<— average

commo

I

A couple billion lines of code later: static checking
in the real world

Andy Chou, Ben Chelf, Seth Hallem
Scott McPeak, Bryan Fulton, Charles Henri-Gros,
Ken Block, Anuj Goyal, Al Bessey
Chris Zak
& many others
Coverity

Dawson Engler
Associate Professor
Stanford

One-slide of background.

Academic Lineage:
MIT: PhD thesis = new operating system (“exokernel”)
Stanford ('99--): techniques that find as many serious bugs as
possible in large, real systems.

Main religion = results.
System-specific static bug finding [OSDI’00, SOSP’01...]
Implementation-level model checking [OSDI'02, '04, °06].
Automatic, deep test generation [Spin’05,Sec’06,CCS’06,
ISSTA’07]

Talk:
Experiences commercializing our static checking work
Coverity: 400+ customers, 100+ employees.
Caveat: my former students run company; | am a voyeur.

Many stories, two basic plots.

Fun with normal distributions

<— average

common (n—>inf)

e

Social vs Technical: “What part of NO! do you not understand?”

No: you cannot touch the build. No!
No: we will not change the source. @

No: this code is not illegal C.

No: we will not understand your tool.

No: we do not understand static analysis.

Context: system-specific static analysis
Systems have many ad hoc correctness rules

E N 11

“acquire lock | before modifying x, “cli() must be paired
with sti(),” “don’t block with interrupts disabled”

One error = crashed machine

If we know rules, can check with extended compiler
Rules map to simple source constructs
Use compiler extensions to express them

lock_kernel();
if ('de->count) {

Linux printk("free\n"); o
fs/proc/ | return; T [Lock checker MISSINg
inode.c |} unlock!

unlock kernel();

Nice: scales, precise, statically find 1000s of errors

The high bit: works well.

Lots of papers.

System specific static checking [OSDI'00] (Best paper),
Security checkers [Oakland’02,CCS’03, FSE’03]

Race condition and deadlock [SOSP °03],

Others checkers: [ASPLOS’00,PLDI’02,FSE’02 (award)]
Infer correctness rules [SOSP’01, OSDI’06]

Statistical ranking of analysis decisions [SAS’03,FSE’03]

PhDs, tenure, award stuff.

Commercialization: Coverity.
Successful enough to have a marketing dept.
Proof: next few slides.

Useful for where data came from & to see story settled on
after N iterations.

Our Mission

age A
vew LGS v MmN

1 iaTra \a._'\cn\“‘:‘ .
L LA - - i -
r & o imacy!
for "‘“l",.‘.\ al ;l“ y . Tvew LT
Lo codeBa Bl crare
- AT
‘:: ‘r .‘dd\ma‘%‘-‘{ -
cker -

checkA\) Crrues
er -

¥ : -_:,ta\"“'-ou A

pub SRR 1 Qe
?i\nt:\%rr _startOs
¥

¥ Jn(era?
ic void P e(picey
publ? drawima9® -t a5t

?f (count
} y

21 A rul'\k.- d

To improve software quality by
automatically identifying and
resolving critical defects and security
vulnerabilities in your source code

1. Exploding complexity

{?\Mndows\/istar
TODAY’S PREMIUM AUTOMOBILE WINDOWS VISTA
10 MILLION LINES OF CODE 50 MILLION LINES OF CODE

Diagram of Onboard Network of a Premium Car

b Sl S U Windows OS Code Growth - MLOC
(Source: Wikipedia)

.
> : NT 3.1 NT 3.5 NT 4.0 2000 XP (01) Vista
('93) ('94) ('96) ('05)

2. Multiple Origins of Source Code {) coverity

Outsourced Code
— Offshore
— Onshore

3rd Party Code
— Components and Objects
— Libraries

Infrastructure Frameworks
— Java EE
— Service Oriented Architecture (SOA)

Legacy Code Bases
— Code through Acquisitions
— Code Created by Past Employees

Technological Leadership [2007:dated] @ coverity

Customers
350

Stanford C analysis C++ analysis Security NEVEWGE S
Research Concurrency Enterprise
Program Management

Satisfiability

Employees

1999-2003 2003 2005

Over 1 Billion Lines of Code

@ GMENRY Gshorelel Ayig] mavineon

3 Texas | :
INSTRUMEN UTERS D

@ Coverity Customers in the Fortune 500: ., 5? '7

57% of Software companies

@mmﬂ 94% of Networking compa.nies HI]PSVS'
50% of Computer companies

44% of Aerospace companies

, symantec. JPEsYaN steor (€ OpENWAVE i Al Technolge

iiiiiii

QY McAfee wino river [ED/A @ “Ltellabs

Jul:Pmpl.Hml.n
of &

Cmidrrrad irnit bm

Over 1 Billion Lines of Code

R

AEEE SIEMENS
Graphies © ShoreTel
,nﬁ“w“r ,5}’1111111&:{:. Ne':ipp'

