
Spatial 5 iters, 1024 mols lock, bar 41% 96% 100% 15%
QS 1x106 lock, p-c 49% 53% 88% 0%
Gauss 1024 x 1024 flush 25% 67% 100% 2%
Barnes 8192 bodies bar 40% 75% 48% -2%

Table 2: Application Summary

Table 2 summarizes the maximum performance im-
provements on each of our applications. Details of the
algorithms are deferred until the discussion of each
application’s performance. Overall, the best combina-
tion of options for each application eliminated an aver-
age of 85% of all remote page misses, 63% of all mes-
sages, and an average increase in speedup of 29%. For
iterative programs, e.g. Barnes, Spatial, and Water, only
the second and subsequent iterations were measured, in
order to eliminate effects caused by the initial data dis-
tribution.

5.3 Application performance

Water
The first application is Water, an iterative molecular
simulation. Water alternates phases in which locks are
used and phases in which barriers are the only synchro-
nization.

Table 3 shows the performance of Water with no tape
optimizations, with record/replay barriers, with user
locks, with automatic locks, and with both types of
locks plus record/replay barriers. “Speedup” is relative
to the single-processor time without CVM overhead.
“Remote Misses” is the number of remote page faults
incurred. “Lock Pages” is the number of pages that are
re-validated by data moved as a result of one of the tape
mechanisms. The “Updates Used” column shows the
percentage of updates moved by the tape mechanism
that are used at the destination. This column is omitted
in some of the other application tables because it is near
one hundred percent. “Comm KBytes" shows the total
amount of data communicated during the measured
portion of the application. Again, this column is omitted
in some later tables because it is essentially unchanged
across different runs. Finally, the last five columns
show lock, barrier, flush, data (data request), and total
messages.

Several trends are clear. First, auto-locks perform better
than user locks. The reason is that user locks are diffi-
cult to specify statically. In at least one place, the region
actually passed to the lock is only a guess at the data
that will end up being modified.

Second, the sets of misses addressed by the lock and
barrier mechanisms are disjoint: the number of misses
eliminated with both mechanisms is almost exactly the
sum of the misses eliminated by the mechanisms indi-
vidually. Simple update protocols would perform simi-
larly to the record-replay barriers, but be less effective
at eliminating misses that are addressed by the update
locks.

TSP
TSP is a branch-and-bound implementation of the trav-
eling salesman problem. The central data structure is a
global queue that contains partially completed tours.
Processes alternately retrieve tours from the queue, split
them into sub-tours, and put them back into the queue.

As shown in Table 4, TSP is almost exclusively lock-
based. Locks are used to guard access to the central
queue and to current minimum tour values. Barriers are
used only during initialization and cleanup. We investi-
gated both user locks and auto-locks. The results are
shown in Table 4.

The first row shows the default TSP application. The
second row shows performance with user locks. User
locks are used to avoid misses when updating the “best”
tour variable and when accessing the work queue.
However, user locks can not specify the data that will
be returned by a request for new work to perform, be-
cause the specific work has yet to be identified.

The auto-locks perform better because they retain a
history of the last data that was accessed when the lock
was held. This history is not an accurate predictor of

Remote Lock Updates Comm MessagesProtocol Speedup
Misses Pages Used KBytes Lock Barrier Flush Data Total

Default 5.66 4852 0 - 6697 2786 196 0 4878 7860
Rec/Rep 5.78 3405 0 71% 6761 3016 196 420 3415 7047
User Locks 5.93 4336 1579 60% 6852 2642 196 0 4348 7186
User + Rec/Rep 6.14 1874 1550 64% 7736 2720 196 924 1950 5790
Auto-locks 6.16 3200 1566 70% 6683 2550 196 0 3200 5946
Auto + Rec/Rep 6.43 841 1535 68% 6655 2592 196 924 852 4564

Table 3: Water

Remote Lock MessagesProtocol Speedup
Misses Pages

Updates
Used

Comm
Kbytes Lock Barrier Data Total

Default 7.02 6058 0 - 6860 1124 28 6060 7212
User 7.22 4297 6161 88% 6648 1142 28 4272 5442
Auto-locks 7.48 387 6120 68% 6249 1134 28 387 1549

Table 4: TSP

future accesses (witness the low “updates used” value),
but is relatively complete.

