USENIX Association

Proceedings of the
10" USENIX Security
Symposium

Washington, D.C., USA
August 13-17, 2001

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

SC-CFS: Smartcard Secured Cryptographic File
System

Naomaru Itoi

Center for Information Technology Integration
University of Michigan
Ann Arbor

http://www.citi.umich.edu/projects/smartcard/

Storing information securely is one of the most im-
portant roles expected for computer systems, but it
is difficult to achieve with current commodity com-
puters. The computers may yield secrets through
physical breach, software bug exploitation, or pass-
word guessing attack. Even file systems that provide
strong security, such as the cryptographic file sys-
tem, are not perfect against these attacks. We have
developed SC-CFS, a file system that encrypts files
and takes advantage of a smartcard for per-file key
generation. SC-CFS counters password guessing at-
tack, and minimizes the damage caused by physical
attack and bug exploitation. The performance of the
system is not yet satisfactory, taking 300 ms for ac-
cessing a file.

1 Introduction

Storing information securely has been one of the
most important applications of computer systems
since their introduction. As information technology
is being integrated into society rapidly, secure stor-
age is now demanded more strongly, and by more
people, than ever. For example, consider the recent
incident in which a laptop computer was stolen from
the State Department of the United States in Jan-
uary 2000 [20]. Not only the people who deal with
highly classified information, but also ordinary peo-
ple are threatened by hackers, as they store their
private data on computers today, e.g., e-mail, fi-
nancial information, Internet activity history, and
medical history.

For the purpose of this paper, we define secure
storage as “a storage system that protects the se-

crecy, authenticity, and integrity of the information
it stores”.! Unfortunately, modern commodity com-
puters cannot provide secure storage because of the
three prevalent, but inaccurate, assumptions about
computer systems. First, modern commodity com-
puters tend to overlook physical security, and lack
physical protection; read and write access to com-
putational and storage devices is typically possible
by simply opening the cover of a computer. For ex-
ample, a hard disk drive is easily removed, giving
full access to an adversary. Second, bugs in de-
sign and implementation of software are unavoid-
able [8], and can be exploited to give away secrets.
Exploitable bugs are found in all ranges of software,
and some of them are so serious that they lead to ad-
ministrative rights (root) compromise [11]. Third,
passwords are often the weakest link in security sys-
tems. Once passwords are stolen, no matter how
securely the system is designed and implemented,
it becomes vulnerable to impersonation. Passwords
can be stolen from memory, from virtual memory
backing store [23], in transit through networks [25],
or can be guessed with dictionary attack [17].

An obvious countermeasure to theft of secrets is to
encrypt the secrets with an encryption key, and pro-
tect the key. Matt Blaze has realized this with
a Cryptographic File System for UNIX (CFS) 2,
which transparently encrypts files in a file system
[4]. Although CFS adds significant security to cur-
rent systems, it still suffers from the the problems
introduced above. First, CFS relies on user chosen
passwords to provide encryption keys, making dic-

Denning defines the desired properties of a communica-
tion channel similarly [6].

2Throughout this document, we refer to CFS version 1.3.3
by “CFS”.

tionary attack possible. An adversary can obtain
ciphertext through physical attack or bug exploita-
tion, and can run an off-line dictionary attack. Sec-
ond, the number of passwords a user can remember
is limited. To lower the burden of the user, CFS
uses one key to encrypt all the files in a directory
tree, which is not as desirable as using one key for
each file. If the key is stolen, physically or through
exploitation, the files encrypted under the key are
revealed. Therefore, the fewer files are encrypted
under a single key, the better.

We attack this problem by storing a randomly gen-
erated user key on a smartcard, and generating a file
key that is used to encrypt only one file. We have
implemented such a system called SC-CF'S, based on
CFS. Instead of a password, SC-CFS uses the ran-
dom key on a smartcard to generate file keys, thus
thwarting dictionary attack. On host compromise,
SC-CFS reveals only the keys of the files that are
currently used (and these files are already in mem-
ory in the clear, anyway), thus minimizing dam-
age. The design, security considerations, implemen-
tation, performance evaluation, related work, and
future direction are discussed in this paper.