) McAfee WIND RIVER

Carnegie Mellon

@ OPENWAVE"

ARM [FOA

Avid
w nmi
CISCO
symbian m?mm

PZ=4 | PHILIPS

SYNOPSYS «esasies

TERADATA
Ruising Intelligence

AaaFacHE

=

Coverity Trial Process

Test your code quality
— Analyze your largest code base

— One day set up, two hours for results
presentation

— Test drive the product at your facility

Benefit to your team

— Post trial report describing
summary of findings

— Sample defects from your
code base

— Fully functional defect
resolution dashboard

@) coverity

elp | Logo

Indivi > Defect
Checker: NULL RETURNS
Function: s_locked

File: fsourceflocking locking.c

Find event: | [103] retumed_nul v [V Show cross references

L IT OPLOCK) && 4
n 13
]
Z
£op)
unction
ladmin 2007-07-07 17:29 =
1D 195 after upgrade 106
includes some defects that 107
ipreviously belonged to CID 108 count,
201, 109 lock typ:
Atribute confict for Qwner 110 o k flav)
among { ya, voker } 1 0C FREE (br_lck)
esalved as ra, 112 1
113 i
ra 2006-03-06 08:39 114 yte rang ock *br lck = b et locks (NULL, fsp);
Classification: Bug m 115 ret = !pbrl locktest(pr lck,
icton: Fi 116 g Bpid
117 B self(),
jra 2006-03-06 08:36 113 offset,
Classification: Bug e, =
Action: Undedided M P 119 coont | 5

Trial = main verb of company.

Can’t do trial right, won’t have anything.

First order dynamics:
Setup, run, present “live” w/ little time.

Error reports must be good, setup easy since won't
understand code

Can’t have many false positives since can’t prune
Must have good bugs since can’t cherry pick

Some features:

$0. means anyone can get you in. Cuts days of
negotiation. Sales guy goes farther.

Straight-technology sale. Often buyer=user.

Filters high support costs: if customer buys, had a setup
where we could configure and get good errors.

Con: trial requires shipping SE + sales guy.

Overview

Context

Now:
A crucial myth.
Some laws of static analysis
And how much both matter.

Then: The rest of the talk.

A nalve view

Initial market analysis:
“We handle Linux, BSD, we just need a pretty box!”
Obviously naive.
But not for the obvious reasons.

Academia vs reality difference #1:
In lab: check one or two things. Even if big = monoculturish.
In reality: you check many things. Independently built.
Many independent things = normal distribution.
Normal dists have points several std dev from mean (“weird”)
Weird is not good.

First law of checking: no check = no bug.
Two even more basic laws we’d never have guessed mattered.

Law of static analysis: cannot check code you do
not see.

How to find all code?

“find . —name “*.¢7 " ?

Lots of random things. Don’t know command line or includes.
Replace compiler?
“No.”

Better: intercept and rewrite build commands.

make —w > & out
replay.pl out # replace ‘gcc’ w/ ‘prevent’

In theory: see all compilation calls and all options etc.
Worked fine for a few customers.
Then: “make?”

Then: “Why do you only check 10K lines of our 3MLOC system?”
Kept plowing ahead.

“Why do | have to re-install my OS from CD after | run your tool?”
Good question...

The right solution

Kick off build and intercept all system calls
“cov_build <your build command>" - grab chdir, execve, ...
Know exact location of compile, version, options, environ.
Probably *the* crucial technical feature for initial success.
Go into company cold, touch nothing, kick off, see all code.
In early 2000s more important than quality of analysis?

Not bulletproof. Little known law: “Can’t find code if you can’t get
command prompt”

A only-in-company-land sad story:
On windows: intercept means we must run compiler in debugger.

Widely used version of msoft compiler has a use-after-free bug hit if
source contains “#using”

Works fine normally. Until run w/ debugger!
Solution?

Lesson learned?
Well, no: Java.

(Another) Law of static analysis: cannot check
code you cannot parse

Myth: the C language exists.

Well, not really. The standard is not a compiler.
The language people code in?
Whatever their compiler eats.
Fed illegal code, your frontend will reject it.
It’s *your* problem. Their compiler “certified” it.
Amplifiers:
Embedded = weird.

Msoft: standard conformance = competitive disadvantage.
C++ = language standard measured in kilos.

Basic LALR law:

What can be parsed will be written. Promptly.

The inverse of “the strong Whorfian hypothesis” is a empirical
fact, given enough monkeys..

A sad storyline that will gross exactly $0.

coreHdr.h

some illegal construct

— %’ Fllefl.e
#include “coreHdr.h” #include “coreHdr.h”

...entire system...

-—> “Parse error: illegal use of ...”

“Deep analysis?! Your tool is so weak it can’t even parse C!”