Spatial
Spatial solves the same problem as Water, differing
primarily in that the molecules are organized into three-
dimensional “boxes." The sizes of the boxes are set so
that molecules in one box interact only with molecules
in neighboring boxes. The box structure allows syn-
chronization and sharing to be done at the level of
boxes rather than individual molecules, effectively ag-
gregating much of the synchronization. This gain is
partially offset by the overhead of maintaining the box
structure.

Table 5 shows the performance of Spatial. The “Up-
dates Created” column describes the number of separate
per-page updates that are constructed by the underlying
LRC system. The number of updates doubles with rec-
ord-replay barriers because the default version is able to
lazily create updates only at every other barrier.

Other than the overhead of creating and applying up-
dates, this problem ends up having little impact on Spa-
tial’s performance. The multiple updates usually do not
overlap, and therefore do not consume any more space
or bandwidth than single updates. Second, few addi-
tional flush messages are sent because there are usually
other updates destined for the same site. The messages
would need to be sent even if the excess updates were
not produced. The flush versions actually send less data
than the non-flush versions because the large flush mes-
sages have less system overhead than individual update
requests.

Auto-locks have little effect on Spatial’s performance.
The reason is that locks are used mainly to arbitrate
access to the linked lists that tie molecules to boxes.
The auto tape mechanism only prefetches the pages
containing these pointers, not the pages containing the
molecules themselves.

Nonetheless, the overall impact of the flush mechanism
is to improve performance by over 41%.

QS
QS is a parallel implementation of QuickSort. Again,
the central data structure is a global queue that contains
partially computed values, which are iteratively re-
moved, refined, split, and inserted back into the queue
until all are complete. QS differs from TSP in that the
chunks of data that are taken out of the queue are
merely pointers to the actual data. Hence, we use the
producer-consumer regions that were discussed in Sec-
tion 3.3.

Table 6 shows three versions of the QS program, with
statistics as for TSP. The only new statistic is the “tape”
message type. The first row shows the default imple-
mentation. The second row shows the results of a run in
which all accesses to the central queue are through user
locks. The regions passed to the user locks are the en-
tire centralized queue structure. As this structure is up-
dated frequently, the user locks eliminate all misses on
the pointer data structures, about one fourth of all re-
mote misses.

The row labeled “User+PC” contains statistics reflect-
ing the producer-consumer tape functions discussed in
Section 3.3. The number of remote misses is reduced
six-fold over the version with just user locks. The total
number of messages is reduced by 53%, and speedup is
increases by 49%.

Barnes
Barnes is the n-body galactic simulation from
SPLASH-2, modified by Ram [11] to contain only bar-
rier synchronization. Because of this modification, fine-
grained tasks such asmake-treeare now performed
sequentially. This modification effectively increases the
synchronization granularity.

Remote Updates Updates Comm MessagesProtocol Speedup
Misses Created Used Kbytes Lock Barrier Flush Data Total

Default 3.62 32677 4845 - 21727 764 518 0 65354 66636
Auto-locks 3.63 32494 4847 76% 21746 780 518 0 64988 66286
Rec/Rep 4.98 158 8950 98% 18924 762 518 1588 316 3184
Auto+Rec/Rep 5.12 11 8943 98% 18885 734 532 1589 22 2877

Table 5: Spatial

Remote Lock MessagesProtocol Speedup
Misses Pages Lock Barrier Data Tape Total

Default 4.23 4499 185 3804 28 9110 0 12942
User 5.86 3377 1064 3830 28 6890 0 10748
User + PC 6.32 539 1563 3806 28 142 2096 6072

Table 6: QS

Table 7 shows that Barnes differs from the other appli-
cations in that use of the tape mechanism is only able to
eliminate about half of the remote misses. This is pri-
marily because of a lack of locality across iterations.
Processes access new pages during each iteration, and
the system is therefore unable to anticipate all accesses.
Nonetheless, 87% of updates flushed at barriers are
eventually used, and total messages sent drops by a
factor of four.

