
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

USENIX Workshop on Smartcard Technology
Chicago, Illinois, USA, May 10–11, 1999

Authenticating Secure Tokens
Using Slow Memory Access

John Kelsey and Bruce Schneier
Counterpane Systems

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Authenticating Secure Tokens Using Slow Memory Access

John Kelsey Bruce Schneier

fschneier,kelsey,schneierg@counterpane.com
Counterpane Systems, 101 East Minnehaha Parkway, Minneapolis, MN 55419

Abstract

We present an authentication protocol that allows a
token, such as a smart card, to authenticate itself
to a back-end trusted computer system through an
untrusted reader. This protocol relies on the fact
that the token will only respond to queries slowly,
and that the token owner will not sit patiently while
the reader seems not to be working. This protocol
can be used alone, with \dumb" memory tokens or
with processor-based tokens.

1 Introduction

Smart cards have been used in many applications
that require that the data be secured from the card-
holder. In the Modex stored-value smart card sys-
tem, for example, the smart card stores a particular
monetary value. An attacker who can successfully
change the value stored in the card can essentially
print money.1 In GSM phones, smart cards pro-
vide identity information used to prevent cloning
and in billing. An attacker who can modify that
information can charge cellular phone calls to an-
other account [?]. Smart cards used to protect satel-
lite television can be attacked to obtain free services
[McC96].

These cards are vulnerable to a large class of at-
tacks [And94, Sch97, Row97, Sch98], from reverse-
engineering [AK96] and protocol failures [AN95]
to side-channel attacks [Koc96, Koc98, KSWH98,
DKL+99] and fault analysis [BDL97, BS97]. In all of
these attacks, the attacker can defeat the security of
the card by breaching its secure perimeter and learn-
ing the con�dential information stored within. With
reverse-engineering, the attacker defeats the tamper-
reisistance measures directly; with side-channel and
fault-analysis attacks, the attacker exploits weak-
nesses in the physical security to learn information
within the secure perimeter.

1For other examples, see [CP93], [SK97], and [RKM99].

There is another class of applications for smart
cards|applications in which the value of a success-
ful attack is much smaller. These cards might pro-
vide micropayment information, low-security access
control, or act as payment vehicles in circumstances
with low marginal cost of goods (pay television, pub-
lic transportation, etc). In these applications we are
less concerned with individual fraud, and more con-
cerned with an organized attack to create and dis-
tribute fake cards. Someone who sneaks onto the
subway or watches a satellite movie without paying
isn't going to a�ect the service provider's bottom
line, but someone who is able to counterfeit access
tokens that allow everyone to sneak onto the subway
or watch the movie could collapse the entire system.
Hence, the primary threat is not from an isolated
attack against a single card, but an attack that can
be scaled to multiple cards.

The threat is from untrusted card readers that the
user may stick his card into. In this paper, we pro-
pose a low-tech authentication protocol that is useful
in this sort of situation. Our protocol makes use of
what we will call a \slow memory device": a device
that responds to queries by revealing the contents of
di�erent memory locations, but one that necessarily
takes several seconds to do so.

The protocol relies on the fact that the cardholder
does not have in�nite patience. If he puts his smart
card into a reader and nothing happens for several
seconds, he will likely pull the card out and try
again. If nothing happens again, he will �nd an-
other reader. The slow response of the card ensures
that a fraudulent reader can only do so much dam-
age before the cardholder removes his card.

This protocol makes no cryptographic assumptions,
and is independent of any cryptography that may or
may not be in the system. It can be implemented by
itself, or in conjunction with cryptographic controls.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the slow memory device and its
functionality. In Section 3, we describe our authen-
tication protocol. In Section 4 we discuss variants



and extensions to this basic protocol, and in Section
5 we discuss applications.

2 The Slow Memory Device

This protocol assumes the existence of a slow mem-
ory token. By this we mean a token|a smart card,
a Dallas Semiconductor iButton, etc.|that acts as
a memory device, but never responds to a request in
less than t seconds (t = 10, for the purposes of this
example). It is impossible for a terminal to get more
information during that time; the token's electronics
are such that it simply cannot respond to requests
faster.

This memory token hasm memory locations, each w
bits wide (w = 64 for the purposes of this example).
The token does not need a processor, nor does it
need to implement any cryptographic primitives in
order to execute this protocol.

3 The Basic Protocol

There are three parties in this protocol:

� The Token: The slow memory device.

� The Terminal: The untrusted card reader.

� The Trusted Machine: A trusted computer
connected to, and possibly remote from, the
Terminal.

Our authentication protocol is simple. A user inserts
his Token into a Terminal. The Terminal now needs
to prove to a Trusted Machine that the Token is
currently inserted into the Terminal.

The Terminal is only marginally trusted, and could
be malicious. In order to complete the protocol cor-
rectly the Terminal must be connected, via a secure
data link, to a Trusted Device. The Trusted Device
keeps an exact copy of the contents of the Token;
this is a shared secret that the Terminal does not
know.

Our protocol is as follows:

(1) The holder of the Token inserts it into the Ter-
minal.

(2) Terminal reads the header information from the
Token.

(3) Terminal sends this information over an en-
crypted link to the Trusted Device.

(4) Trusted Device generates a random challenge
and sends it back over the encrypted link to the
Terminal. This challenge consists of a list of n
memory locations on the Token.

(5) Terminal reads the n memory locations from
the Token, XORs them all together, and sends
the result back over the encrypted link to the
Trusted Device.

(6) The Trusted Device veri�es this information; if
it checks out, it believes that the Token is cur-
rently inserted into the Terminal.

Note that there are no cryptographic primitives in
the protocol: the only mathematical operation in-
volved is XOR. There are no encryption functions,
one-way hash functions, or message authentication
codes used in the protocol.