[—

Some specific example stories.

coreHdr.h

i EhdSR R 2

Some specific example stories.

coreHdr.h

#pragma c I SPHLULS.QN

ini6 Esrsetiumpt By)fpuf) =
inline double #btidsa G5(€o 0BR8P ;.)
#pragma c Iusplus off

v
“con‘f‘ﬁ&ﬂﬁgclfggeg P *mél_acos”

o]
or

Great moments in unsound hacks

Tool doesn’t handle (illegal) construct?
Have reg-ex that runs before preprocessor to rip it out.
Amazingly gross. #pragma asm
Actually works.

#pragma end_asm

!

ppp_translate (“/#pragma asm/#if 0/”);
ppp_translate(“/#pragma end_asm/#endif/”);

{

#if0

Unsound = more bugs
#endif

Msoft story: ubiquitous, gross.

coreHdr.h

| can put whatever | want here.

i#eppech flelRe compile.
If your compiler gives an error it sucks.
#include <some-precompiled-header.h>

v

“storage size of ‘bar’ is
“I;BB whRRROR! ERROR!

Making the depressing more precise

Goal: you must approximate:

Lang(Compiler) = { f | 4 0,e,c Accepts(Compiler,f,0,e,c) }
Where:

Compiler = a specific version of a “native” compiler

f = file.c, plus headers

o = ordered list of command line options and response files

e = environment

¢ = compiler-specific configuration files

To work well:

Lang(Tool) ~ Lang(Compiler,) U Lang(Compiler,) U ...
Where | Lang(Compiler,) u Lang(Compiler,) U ... | = large.

OK: so just how much does C not exist?

We use Edison Design Group (EDG) frontend
Pretty much everyone uses. Been around since 1989.
Aggressive support for gcc, microsoft, etc. (bug compat!)

Still: coverity by far the largest source of EDG bugs:
406 places where frontend hacked (“#ifdef COVERITY”)
266 “add compiler flag” calls

still need custom rewriter for many supported compilers:

912 arm.cpp 1656 metrowerks.cpp 457 sun.cpp

629 bcc.cpp 1294 microsoft.cpp 294 sun_java_.cpp
334 cosmic.cpp 285 picc.cpp 756 xlc.cpp
1848 cw.cpp 160 qnx.cpp 280 hpux.cpp

673 diab.cpp 1861 renesa.cpp 603 iccmsa.cpp

914 gnu.cpp 384 st.cpp 421 intel.cpp
1425 keil.cpp

Completely unbelievable!

Incredibly banal. But if not done, can’t play.
Takes more effort than can imagine.
Full time team.
This is their mission. Never finished.
Certainly not in only 5 years.

Two examples from trial reports from within *72 hours™ of making this
slide:

__creregister volatile int x; —3p | Volatile int x;

#pragma packed 4 struct foo {...}; __J,#pragma packed (4) struct foo{...};

Never would have guessed this is the first-order bound on how much
bugs you find.

Annoying amplifier: Can we get source?

*NO™!
Despite NDAs
Even for parse errors
Even for preprocessed
Might just be because coverity too small to sue?

Sales engineer has to type in from memory.
And this works as well as you’d expect.
Even worse for performance problems.
Oh, and you get about 3 tries to fix a problem.

Bonus: add a TLA and things get worse.
NSA = Can we see source? NO!

FDA, FAA = frozen toolchain. Theirs. Yours. Banal, crucial:
Where to get license for a 20+yr/old compiler?

The end result

Heuristic: If you’ve heard of it, will wind up supporting it:

£ ada -
[Apy - / @ WoN Microsoft
| sotar’s, | | Green Hills "F'“?/
= Studio
A [ﬁﬂ] WIND RIVER ANSI |
NCEI\SSD eBSD f-{ I ”fel ﬁgTEmENTS
\

Forced support for many things haven’t heard of (or read
obituary for).

Tasking, Microtec, Metaware, Microchip C-18, Code Vision,

A compiler development company / Photography company:
"Specializing in Anime and SF/Fantasy Convention

photography and other costuming photography. We can also
do on-location photoshoots."

Overview

Context

The banal hand of reality:
Law: Cannot check code you can’t find
Law: Cannot check code you can’t parse
Myth: C exists

Next:
Do bugs matter?
Do false positives matter?
Do false negatives matter?

The best bugs
Academics meet reality. Reality wins.

You fix all bugs, right?
The evils of non-determinism

Do bugs matter? (“Huh?”)

Shockingly common: clear, ugly crash error.

“S0?”
“Isn’t that bad? What happens?”
“Oh, will crash. We will get a call.” Shrug.

If developers don’t feel pain, they often don’t care.
Technical: clustered applications that reboot quick.
Non-technical: if QA cannot reproduce, then no blame.

But bugs matter right?

Not if: Too many. Too hard. [More later]

The next step down: “That’s not a bug”
Recognition requires understanding.
Cubicles are plentiful. Understanding, not so much.