2 Design
2.1 Cryptographic File System Review

As SC-CFS is based on CFS, it is important to
understand how CFS works. CFS consists of a
CFS daemon, or cfsd, and application programs.
cfsd is a Network File System [21] server daemon
(i-e., it provides a file system that can be mounted
and be accessed through the NFS protocol) that
stores data encrypted. Application programs in-
clude cmkdir, which creates a CFS protected di-
rectory, cattach, which prepares a CFS directory
for use, and cdetach, which reverses cattach’s op-
eration.

Readers interested in details of CFS are advised to
consult Blaze’s paper [4].
2.2 Key Management

The goals of key management are as follows:

e A file key is derived from a master key in a
smartcard.

Only the owner of the smartcard should be able
to use the file system. Therefore, a file key,
which is used to encrypt and decrypt a file,
should be derived from the master key in a
smartcard. On the other hand, the master key
should NOT be derivable from the file key.

e A unique file key is used to encrypt each file.

A file key is used to encrypt only one file to
minimize the damage if it is revealed through
host compromise. This property is discussed
more in Section 3.

e A file key changes with the associated file.

When a file is written, its associated file key
changes to protect the new file content; this
provides forward secrecy. Consider the follow-
ing scenario: a file key is stolen through host
compromise. The file content is revealed to the
adversary. Later, the file content is updated by
a user. If the file key does not change, the new
content is also available to the adversary. To
avoid this, the file key should change on every
update.

To achieve these goals, we designed the following
key management scheme.

e A randomly generated master key is stored in
a smartcard.

e cfsd uses a file’s inode number and a time-
stamp of last modification as a seed of the file.
Each entry is 4 bytes long, so the seed is 8 bytes
long ({inode#, timestamp}).

e cfsd sends the seed to the smartcard. The
card replies with the SHA1 hash result of
the seed concatenated with the master key.
(SHA1{inode#, timestamp, Kyser}). This is
20 bytes long.

e cfsd further hashes the result into an 56-bit
DES key, and uses it to encrypt and decrypt
the file.

2.3 Authentication

SC-CFS employs the same authentication mecha-
nism as CFS. A “signature”, which is a 4 byte prede-
fined string concatenated with 4 byte random string,
encrypted in a way described in the previous key
management section, is stored in each CFS direc-
tory. When a user starts accessing the directory,

cattach tries to decrypt the signature. If cattach
recovers the predefined string correctly, the user has
entered the right password (in CFS) or used the
right smartcard (in SC-CFS), so he is allowed to
enter the directory.

In SC-CFS, before a smartcard is used, the correct
Personal Identification Number (or PIN) must be
typed. The PIN is a 3 - 8 digit number, which
protects the information in the smartcard when it
is lost or is stolen. The adversary who owns the
smartcard cannot use it without knowing the PIN,
as the smartcard blocks after some fixed number,
say three, wrong PINs are entered.

2.4 Caching

CFS employs partial encryption of a file to minimize
the performance overhead introduced by encryption.
When a block (8 byte) in a file is updated, it is
first XOR’ed with a precomputed string, encrypted
with a sub key, and then XOR’ed with another pre-
computed string. The two precomputed strings and
the sub key are pseudorandomly generated, based
on the directory key 2. The advantage of this ap-
proach over a chaining mode encryption, such as
DES-CBC, is that a file can be partially updated.
Chaining mode encryption requires the entire file to
be encrypted at once.

As one of our goals is to change a key with every
update of the associated file, we do not use this
partial encryption approach. Instead, every write
re-encrypts the whole file, . Therefore, DES-CBC
is used.* This introduces potentially prohibitive
performance overhead because of paging. In most
UNIX systems, a file consists of several 4096 byte
pages. A write operation to a long file is split into
multiple 4096 byte writes. For example, to write a 1
Mbyte file, 256 write operations are necessary. We
cannot afford to change a file key and encrypt the
entire file 256 times. To counter this, a single file
cache is introduced.

The cache loads a file when it is first accessed, and
decrypts it. When the file is closed, it is encrypted
under an updated file key and written back to the
backing store. Because NFS does not have a close
operation (NFS server is stateless), writeback hap-
pens in one of the following events:

3A directory key is a key used to encrypt files in a direc-
tory. This is entered by a user.