Gauss
Gauss is an implementation of Gaussian elimination
with partial pivoting. Essentially, it consists of a 2-D
grid, with rows assigned to processes in chunks. During
each iteration, a new row is chosen as the “pivot”. Each
process updates all rowsafter the pivot row. The pivot
row and column index need to be propagated to all
other processes.

This method of updating plays havoc with standard
update protocols. The problem is that each pivot is only
flushed once, meaning that historical information can
not be used to determine that the data needs to be
broadcast. Application input is essential. We used tapes
to build two new routines called “cvm_start_flush()”
and “cvm_stop_flush()”. These routines use a tape to
record all shared modifications, and to broadcast them
to all other processes.

Gauss’s performance is shown in Table 8. All remote
misses are eliminated. However, overall speedup is still
mediocre because the last iterations have too little com-
putation to make parallelism worthwhile.

5.4 Discussion
The tape mechanism’s advantages are performance and
simplicity. In evaluating performance, we distinguish
between the performance of the tape layer itself, the
performance of Tapeworm, the specific synchronization
library discussed in this paper, and the potential per-
formance improvements of other synchronization li-
braries that could be built using tapes.

The tape layer itself adds very little overhead. Record-
ing page reads and writes adds only a few instructions
to the page fault handlers. The runtime cost of manipu-
lating tapes and extents is also small. Extents are im-
plemented as bitmaps in our current prototype. They are
therefore fast, but reasonably expensive in terms of
memory consumption. Since the constituent elements of
extents are pages, the size of an extent is proportional to
the number of shared pages. Currently, the largest ap-
plications we run share approximately thirty-two mega-
bytes. Assuming 8k pages, this results in a bitmap of
512 bytes. On the other hand, water uses less than 500k
of data, resulting in bitmaps of only eight bytes. If the
current representation becomes unacceptable, extents
could be implemented as sets of bitmaps, and would
have size proportional to the working set of pages.
Tapes are currently implemented as sequential records
of events, and are therefore of size proportional to the
number of recorded events. Similar to extents, more
sophisticated representations for tapes are possible in
the event that their size or runtime cost grows too large.

As far as the effectiveness of the specific synchroniza-
tion library discussed in this section, Table 2 shows that
Tapeworm eliminates an average of 85% of all remote
access misses. The percentage of access misses elimi-
nated can be termed the coverage of the protocol. The
accuracy of the protocol can be characterized by the
number of updates sent but not used. These updates are
pure overhead, but do not affect correctness. This
quantity is given by the “Updates Used” column in
Table 3 through Table 7. Tapeworm’s average accuracy
is 91%. Assuming a uniform distribution of diff sizes,
this implies that the average bandwidth overhead is
only nine percent. However, the number of extra mes-
sages is likely to be a much smaller percentage. Most of
these extra updates are sent in messages that would
have to exist for other updates or synchronization, even
if the useless updates were not sent.

One last aspect of this effectiveness is whether Tape-
worm results in a significant number of extra updates
being created and applied. This occurs only in Spatial.
However, it does not result in either extra messages or

Remote Updates Comm MessagesProtocol Speedup
Misses Used KBytes Barrier Flush Data Total

Default 3.88 4177 - 15767 140 0 31826 31966
Rec/Rep 5.43 2157 87% 16047 140 576 7266 7982

Table 7: Barnes

Remote Updates Comm MessagesProtocol Speedup
Misses Used KBytes Barrier Flush Data Total

Default 3.45 14294 - 32280 7160 0 14294 21454
Flush 4.31 0 100% 31673 7160 0 0 7160

Table 8: Gauss

data, so we conclude that the effect on Spatial’s per-
formance is negligible. This effect could be significant
in other applications. We expect that specializing barri-
ers, as described in Section 3.1, would minimize this
effect.

Mechanisms such as auto-locks and record/replay barri-
ers also incur overhead in that they need to be trained
before being used. Faults incurred during the initial use
of these mechanisms can be termed cold misses. Faults
avoided during subsequent synchronizations are always
conflict misses for our implementation because CVM
relies on the underlying virtual memory system to han-
dle capacity problems. All results presented in this pa-
per represent the steady state execution of applications
after the cold misses are complete. Assuming static
sharing behavior, however, the percentage of potential
faults that are cold misses can never be higher than1/n,
where ‘n’ is the number of iterations timed. Hence, cold
misses are unlikely to be important for realistic runs.