“No, your tool is broken: that’s not a bug”

“No, it’s *loop™.” for(i=1; 1 < 0; i++)
...deadcode...

“No, | meant to do that: they are next to each other”

int a[2], b;
memset(a, 0, 12);

“No, that’s ok: there is no malloc() between”

free(foo);
foo->bar = ...;

“No, ANSI lets you write 1 past end of the array!”
(“We’ll have to agree to disagree.” !!l)

unsigned p[4]; p[4] = 1;

(Often) People don’t understand much.

Our initial naive expectation: People who write code for
money understand it. Instead:

“To build, I just press this button...”

“I'm just the security guy”

“That bug is in 3" party code”

“Is it a leak? Author left years ago...”

People don’t understand compilers.
“Static” analysis? What is the performance overhead?

Business card at customer site: “Static analyzer” (?!)
“We use purify, why do we need your tool?”

Anything that finds bugs = testing.
“Think of it as super compiler warnings”

How to handle cluelessness?

Can’t argue

Stupidity works with modular & emotional arithmetic.
Instead: use normal distributions.

Try to get a large meeting. (Schedule before lunch?)

lllllllllllllllll
T

These guys

v beat these guys

More people in room = more likely someone in room that:

Cares; is very smart; can diagnose error; has been burned by
similar error; loses bonus for errors; ...

Is in another group!
If layoffs happen: will be fired(!)

What happens when can’t fix all the bugs?

Rough heuristic:
< 1000 bugs? Fix them all.
>= 1000? “Baseline”

Tool improvement viewed as “bad”
You are manager. Forall metrics X of badness you want:

pac T\ —

time \\
No manager getsa A \
\A

bonus for:

How to upgrade when more bugs != good?
Upgrade cycles:

Never. Guaranteed “improvement.”

Never before release (when could be most crucial)
Never before a meeting (at least is rational).
Upgrade. Roll back. (~ once per company.)

Renew, but don’t upgrade. (Not cheap.)

Once a year (most large customers). “Rebaseline”
Upgrade only checkers where you fix all/most errors.

People really will complain when your tool gets better.
V2.4: 2,400 initial errors. Fixed to get to 1,200
Upgrade to V3.5 = 2,600 errors.
MAD For both reasons.

Do false positives matter?

> 30% false rate = big problem.
Ignore tool. Miss true errors amidst false.
Low trust = Complex bugs called false positives. Vicious cycle.
Caveat: unless you wrap person around checker?
Caveat: some users accept 70% (or more: security guys).
Current deployment threshold = ~20%.
Unfortunately: many cases “high FP” rate not analysis problem

Not all false positives equal:
Initial N reports false? “Tool sucks” (N ~ 3)

Crucial: no embarrassing FPs.
Stupid FP? Implies tool stupid. Not good for credibility.
Social: don’t want to embarrass tool champions internally

Important: no failed merges.
Mark FP once? Fine. Reappears & mark again? email support.

A false positive pop quiz

Remove false positives: good or bad?
Initial trial: 700 reports
Fixed some problems. Remove 300 false positives. Yea!
What'’s the problem if they want to rerun before buy?

Tool X flags more errors than your tool.
However: Tool X sucks and these are almost all FPs!
Do you get sale or not?
What’s a bad evaluation method for your company?

Your checker X does tricky thing
It finds *many* *many* good bugs.
Developer X does not understand your checker
What happens?

Do false negatives matter?

Of course not! Invisible! Oops:
Trial: intentionally put in bugs. “Why didn’t you find it?”

Easiest sale: horribly burned by specific bug last week. You find
it. If you don’t?

Upgrade checker: set of defects shifts slightly = “Dude, where is
my bug?” (Goal: 5% “jitter”)

Run A and B. Even if A >> B, often A’s bugs not a superset
A very nasty dynamic (static, testing, formal)

Tool has bugs. Some lead to FPs some to FNs.

FPs visible = fixable. But each fix has chance of adding FN.

FNs invisible.

Currently: favor analysis hacks to remove FPs at cost of FNs

Overview

Context
The banal, vicious laws of reality and its cruel myths.

Practical questions:
Do bugs matter?
Do false positives matter?
Do false negatives matter?

Academics meet reality. Reality wins.
The evils of hon-determinism

The best bugs
Commerce factoids

Non-determinism = very bad.

Major difference from academia
People really want the same result from run to run.
Even if they changed code base
Even if they upgraded tool.
Their model = compiler warnings.

Classic determism: same input + same function = same result.

Customer determinism: different input (modified code base) +
different function (tool version) = same result.

They know in theory “not a verifier”. Different when they actually
see you lose known errors. Rule: 5% jitter.

Determinism requirement really sucks.
Often tool changes have very unclear implications. [Next.]
Often randomization = elegant solution to scalability. Can’t do.

An explosion of non-determ unfun: caching.

Code has exponential paths.
At join points and in same state, prune.

foo(); if(i)
lock(l); lock(l);

Cache hit!