4We still could have used partial encryption to achieve
partial reads. The decision to use DES-CBC may be recon-
sidered in the future.

e Another file enters the cache.
e Once a minute.

e CFS directory is detached.

3 Security Consideration

We discuss the security of our approach here, mainly
in comparison with CFS. Another cryptographic file
system, Transparent Cryptographic File System (or
TCFS), has a key management system similar to
CFS [5]. Discussion of CFS in this section also ap-
plies to TCFS.

3.1 Model

We start with constructing a model of our system.
The model consists of the following participants:

Alice (A) A user who uses CFS or SC-CFS.
Host A host computer that runs CFS or SC-CFS.

Smartcard A smartcard that plays the key gener-
ation role in SC-CFS.

Backing Store A backing store for CFS or SC-
CFS. This may be any file system, e.g., a local
file system or a network file system.

Mallory (M) An adversary.
3.2 Threats

We make the following assumptions in our model.

1. Mallory can compromise a host.

Mallory can exploit security holes of the host,
or physically access the host and overwrite the
system administrator’s password. Mallory can
read and modify any information on the host.

2. Mallory cannot substantially change the behav-
ior of the host.

By Assumption 1, Mallory is able to install a
Trojan horse in the host, which, for example,
steals decrypted files. However, we assume this
attack is impossible because:

e Maintaining Trojan horses is hard, as Al-
ice can find them by looking at change of
file contents and logs.

e It becomes much harder if Alice uses appli-
cation integrity checker, such as Tripwire
[16].

e It becomes even harder if Alice uses hard-
ware based integrity checker, such as
AEGIS [1] and sAEGIS [13].

3. Mallory cannot compromise the smartcard.

Mallory can neither read nor modify any infor-
mation in a smartcard. She cannot influence
the behavior of a smartcard.

4. Cryptographic operations are strong.

Our principal cipher is DES, which is as-
sumed impossible to compromise in reasonable
amount of time. This may not be a good as-
sumption any more in the age of fast DES
crackers [7]. DES should be replaced with
triple-DES in the future.

Also, our principal hash function, SHA1, is as-
sumed to be collision free.

3.3 Attack

Key Theft

If a host is compromised (possible by Assumption
1), keys can be stolen in CFS and SC-CFS:

In CFS, the key that encrypts the current working
directory is stolen. As a result, all the files in the
directory are revealed. Unless the key is explicitly
changed, all the files will be accessible by the adver-
sary.

In SC-CFS, the key that encrypts the file currently
in the SC-CFS cache is stolen. The rest of the files
in the file system are safe. The master key is safe
because it is in a smartcard (Assumption 3). When
the file is updated, it is encrypted under a different
key, so it becomes safe again.

SC-CFS is more secure than CFS because when a
key is stolen, only one file can be decrypted by the
key. This file is being used by an application, so
it resides in the clear in memory, and is revealed
on host compromise, anyway. In contrast, when a
directory key is stolen in CFS, all the files in the di-
rectory tree, including the ones that are not opened,
are revealed.

CFS takes this “key per directory tree” approach to
avoid forcing a user to remember many passwords.

In SC-CFS, a smartcard remembers a randomly gen-
erated master key, and generates file keys, eliminat-
ing this problem.

Storage Theft

Storage theft is sometimes more easily accomplished
than host compromise, thus requires special atten-
tion.

In CFS, the keys are derived by user passwords, and
are vulnerable to dictionary attack. An adversary
who steals a hard disk can run off-line dictionary
attack as follows:

e Pick a password.

e Generate a sub key and random strings, as CFS
does.

e Apply reversed CFS encryption operation to an
encrypted file.

e If this recovers a readable text, this is the right
key. If it does not, pick another password and
try again.

Many sophisticated password crackers are published
(e.g., John the Ripper [22]), and can be used to
implement such an attack.

In SC-CFS, the master key is a random number, so
it is not vulnerable to dictionary attack. By As-
sumption 4, brute force attack on the master key is
also impossible.

On-Line Attack

In both CFS and SC-CFS, user authentication is
performed by cattach, with a password in CFS and
with a PIN in SC-CFS. As a consequence, if Mallory
compromises the host (possible by Assumption 1)
while Alice is using CFS or SC-CFS, she is able to
impersonate Alice.