The second claimed advantage of tapes, simplicity, has
two parts: simplicity of use and simplicity of support.
Our claim of simplicity for support is based on the
amount of code needed to build the tape mechanism.
The total size of the CVM system is about 15,000 lines
of commented code, including debugging statements.
The tapes support layer consists of less than 500 lines
of C++ code, and the Tapeworm synchronization li-
brary is an additional 400 lines.

Finally, one possible critique of this work is that it is
too closely tied to the multi-writer LRC protocol used
to generate the above results. Actually, this protocol is
not an ideal substrate. The reason is that the tape proto-
col relies on noticing all shared modifications that occur
when recording. However, multi-writer LRC uses lazy
diffing, meaning that once a process has started writing
a page, the page remains writable until any of the modi-
fications are requested elsewhere. Hence, a tape that
starts recording writesafter a page has already been
made writable will not necessarily notice additional
writes to the same page. This problem could be avoided
by removing write permission from all pages when any
recording of writes is started. This will result in more
complete information (and possibly fewer residual re-
mote misses), but incur higher overheads for the actual
recording.

6. Related work
Record/replay barriers were first implemented by the
Wind Tunnel project [12]. This work focused on pro-
viding support for irregular applications by coding ap-
plication-specific protocols, one of which implemented
a record/replay barrier. Later work in the same project
resulted in a protocol-implementation language called
Teapot [13]. This work is similar to ours in that both are

trying to expose protocol handles to application or li-
brary builders. However, the Teapot language is more
complex. More lines of Teapot code are required to
implement a sequentially consistent invalidate protocol
than the corresponding protocol written in C++ on
CVM. Also, Teapot protocols perform both data
movement and maintenance of correctness, whereas
consistency can not be violated in any synchronization
library built on top of tapes. One major advantage of
Teapot is that it leverages existing cache protocol veri-
fiers to automatically verify Teapot programs.

Our work has similarities to work performed at Rice
University on compiler-DSM interfaces [14]. The
missing_data_type() routine is essentially the
information-gathering phase of the TreadMarks [6]
validate() . Some of the update work we describe is
similar in spirit to the TreadMarkspush() command.
However, our work not only provides ways to manipu-
late data, as with TreadMarks, but it also provides ways
to gather this information dynamically through tapes.
While the TreadMarks work assumes all information is
provided by the compiler, our work provides a way for
the user or synchronization library to gather this infor-
mation at runtime. For instance, our tapes allow us to
dynamically determine the extent of the data being ac-
cessed, while this information is assumed to be known
by the compiler in TreadMarks. Our work also allows
the user to manipulate discover and manipulate shared
modifications at a high level. Recent work at Rice has
investigated automatic determination of extent-like ob-
jects in shared memory applications [15].

Tapes are not a consistency mechanism, but they can be
used to tune the interface of a CVM-like system so that
it behaves as if a dissimilar underlying protocol were
used. For example, our work could be used to build a
synchronization interface that would closely approxi-
mate the data communication characteristics of Mid-
way’s [16] or CRL’s [17] update protocol. While both
systems differ from CVM in many ways, one of the key
differences is that both Midway and CRL use update
protocols. Unnecessary updates are avoided by limiting
the updates to shared regions that are explicitly associ-
ated with synchronization. The auto-locks described in
Section 3.2 would approximate these data movement
patterns, modulo excess invalidations caused by false
sharing.

Similarly, a tape is not ascope,but they can be used to
build a synchronization interface that superficially
mimics scope consistency(ScC) [18]. The two would
differ in that ScC is a consistency model, whereas any
interface built using tapes is merely a data movement
mechanism that exists on top of the underlying consis-
tency model. Hence, whatever claims are made as to the
relative benefits of ScC and LRC as a consistency

model still apply. However, tapes can be used to greatly
reduce communication traffic in either case. Since the
existing ScC implementation is home-based, all updates
are constrained to move through the home node. There-
fore, data communication between processesP1 and P2

must involve the home nodes of any data communi-
cated. The tapes-based approach can move less data,
and certainly use fewer messages, than the home-based
approach for all cases where the home nodes are not
one of the communication endpoints. We plan to inves-
tigate the performance of a tapes layer on top of ScC in
the future.