{I == locked} {l == locked}
cache: {l == locked}
unlock(l);
return 0;
{I==ILcked}
\

So far so good. What about multiple pieces of state?

Problem: more code = less cache hits

Analyze more code?
Often don’t get cache hits b/c independent state

foo()
lock(l);

{l == locked}

if(i)

lock(m);

lock(l);
lock(m);

Cache/Am == locked}
miss!/ Cache

unlock(l);
return 0;

{m == locked,
| == locked}

{l == locked}
{m == locked}

Subset caching

Hack:
Cache = union of prior states. Hit = subset of that

(&ache m == locked}

{l == locked} saeh/ cache {m == locked,
- | == locked}
a {l == locked}
unlock(l);
return 0: {m == locked}

: : \ :
What if we just unroll loop 1-2 times?
Not enough: 1TMLOC + if-statements = not terminate.
Misses bugs: want fixed point based on checker value

So?

Basically a deal with the devil [that we would do all over again]
Works well for finding many bugs on large code bases.
Not so well at finding the *same* bugs

Bad: Minor code change = different cache hit or miss.
Effect is enormous.

True story:

Version2.0: follows true path, then false.
Version3.0: follows false path, then true.
People went *insane*. 20% fluctuation in errors. Soln?

Bad: don’t analyze an interesting path b/c cache hit.

The occasional *very* stupid false positive or nhegative

Hurts trust in tool. X =0;
for(...)

Lost *huge* sale: switch(...)
found lots of bugs just not this one:

W=VY/X;

Just how bad is non-determism?

Users pick determinism over bugs, over manual labor
CPrevent builds model of each analyzed function.
1st scan: missing models for functions hasn’t analyzed yet
2nd scan: has these models. If use them = less FPs + more bugs.
Common: people turn off so *discards* the prior results!
Thwarts natural solutions to large code problems
10+MLOC can be more than 24hrs. Lose sales.
Natural sol’n for exponential paths: Random search, timeout.
Both are complete non-starters.
No inference, no ranking.
| think this is *literally* 10x dropped right on the floor.
Even worse in java:
Represent function models (summaries) as bytecode
Elegant! Clean! Yeal.
Uh oh: must be < 32K. Larger? Discard.
Small change = different discards. Ugh...

Overview

Context
The banal, vicious laws of reality and its cruel myths
What actually matters?

Academics meet reality, good and hard.
The evils of non-determinism

Bugs: often best come from analyzing programmer beliefs.

Business factoids an academic finds amusing.

Myth: more analysis is always better

Does not always improve results, and can make worse

The best error:
Easy to diagnose
True error

More analysis used, the worse it is for both

More analysis = the harder error is to reason about, since
user has to manually emulate each analysis step.

Number of steps increase, so does the chance that one
went wrong. No analysis = no mistake.

In practice:
Demote errors based on how much analysis required
Revert to weaker analysis to cherry pick easy bugs
Give up on error classes that are too hard to diagnose.

More general: A too-hard bug didn’t happen.

In fact, can be worse.
People don’t want to look stupid.
If they don’t understand error, what will they do?

Social has *major* big impact on technical.
User not same as tool builder.
Uninformed. Inattentive. Cruel.
HUGE problem. Prevents getting many things out in world.

Give up on error classes that need too much sophistication.
statistical inference,
race conditions,
heap tracking
globals.
In some ways, checkers lag much behind our research ones.

No bug is too stupid to check for.

Someone, somewhere will do anything you can think of.

Best recent example:

From security patch for bug found by Coverity in X
windows that lets almost any local user get root.

Got on foxnews (website, not O’Riley)
So important marketing went to town:

if (getuid() != 0 &&

geteuid == 0) {
ErrorF(“ only root”);
exit(1);

}

Since without the parentheses, the code is simply checking to see if the
geteuid function in libc was loaded somewhere other than address 0
(which is pretty much guaranteed to be true), it was reporting it was safe
to allow risky options for all users, and thus a security hole was born.

- Alan Coopersmith, Sun Developer

lHlv”

¥ [CYE-2006-0745] X.0rg Security Advisory: privilege escalation and DoS in X11R6:9 _|EI|1|
File Edit Yiew Go Bookmarks Tools Help -
File Edit Yiew Go Bookmarks Tools Help
@-2-F0NDE -] O fiCl
I J <Z| - E:> - @ O @ Ix http:,I’,I’Iists.Freedesktop.org,l’archives,fxorg,fZDDﬁ-Malj @ Go I@,
Coverity: Automated.., | | Windows Marketplace my delicio.us | | post to delicio,us pOpUp post to
0 | .. -~ 0 Coverity: Automated... | | Windows Marketplace | f my delicio.us | | post todelicious | | popup post to del.ici... »