This causes more serious damage to CFS than to
SC-CFS because with CFS, Alice has no way know-
ing Mallory is accessing her files. With SC-CFS,
one can take advantage of physical isolation of a
smartcard to counter this problem. For example, if
a LED box that indicates data transmission via a se-
rial port is installed on Alice’s computer, she knows
when Mallory is accessing her files. Furthermore, a
display on the smartcard reader that displays the
name of the accessed file and a pad on the reader
that asks for a PIN on accessing files are useful.

The problem of on-line attack is a potent threat
to almost all smartcard based systems because cur-
rent smartcards do not have a secure I/O path with
users. This is an important problem. A smartcard
reader with a built-in PIN pad can solve this prob-
lem partially, i.e., it prevents PIN theft. SPYRUS’s
Rosetta Personal Access Reader 2 is an example of
such readers [26].

Virtual Memory Compromise

Niels Provos has pointed out that virtual mem-
ory backing store may contain critical secrets even
though application programs delete them [23]. By
reading a hard disk which is used as the backing
store, Mallory is able to recover secrets.

In CFS, the user master key and the directory keys
may be in virtual memory. In SC-CFS, the user
master key is in a smartcard, so only the file keys
are vulnerable.

4 TImplementation

Host-side implementation was tested on Linux-
2.2.12 and OpenBSD-2.7. NFS is a standard
protocol, so this should run on almost any
UNIX. Smartcard-side implementation is specific to
Schlumberger Cyberflex Access smartcard. Because
Cyberflex Access is a Java card, we refer to the
smartcard-side program as “SC-CFS applet”.

SC-CFS has been implemented as extension to CFS.
The implementation is divided into the following
parts: modification to cfsd, cattach, cmkdir, and
implementation of the SC-CFS applet. Here we dis-
cuss each part.

e Modification to cfsd

In CFS, cfsd stores {inode#, creation time}
in a file called .pvect_encrypted-filename. SC-
CFS uses the same file. ® First, cfsd is mod-
ified to store a modification time instead of a
creation time, as the modification time is used
as a seed of a file key in SC-CFS.

Then, the single-file cache described in Section
2.4 is implemented. Finally, read and write

5CFS does this instead of using information in the vnode
structure, as the information changes on undesirable occa-
sions, e.g., when a file is backed up and is resumed, or its
modification time is changed by touch.

operations are modified to access data through
the cache.

e Modification to cattach

When cattach is invoked with -p
port-number option, it asks for a PIN
instead of a password and then sends it to
cfsd. cfsd initializes the smartcard, sends the
PIN to the smartcard, and then carries out the
card authentication described in Section 2.3.

e Modification to cdetach

When cdetach is invoked, cfsd cleans up the
cache and terminates the connection with the
smartcard.

e Modification to cmkdir

When cmkdir is invoked with -S option, it cre-
ates a signature described in Section 2.3 in the
newly created SC-CFS directory.

e Implementation of SC-CFS applet

The master key is stored in a file in a smart-
card called ¢ ‘ke’’, or 0x6b65. This file is con-
figured so that it cannot be accessed without
going through the applet. The applet reads
this file only after the correct PIN is presented.
Key generation is simple: the applet concate-
nates the 8 byte seed to the 16 byte master key,
hashes it with SHA1, and returns the result to
cfsd.

5 Performance Evaluation

We have evaluated the performance of SC-CFS
in comparison with CFS and a local file system
(EXT2). First, the result of the Andrew Bench-
mark Test [10] is reported to show user response
time. Then, we look into the details of SC-CFS’s
most expensive operation: smartcard access.

The result shows that SC-CFS is significantly slower
than CFS when it accesses a smartcard to generates
keys. Most of this penalty is due to the slow speed
of a smartcard.

All the measurements have been carried out on
Linux-2.2 with 400 MHz AMD K6 and on Cyber-
flex Access smartcard. All the numbers reported
are in seconds, and are average of 5 trials.

5.1 Round Trip Time

The Andrew Benchmark (ABM), a standard file sys-
tem benchmark test, is used to measure the over-
head of SC-CFS. ABM has five phases: MakeDir
(mkdir), Copy (cp), ScanDir (1s -1), ReadAll
(grep), and Make (cc). Source code of C programs
used in the Make phase is slightly modified from
the original Andrew Benchmark to make the test
runnable on Linux-2.2 ¢. The results are shown be-
low. The numbers are in seconds.