This paper has discussed the use of tapes to improve
performance of software DSM systems, but it may also
be relevant in the context of hardware shared memory
systems. For instance, the prefetch and poststore primi-
tives of the KSR-2 [19] implement user-initiated data
movement on top of the underlying consistency proto-
cols. Other work [20] generalized these primitives to
allow the destination of pushes to be specified either by
runtime copyset management or by specific calls initi-
ated by application programs. By augmenting these
primitives with the ability to read and store copyset
information for future iterations, tapes could be sup-
ported on top of this type of system with only a mini-
mal runtime layer. Even with an efficient implementa-
tion, however, such a system would probably only be
useful with large cache lines, i.e. 128 or more bytes.

Shared memory systems with dedicated protocol proc-
essors [21, 22] might turn out to provide the best possi-
ble platform for tapes implementations. Tape code exe-
cuting on the protocol processors could track data and
synchronization accesses without ever involving the
application processor.

7. Conclusions
This paper has described the tape mechanism, and its
use in tailoring data movement to application seman-
tics. Tape-based synchronization libraries are layered
on top of existing consistency protocols and synchroni-
zation interfaces, meaning that incorrect choices
(whether by heuristics or programmers) affect only per-
formance, not correctness.

The tape mechanism is ideally suited to direct data
movement because it allows shared accesses to be re-
corded, grouped, and manipulated at a very high level.
These tapes can be used to predict future data accesses
and to eliminate subsequent misses by moving data
before it is needed.

We used the tape mechanism to build Tapeworm, a new
synchronization library that uses information gathered
at runtime to reduce access misses. Tapeworm’s inter-
face consists of auto-locks, producer-consumer regions,

and record/reply barriers. Auto-locks pre-validate data
that is accessed while locks are held. Producer-
consumer regions use the first access to a region as a
hint to request the rest of the region before it is needed.
Record/replay barriers allow accesses to be recorded
during one iteration and then played back during future
iterations. The combination of these mechanisms allows
Tapeworm to eliminate an average of 85% of remote
misses for our applications, 63% of all messages, and to
improve overall performance by an average of 29%.

Tapes have at least two major advantages over optimi-
zations of specific protocols. First, tapes provide a high-
level abstraction of shared accesses, and are protocol-
independent. Tapes make few requirements on the un-
derlying protocol, providing a terse, powerful approach
to managing data movement. Second, tape mechanisms
can be implemented and used incrementally. Applica-
tions can be completely debugged before any tape
mechanisms are added. One by one, tape mechanisms
can be used to improve data movement at inefficient
points in application executions.

This work is complementary to recent work in paral-
lelizing compilers [5, 14]. Tapes improve performance
by exploiting repetitive access patterns. Identifying
such patternswith high degree of probabilityin the
compiler is much easier than generating explicit mes-
sage-passing code for the data movement.

We conclude that the tape mechanism is a promising
approach to creating high-performance synchronization
libraries. Future work will investigate more sophisti-
cated automatic interfaces, and the use of tapes in cre-
ating debugging libraries [23].

8. References
[1] P. Keleher, “The Relative Importance of Concur-

rent Writers and Weak Consistency Models,” in
Proceedings of the 16th International Conference
on Distributed Computing Systems, 1996.

[2] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gib-
bons, A. Gupta, and J. Hennessy, “Memory Con-
sistency and Event Ordering in Scalable Shared-
Memory Multiprocessors,” inProceedings of the
17th Annual International Symposium on Com-
puter Architecture, May 1990.

[3] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy
Release Consistency for Software Distributed
Shared Memory,” inProceedings of the 19th An-
nual International Symposium on Computer Ar-
chitecture, May 1992.

[4] Y. Zhou, L. Iftode, and K. Li, “Performance
Evaluation of Two Home-Based Lazy Release
Consistency Protocols for Shared Virtual Memory

Systems,” inProceedings of the 2nd Symposium on
Operating Systems Design and Implementation,
October, 1996.