[CVE-2006-0745] X.Org Security Advisory #=sed versions: =
pl'i"ilege esc“]l“ltinn ‘dl](l D"S in XllRﬁ‘(’ xorg-server 1.0.0, as Vsl.lipped with H11R7.0, and all release candidates

- ralnerasble.
X11R7.0

Daniel Stone danel at foois!
Mor Mar 20 06:00:55

qe FIFSt exploit was published 5 hours after the

* NMess

hole was publicly reported

Local privilege
and X11R7.0
CWVE-ID: CWE-ZOODE-0745

this and other

Crrerview:
During the analysis of results from the Coverity code review of Z.Org, T BRI = oo o BEF oL 2k
. . hZZ57e95845111093caf0f1f63a7a%efaz0bocl xorg-server—-1.0.2.car.bz2
we discovered a flaw in the server that allows local users to execute
. . - . . £44f0£f071536791ed7ad4025hd0ddSeas3 xorg-server—1.0.2.car.gs
arbitrary code with root privileges, or cause a denial of service by
3f5c9803lfeiessldaibbles9467h8c3foaff5f3 xorg-server-1.0.2.car.gz

overwyriting files on the system, again with root privileges.
g k4 g Bt E 2! http://xorg. freedesktop.org/releases/ individual/ xserver/

Apply the patch helow to the X.Org server as distributed with X11R6.9:
de85e59hE006E76a52ec9162ecteObEel x1lr6.9.0-geteuid.diff

fOh73ib7olbd7dededbhed23741d5d1125eea5£5860 =x11r6.9.0-geteuid.diff
When parsing arguments, the server takes care to check that only root i

http://xory.freedesktop.org/releases/{11R6.9.0/ patches/
can pass the options -modulepath, which determines the location to load
many modules providing server functionality from, and -logfile, which
determines the location of the logfile. MNormally, these locations Thanks:
canhot ke changed by unprivileged users.

Vulnerabhility details:

We would like to thank Coverity for the use of their Prewvent code audit
This test was changed to test the effective UID as well as the real UID tool, which discovered this particular flaw.

in X.0rg. The test is defectiwve in that it tested the address of the ‘l |
geteuid function, not the result of the function itself. As a result,
given that the address of geteuid() is always non-zero, anh unpriviliged
user can load wodules from any location on the filesystem with root
privileges, or overwrite critical system files with the server log.

< | ;l_l
Z

| Done

&I_I;

|D0ne

One of the best stupid checks: Deadcode

Programmer generally intends to do useful work

Flag code where all paths to it are impossible or it makes
no sense. Often serious logic bug.

From UU aodv

After send, take packet off queue. Bug: if any packet on list
before the one we want will discard them!

/| packet_queue.c:packet _queue send
prev = null;
while(curr) {
if(curr->dst_addr == dst_addr) {
if(prev == NULL)
PQ.head = curr->next;
else
...DEADCODE [prev never updated]...

Deadcode: Most serious error ever(?)

Trial at chemotherapy machine company.

During results meeting:
Literally ran out to fix

Note: heavily sanitized
& simplified code.

enum Tube { TUBEO, TUBE1 };
void PickAndMix(int i) {
enum Tube tfirst, tlast;

if (TUBEO == i) {
tfirst=TUBEDO;
tlast=TUBE1;

} else if (TUBEO == i) {
tfirst=TUBE1;
tlast=TUBEDO;

}
MixDrugs(tfirst,tlast);

}

Best bugs: Cross-check code belief systems

MUST beliefs:

Inferred from acts that imply beliefs code *must* have.
X =*p/z;// MUST belief: p not nuli

[MUST:z!=0
unlock(l); // MUST: | acquired
X++; // MUST: x not protected by |

Check using internal consistency: infer beliefs at different
locations, then cross-check for contradiction

MAY beliefs: could be coincidental
Inferred from acts that imply beliefs code *may* have
AQ); AQ; AOs AQ; B(); / MUST: B() need not

// MAY: A() and B() // be preceded by A()

B); B(; BO: BO: | mustbe paired

Check as MUST beliefs; rank errors by belief confidence.

Internal null: trivial, probably best checker.

1% ¥ 3

p” implies programmer believes p is not null

A check (p == NULL) implies two beliefs:
POST: p is null on true path, not null on false path
PRE: p was unknown before check

Cross-check beliefs: contradiction = error.

Check-then-use (79 errors, 26 false pos)

/* 2.4.1: drivers/isdn/svmb1/capidrv.c */
if(!Icard)
printk(KERN_ERR, “capidrv-%d: ...”, card->contrnr...)

Null pointer fun
Use-then-check: 102 bugs, 4 false

/* 2.4.7: drivers/char/mxser.c */
struct mxser_struct *info = tty->driver data;
unsigned flags;
if(!tty || linfo->xmit_buf)
return 0;

Nice thing about belief analysis: perspective.
Natural to reason about: “Does this code make any sense?”