Local CFS (sec) SC-CFS (sec)
MakeDir | 0 0.2 0.2
Copy 0.6 1.0 21.8
ScanDir | 1.2 1.6 1.0
ReadAll | 2.0 3.0 22.6
Make 5.0 7.8 29.6

SC-CFS works as efficiently as Local and CFS when
it does not need to access a smartcard (MakeDir
and ScanDir 7). However, in the other cases (Copy,
ReadAll, Make), SC-CFS is much slower.

This performance impact is clearly due to the slow
speed of a smartcard. Key generation, the only ser-
vice the smartcard provides, takes 0.31 second. The
following table shows: (1) the number of accesses
to a smartcard, (2) (1) x the average smartcard ac-
cess time (0.31), and (3) the difference between the
round trip time of SC-CFS and CFS. The second
column and the third are very close, showing that
the most of the performance overhead is for smart-
card.

seed to the smartcard and invokes the key gener-
ation method inside the smartcard. The other is
get_response, which asks the smartcard to return
the result of key generation. A smartcard standard
ISO 7816-4 [12] defines the T=0 communication pro-
tocol, which Cyberflex Access adopts, to be uni-
directional, i.e., a smartcard can either send or re-
ceive data in one APDU. Therefore, in addition to
generate key APDU, get_response APDU is nec-
essary. These two APDUs are sent to the smartcard
consecutively.

The following table shows the breakdown of the two
APDUs. “generate key APDU overhead” is time
spent for sending a seed to smartcard, invoking the
method, and preparing a buffer for returned data.
Because this cannot be broken down further, it is
shown as one operation.

operation time (sec)
Hash (SHA1) 24 byte into 20 byte 0.15
generate key APDU overhead 0.10

Select root in file system 0.01
Select key file “ke” in file system 0.01
Read 16 byte from key file 0.01
get_response APDU (20 byte) 0.01
total 0.29

The cost boils down to two dominating operations:
SHAT1 hash function and generate_key APDU over-
head. These two are necessary operations, and we
cannot improve the performance of them without
modifying the smartcard. This points out the ne-
cessity of smartcards that execute cryptographic op-

SC-CFS—CFS(s) erations faster, with lighter method invocation over-

#acc #acc x0.31(s)
MakeDir | 0 0 0
Copy 70 21.7 20.8
ScanDir | 0 0 -0.6
ReadAll | 70 21.7 19.6
Make 75 23.3 21.8

5.2 Detailed Look

As smartcard access is seen to be the bottleneck of
SC-CFS, this part deserves special attention. De-
tailed performance evaluation was carried out on
Cyberflex Access, which communicates at 57.6 Kbps
with the host.

SC-CFS’s smartcard operation involves two APDUs
8: One is generate key, which sends an 8 byte

6We added five global variables, removed two getchar()s,
and changed options to ar. None of them should alter per-
formance significantly.

"File attributes retrieved by stat() are not encrypted.

8An APDU is a command sent to a smartcard from a

head.

6 Related Work

There exist several remotely keyed encryption algo-
rithms. The remotely keyed encryption is a way to
encrypt bulk data with a key in a smartcard, where
only small amount of work is done on the smartcard,
and the rest is done on a fast host. Our session key
generation scheme is one of them. Other examples
include RKEP by Matt Blaze [3], another one by
Blaze [2], ReMaRK [19] and ARK [18] by Lucks,
and one by Jakobsson et al. [15].

We have chosen our keying scheme because this is
implemented the fastest on the smartcard we used
(Cyberflex Access). It is implemented with one

host. Readers interested in smartcard concepts are advised
to consult a reference text [9].

smartcard call, in which a hash function is called
once. RKEP requires one smartcard call with two
encryption calls and one hash function call. The
other Blaze requires one smartcard call with one
encryption call (encryption is more expensive than
hash function in Cyberflex Access). ReMaRK re-
quires two smartcard calls with two encryption func-
tion calls and one hash function call. ARK requires
two smartcard calls with two random permutation
calls and two random function calls. Jakobsson re-
quires one smartcard call with one encryption call.