[5] C.-W. Tseng and P. Keleher, “Enhancing Soft-
ware DSM for Compiler-Parallelized Applica-
tions,” in 11th International Parallel Processing
Symposium, 1997.

[6] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H.
Lu, R. Rajamony, W. Yu, and W. Zwaenepoel,
“TreadMarks: Shared Memory Computing on
Networks of Workstations,”IEEE Computer, pp.
18--28, February 1996.

[7] L. D. Wittie, G. Hermannsson, and A. Li, “Eager
Sharing for Efficient Massive Parallelism,” in
Proceedings of the 1992 International Conference
on Parallel Processing (ICPP ‘92), August 1992.

[8] J. B. Carter, J. K. Bennett, and W. Zwaenepoel,
“Implementation and Performance of Munin,” in
Proceedings of the 13th ACM Symposium on Op-
erating Systems Principles, October 1991.

[9] K. Li, “IVY: A Shared Virtual Memory System
for Parallel Computing,” inProceedings of the
1988 International Conference on Parallel Proc-
essing, August 1988.

[10] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta, “The SPLASH-2 Programs: Characteri-
zation and Methodological Considerations,” in
Proceedings of the 22nd Annual International
Symposium on Computer Architecture, June 1995.

[11] R. Rajamony and A. L. Cox, “Performance De-
bugging Shared Memory Parallel Programs Using
Run-Time Dependency Analysis,” inProceedings
of Sigmetrics ‘97, June 1997.

[12] B. Falsafi, A. R. Lebeck, S. K. Reinhardt, I.
Schoinas, M. D. H. J. R. Larus, A. Rogers, and D.
A. Wood, “Application-Specific Protocols for
User-Level Shared Memory,” inSupercomputing
94, 1994.

[13] S. Chandra, B. Richards, and J. R. Larus, “Teapot:
Language Support for Writing Memory Coher-
ence Protocols,” inSIGPLAN Conference on Pro-
gramming Languages Design and Implementa-
tion, 1996.

[14] S. Dwarkadas, A. L. Cox, and W. Zwaenepoel,
“An Integrated Compile-Time/Run-Time Soft-
ware Distributed Shared Memory System,” in
Proceedings of the Seventh Symposium on Archi-
tectural Support for Programming Languages and
Operating Systems, 1996.

[15] C. Amza, A. L. Cox, K. Rajamani, and W.
Zwaenepoel, “Tradeoffs between False Sharing
and Aggregation in Software Distributed Shared
Memory,” in Proceedings of the Principles and
Practice of Parallel Programming, 1997.

[16] B. N. Bershad, M. J. Zekauskas, and W. A. Saw-
don, “The Midway Distributed Shared Memory
System,” in Proceedings of the ‘93 CompCon
Conference, February 1993.

[17] K. L. Johnson, M. F. Kaashoek, and D. A. Wal-
lach, “CRL: High-Performance All-Software Dis-
tributed Shared Memory,” inProceedings of the
Fifteenth Symposium on Operating Systems Prin-
ciples, 1995.

[18] L. Iftode, J. P. Singh, and K. Li, “Scope Consis-
tency: a Bridge between Release Consistency and
Entry Consistency,” inProceedings of the 8th An-
nual ACM Symposium on Parallel Algorithms and
Architectures, 1996.

[19] “Kendall Square Research. Technical Summary,”
1992.

[20] U. Ramachandran, G. Shah, A. Sivasubramaniam,
A. Singla, and I. Yanasak, “Architectural Mecha-
nisms for Explicit Communication in Shared
Memory Multiprocessors,” inSupercomputing,
1995.

[21] J. Kuskin et al., “The Stanford FLASH Multiproc-
essor,” inProceedings of the 21th Annual Inter-
nationa Symposium on Computer Architecture,
April 1994.

[22] S. K. Reinhardt, J. R. Larus, and D. A. Wood,
“Tempest and Typhoon: User-Level Shared
Memory,” in Proceedings of the 21th Annual In-
ternational Symposium on Computer Architec-
ture, April 1994.

[23] D. Perkovic and P. Keleher, “Online Data-Race
Detection via Coherency Guarantees,” inPro-
ceedings of the 2nd Symposium on Operating Sys-
tems Design and Implementation, 1996.