And once you do that, some very interesting errors...
X bug: Must know B is true but check
Chemo: Must know B is false, but check

If only read one of my papers, read this one:
“Bugs as deviant behavior...” [sosp’01]

Overview

Context
The banal, vicious laws of reality and its cruel myths
What actually matters?

Academics meet reality, good and hard.
The evils of non-determinism

Bugs: often best come from analyzing programmer beliefs.

Business factoids an academic finds amusing.

Technical can help social

Tool has simple message: “No touch, low false positives, good bugs”

Can explain it to mom? Then can explain to almost all sales guys &
customers

Complicated? Population that understands much smaller.
This effect is not trivial.

Relationship therapy through tool “objectivity”
UK company B outsources to India company A
B complains about A’s code quality. They fight.
Decide to use Coverity as arbitor. Happy. (I still can’t believe this.)

Wide tool use = seismic change in the last ~4 years.
People get it. “Static” no longer = “huh?” or “lint” (i.e., suck)
Networking effects.
Result: Much much much easier to sell tools now.

Some commercial experiences

Surprise: Sales guys are great
Easy to evaluate. Modular.
Careful what you wish for: bad competitor tools
Time to sale ~ max(time for all competitors to do trial).
Worst case: tool sounds “great” but requires lot of hacking on build system

Take existing customer from really bad tool. Great? Well...
Culture = disdain rather than curiosity.
Social: Often have ugly processes in place in attempt to make tool usable.
Poetic justice: bad process left at your early-adopting customers!
But sometimes bad is good:

Huge company: early on did 15+ trials across company, in end lost seven figure
perpetual license deal. Sad faces.

Have since made *2-3x* off of them!

Company X bought license, next week fired 110 people. Bad?
VCs... Some are good, interesting people. Some are evil, and in dumb ways.

Some useful numbers

Already seen:
1000: number of bugs after which they baseline.
1.0: probability error labeled as FP if they don’t understand
-m: slope of bug trend line for manager to get bonus.
Code numbers:
12hr, 24hr: common upper bounds for analysis time
700 lines / second: ~speed of analysis to meet these times
10M: “large” code base
Bugs:
3: number of attempts you can make to fix a bug in your tool
10: reduction in fix time if you assign blame for bugs
People:
5 minutes before asymptotic decay in programmer interest
40: upper bound on active opportunities sales guy can manage
0: price of initial trial.
20K: not even worth it to charge per trial

Academics don’t understand money.

“We’'ll just charge per seat like everyone else”
Finish the story: “Company X buys three Purify seats, one
for Asia, one for Europe and one for the US...”

Try #2: “we’ll charge per lines of code”
“That is a really stupid idea: (1) ..., (2) ..., ... (n) ...”
Actually works. I’'m still in shock. Would recommend it.

Good feature for you the seller:
No seat games. Revenue grows with code size. Run on
another code base = new sale.

Good feature for buyer: No seat-model problems

Buy once for project, then done. No per-seat or per-usage
cost; no node lock problems; no problems adding,
removing or renaming developers (or machines)

People actually seem to like this pitch.

Laws of static bug finding

Vacuous tautologies that imply trouble
Can’t find code, can’t check.
Can’t compile code, can’t check.

A nice, balancing empirical tautology
If can find code
AND checked system is big
AND can compile (enough) of it
THEN: will *always* find serious errors.

A nice special case:

Check rule never checked? Always find bugs. Otherwise
immediate kneejerk: what wrong with checker???

Outline

Experience. Assertions.
Big problem 1: normal distributions. Not like the lab.
Big problem 2: 10x reduction in knowledge in user base.

Next: One of most consistently powerful tricks: belief analysis.
Find errors where you don’t know what the truth is.

Infer rule.
Infer the state of the system

Old trick: but have used in every checker written since ’01.
Haven’t seen any checker that wouldn’t be improved.

Static vs dynamic bug finding

Static: precondition = compile (some) code.
All paths + don’t need to run + easy diagnosis.
Low incremental cost per line of code
Can get results in an afternoon.
10-100x more bugs.

Dynamic: precondition = compile all code + run
What does code do? How to build? How to run?

Pros: on executed paths:
Runs code, so can check implications.
End-to-end check: all ways to cause crash.
Reasonable coverage: surprised when crash.

Result:

Static better at checking properties visible in source,
dynamic better at properties implied by source.

Assertion: Soundness is often a distraction

Soundness: Find all bugs of type X.
Not a bad thing. More bugs good.
BUT: can only do if you check weak properties.

What soundness really wants to be when it grows up:
Total correctness: Find all bugs.
Most direct approximation: find as many bugs as possible.

Opportunity cost:
Diminishing returns: Initial analysis finds most bugs
Spend time on what gets the next biggest set of bugs
Easy experiment: bug counts for sound vs unsound tools.

Soundness violates end-to-end argument:

“It generally does not make much sense to reduce the
residual error rate of one system component (property)
much below that of the others.”