Our keying scheme appears to protect a master key
and generates good session keys. However, not be-
ing cryptographers, we could not prove our scheme
to be as secure as the other schemes in this pa-
per. Whether our scheme is best for SC-CFS or
we should choose one of the the other schemes is
under discussion.

7 Future Direction
7.1 Administration Tools

With the current SC-CFS prototype, a user has to
manually update his master key and PIN via our
smartcard communication tool called pay [24]. Au-
tomated tools to do this should be provided.

7.2 Performance Improvement

Clearly, performance overhead is a large obstacle
against wide deployment of SC-CFS. 300 millisec-
ond overhead per file is acceptable for some appli-
cations, for example, word processing, but is not
for others, such as scanning a large number of e-
mail messages for a string, or a query operation on
a large database. Therefore, performance improve-
ment is essential.

Unfortunately, as shown in Section 5.2, the overhead
is dominated by individual operations in a smart-
card, which we, as application developers, cannot
change. We hope new smartcards or other similar
devices will achieve much higher performance in the
near future.

To improve the performance of SC-CFS with cur-
rent smartcard technology, it is possible to com-
promise between “key per directory tree” approach
(CFS) and “key per file” approach (SC-CFS). The
former is more efficient, but the latter is more se-
cure. Depending on the security and performance

requirements of an environment, middle ground im-
plementation may be useful, e.g., “key per n files”
approach, or caching file keys.

8 Conclusion

We have developed SC-CFS, which improves the se-
curity of CFS by integrating a smartcard as a per-
sonal secure storage of a key.

The following three aspects highlight the value of
this work.

Improvement to important software.

As introduced in Section 1, the increasing threat of
physical attack demands a way to protect secrets
in a computer. CFS (and all the other file systems
that protect files through encryption) is a secure
and seamless solution to this problem. This work
improves CFS in two important properties: secu-
rity and convenience. SC-CFS is more secure than
CFS because (1) the master key is a random num-
ber instead of a password, (2) the user master key
is not exposed to the host, and (3) a stolen file key
can reveal only one file. It is also more convenient
than CFS because all a user has to remember is a
short PIN, rather than multiple long passwords.

Important application for smartcards.

We believe that widespread deployment of secure
hardware is essential to the security of computer
systems. Systems are as secure as the weakest link,
and reliance on user passwords is often the weak-
est link. Granted, passwords can be made stronger
by choosing good ones and by changing them of-
ten. However, widespread deployment of security-
critical Internet services requires a human to main-
tain many passwords: computer login, file system
authentication, newspaper homepages, e-commerce
homepages, online banks, web portals, and so on.
Realistically speaking, it is impossible for a human
to maintain so many good (therefore hard to re-
member) passwords. She will end up using the same
password for many services, or will write the pass-
words down somewhere. Besides, she does not want
to type passwords all the time. Smartcards solve
this problem nicely by securely storing keys. There-
fore, we wish to contribute to the widespread de-
ployment of smartcards, and this work is an impor-

tant step toward the goal, as secure storage is an
important and suitable application of a smartcard
(authentication being another [14]).

Remark on smartcard performance

Performance evaluation in Section 5 shows how im-
portant a fast smartcard is. In recent years, smart-
cards have matured in terms of functionality and
reliability. However, we have not seen significant
performance improvement, even though micropro-
cessors have sped up by 5 to 10 times.

9 Availability

SC-CFS has been tested on Linux 2.2 and OpenBSD
2.7. The source code of SC-CFS is available at CITI
homepage:

http://www.citi.umich.edu/projects/
smartcard/sc-cfs.html

Acknowledgment

We thank Niels Provos for suggesting a high speed
key generation method. Peter Honeyman and Jim
Rees have advised us through this project, and sug-
gested a file caching idea.

This work was partially supported by a research
grant from Schlumberger, Inc.

References

[1] William A. Arbaugh, David J. Farber, and
Jonathan M. Smith. A secure and reliable boot-
strap architecture. In 1997 IEEE Symposium
on Security and Privacy, Oakland, CA, May
1997.

[2] M. Blaze. Key management in an encrypt-
ing file system. In Proceedings of the USENIX
Summer 1994 Technical Conference, pages 27—
35, Boston, MA, USA, 6-10 1994.

[3] M. Blaze. High-bandwidth encryption with
low-bandwdith smartcards, 1996.

[4] Matt Blaze. A cryptographic file system for
UNIX. In Proceedings of 1st ACM Conference

[10]

[11]

[12]

[13]

[14]

on Computer and Communications Security,
pages 9-16, Fairfax, Virginia, November 1993.
ftp://ftp.research.att.com/ dist/mab/cfs.ps.

G. Cattaneo, G. Persiano, A. Del Sorbo,
A. Celentano, A. Cozzolino, E. Mauriello,
and R. Pisapia. Design and implementation
of a transparent cryptographic file system
for UNIX. Unpublished Technical Report.
Dip. Informatica ed Appl, Universita di
Salerno. Available via ftp in ftp://edugw.
dia.unisa.it/pub/tcfs/docs/tcfs.ps.gz., July
1997.

Dorothy Denning. Cryptography and Data Se-
curity. Addison-Wesley, 1983.

Electronic Frontier Foundation. Cracking DES
- Secrets of Encryption Research, Wiretap Pol-
itics & Chip Design. O’Reilly & Associates,
Inc., 1 edition, 1998.

Jr. Frederick P. Brooks. The Muythical Man-
Month : FEssays on Software Engineering.
Addison-Wesley, 2 edition, July 1995.

Scott B. Guthery and Timothy M. Jurgensen.
Smart Card Developer’s Kit. MacMillan Tech-
nical Publishing, Indianapolis, Indiana, De-
cember 1997.

J.H. Howard, M.L. Kazar, S.G. Menees, D.A.
Nichols, M. Satyanarayanan, R.N. Sidebotham,
and M.J. West. Scale and performance in a
distributed file system. ACM Transactions on
Computer Systems, 6(1):51 — 81, Feb. 1988.

John D. Howard. Security incidents on the
internet. In Proceedings of INET 98. Inter-
net Society, 1998. http://www.comms.uab.es/
inet99/inet98/ 2d/2d_3.htm.

The International Organization for Standard-
ization and The International Electrotechnical
Commission. ISO/IEC 7816-4 : Information
technology - Identification cards - Integrated
circuit(s) cards with contacts, 9 1995.

Naomaru Itoi, William A Arbaugh, Samuela J
Pollack, and Daniel M Reeves. Personal secure
booting. Technical report, Center for Informa-
tion Technology Integration, 2000. To appear
in ACISP 2001, Australia. Technical Report at
http://www.citi.umich.edu/ techreports/.

Naomaru Itoi and Peter Honeyman. Smartcard
integration with Kerberos V5. In Proceedings of
USENIX Workshop on Smartcard Technology,
Chicago, May 1999.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Jakobsson, J. Stern, and M. Yung. Encrypt
small, 1999.

Gene H. Kim and Eugene H. Spafford. The de-
sign and implementation of tripwire: A file sys-
tem integrity checker. Technical report, Purdue
University, 1995. CSD-TR-93-071.

Daniel V. Klein. Foiling the cracker: A sur-
vey of, and improvements to, password secu-
rity. In UNIX Security Workshop II, pages 5 —
14. USENIX Association, 1990.

S. Lucks. Accelerated remotely keyed en-
cryption. Lecture Notes in Computer Science,
1636:112-123, 1999.

Stefan Lucks. On the security of remotely keyed
encryption. In Fast Software Encryption, pages
219-229, 1997.

Christopher Marquis. Deep security flaws seen
at state dept, May 2000. http://www.fas.org/
sgp/news/2000/05/ nyt051100.html.

Sun Microsystems. Network filesystem specifi-
cation. Network Working Group, Request For
Comments 1094, March 1989.

Open Wall Project. John the ripper.
http://www.openwall.com/john/.

Niels Provos. Encrypting virtual memory. In
Proceedings of 9th USENIX Security Sympo-
sium, August 2000.

Jim Rees. Iso 7816 library, 1997.
http://www.citi.umich.edu / projects /
sinciti / smartcard / sc7816.html.

Dug Song. dsniff. http://www.monkey.org/
dugsong/dsniff/.

Spyrus. http:// www.spyrus.com/.