Open Q: Do static tools really help?

I\ Bugs found A Bad
ﬁ%ehavior
Bad ugs found
» behavior >
The optimistic hope The null hypothesis

A/ Bad
behavior
ugs found
>

An Ugly Possibility

Danger: Opportunity cost.
Danger: Deterministic canary bugs to hon-deterministic.

Open Q: how to get the bugs that matter?

Myth: all bugs matter and all will be fixed
FALSE
Find 10 bugs, all get fixed. Find 10,000...

Reality
Sites have many open bugs (observed by us & PREfix)
Myth lives because state-of-art is so bad at bug finding
What users really want: The 5-10 that “really matter”

General belief: bugs follow 90/10 distribution
Out of 1000, 100 (10? or 1?) account for most pain.
Fixing 900+ waste of resources & may make things worse

How to find worst? No one has a good answer to this.

Possibilities: promote bugs on executed paths or in code
people care about, ...

Scan’s One Year Anniversary

Website Relaunch on March 6th, 2007

LI Google X [|_| i scan.coverity.com : Acceleratin... Q]
Welcome to (‘ scan.cove fit}f.CO m brought to you by {f) COVeETItY
Coverity's Top of the News
Scan 2.0 “Coverity's static source code analysis has provento be an Eiftrﬁgaﬁths;:rf”'”
effective step towards furthering the quality and security of
Anout Sean Linux." - Andrew Morton, lead kernel maintainer news

FAQ
Developer FAD
Policy statement

s Couverity detecks a
security hole in ¥

The Scan Ladder Accelerating Open Source Quality Hiing ez it 2] o
any user with a lagin
to gain roof

Ladder In collabaration with Stanford University, Coverity is establizhing a new baseline for software rivilages
Summary quality and security in open source, Under a contract with the Departrnent of Hormeland Brfeass
Security, we apply the latest innovation in automated defec detection to uncover some of the n fArnemds ilEeass
rmost critical types of bugs found in software., raajor wersion [2.51
of the popular
Total Number of Defects Fixed (since 03 /06/2006): | 5941 | backup and recovery

software with

Fung Count \ K
Samhba's rnllest.one of 0
1 52 . - Coverity defects
developers fix Munber: of references to defects in :Sanba.
a o over 40% of the resulting in fix. colored by defect type 0 FE e

results in ower 1000
patches to projects in
the first few weaks

(I internet.com
Coverity Study Ranks
LAMP Code Quality

Scan's detected
defects with a
single reading of
the Scan analysis
for that issue,

Hunber of Views
@ = M W A @

Viewing Options
gop The blue defects A 50 100 150 on@ a5

Authority on Open Source Code

Chosen by DHS to Harden Open Source

« Over 250 commonly used open source packages
« Over 55 Million LOC analyzed nightly on standard hardware
« Maintainers fixed over 7000 bugs and security violations to date

@ COVERITY.COM

MAIN SCAN LADDER FAQ AMANDA CHART

ABOUT SCAN RUNG 1 - 51 Projects SAMBA CHART "COVERITY'S STATIC SOURCE CODE
FAQ RUNG 0 - 100 Projacts ANALYSIS HAS PROVEN TO BE AN
DEVELOPER FAQ ALL PROJECTS POLICY STATEMENT

EFFECTIVE STEP TOWARDS

ACCELERATING OPEN SOURCE QUALITY Bl T CRLEL
SECURITY OF LINUX,

In collaboration with Stanford University, Coverity is establishing a new baselin

for software quality and security in open source, Under a contract with the

Department of Homeland Security, we apply the latest innevations in automated

defect detection to uncover some of the most cnitical types of bugs found in

software.

AMDREW MORTON,

TOTAL NUMBER OF DEFECTS FIXED (SINCE 0306/ 2006): 6,035

da’s
developers fix 12
aver ‘3% of w 10 NHumber of references to defectsz in Amanda, Strategist
s resulting in fix, colored by defect type

-
defects with a = B Coverity datects a gacurity hols in X Windows that
single reading E 4 allaws any user with 8 login to gain raat privileges
of the Scan £
analysis for 2 2 Amanda relaases majer varsion {2.5) of tha papular
thatissue, L] backup and recovery software with milestone of §

a 20 a8] B8 188 120 148 Coyarity defacts

History of Research&Growth of Coverity [2007:outdated] 0 coverity

9@ Customers

Stanford 1.0 release 2.0 release 2.3release 3.0release

Checker C analysis C++ analysis Security Java Analysis
Concurrency Enterprise

Management

Employees

1999-2003 2003 2004 2005 2006 2007
Q synoesys §smanee BE2A) B3 [}

2000+ Defects Standardizes Standardizes Standardizes DHS Wall Standardizes

Found in Linux on Coverity on Coverity on Coverity Vulnerability Street on Coverity

Initiative Journal

Contract Technology

Awarded Innovation
Award