The Token might have 1000 64-bit memory loca-
tions. Each time read request comes in, it takes ten
seconds to respond, and without reverse-engineering
the device and tampering with its internals, this
can't be made any faster. Assuming ten seconds per
communications exchange, and setting n = 1, steps
(2) and (3) take ten seconds, step (4) takes another
ten seconds, and step (5) takes another ten seconds.
This gives us a total of 30 seconds per transaction.
Now, this can be extended a little bit without the
user knowing. A malicious Terminal might ignore
the protocol completely, and simply query the Token
(repeat step (5)). Maybe the Terminal can perform
six queries instead of one, doubling the transaction
time, before the Token owner removes his card.

To provide adequate security, we need to account for
possible malicious behavior by the Terminal in how
many transactions are allowed, keeping the probabil-
ity of success acceptably low even if most Terminals
are corrupt.

3.1 Reasonable Values for n

Suppose the Token has m memory locations, that
each instance of the protocol requests the XOR of
n random locations, and that n << m. Assuming
an attacker eavesdrops on each authentication, he
will learn the contents of n memory locations, not
all of them di�erent, after each transaction. The
average number of authentications that the Token
can accomplish before the attacker has a better than



0.5 chance of impersonating the Token (that is, being
able to respond correctly to a random query), is:

log(n)=(log(m)� log(m� n))

For example, for m = 1000 and n = 5, an attacker
who eavesdrops on 322 authentications has a better
than 0.5 probability of being able to impersonate the
Token by answering a random challenge correctly.

This, of course, is not the most e�ective attack. A
fraudulent Terminal will speci�cally query the To-
ken to learn the memory locations that it does not
know. Hence, a malicious Terminal can learn the
entire contents of a Token in m=n queries. So for
the parameters above, a malicious terminal that con-
ducts 100 fraudulant transactions will have a better
than 0.5 probability of being able to impersonate
the Token. The Token owner, though, would have
to be convinced to allow the Token to be used in 100
ine�ectual transactions.

4 Extensions

4.1 A Button on the Token

Ideally, we'd have some user-interface mechanism on
the Token, like a pushbutton. The Token is willing to
perform only once per button-push. Alternatively,
the Token buzzes or lights up once per memory query
answered. This would make multiple queries much
harder for the Terminal to make, since the Token
owner could detect that the protocol was not pro-
ceeding as speci�ed.

4.2 Reducing Storage Requirements

in the Trusted Device

As written, the Trusted Device must store a com-
plete copy of the Token's memory location. If this
is too much memory, the Trusted Device could store
the Token's ID information and a secret key known
only to it (and not the token). The Token's meme-
ory locations would then be the memory address en-
crypted with this secret key, and would have to be
loaded onto the Token by the Trusted Device.

4.3 CRC Hardware on the Token

If the Token can a�ord CRC hardware, then queries
can be handled using this alternate protocol:

(1) The holder of the Token inserts it into the Ter-
minal.

(2) Terminal reads the header information from the
Token.

(3) Terminal sends this information over an en-
crypted link to the Trusted Device.

(4) Trusted Device generates a random challenge
and sends it back over the encrypted link to the
Terminal. This challenge consists of a list of n
memory locations on the Token.

(5a) The Terminal sends the Token a request for the
n memory locations.

(5b) The Token goes through the motions (and de-
lay) of sending it out internally, but only out-
puts the 32-bit CRC of the n requested memory
locations.

(6) The Trusted Device veri�es this information; if
it checks out, it believes that the Token is cur-
rently inserted into the Terminal.

Each memory location can now be 32 bits long, and
even one unknown memory location in the query
string prevents an attacker from succeeding in an
impersonation attack. Note that this system works
best if there are lots of Terminals under di�erent
entities' control. If a Token only interacts with one
Terminal every time it executes the protocol, then
this system doesn't work very well.

4.4 Incrementing Values in the Token

and Trusted Device

If we're worried about an attacker reverse-
engineering and making lots of copies of the Token,
then we have each query of memory location cause
that memory location to increment by one, mod-
ulo 232, or rotate left one bit, or whatever else is
cheap enough to be implemented. Note that this up-
date must occur on both the Token and the Trusted
Device, and assumes that there is either only one
Trusted Device or that the di�erent Trusted Devices
can communicate with each other securely to syn-
chromize these updates.

This variant does not help against impersonation at-
tacks. What it does do is to make continued synchro-
nization of those counterfeit Tokens very expensive
and complex. Now, if any memory location in the
challenge string has been changed, the duplicated
Token fails to give the correct answer.



4.5 Reducing the Amount of Trust in

the Trusted Device

A given Trusted Device may be only partially
trusted. Instead of having it store a complete list-
ing of the Token's memory locations, it can be given
a series of precomputed challenges in order and the
right responses to be expected. (If we use the previ-
ous extension, this will work only for small numbers
of di�erent Trusted Devices.)

5 Security Analysis

The slow memory protocol is designed to frustrate a
particular kind of attack. It is intended to provide
security against an insecure reader trying to collect
enough information from a token to be able to im-
personate it. It does not provide security against
someone reverse-engineering the token and cloning
it (although the extension described in Section 4.2
considerably frustrates that attack in most circum-
stances), nor does it provide security in the event
that the back-end database (the Trusted Device in
the protocol) is compromised.

A more extensive security analysis will be in the �nal
paper.

6 Applications

A complete discussion of applications, along with
their security rami�cations, will be in the �nal pa-
per.

The most obvious applications are things like non-
duplicable keys for locks and alarms, free passes or
one-day (or k-day) coins, and login keys. In these
applications, we are less concerned with a single per-
son hacking the authentication device than the same
single person being able to distribute a large number
of them.

One of the most bene�cial aspects of this protocol
is that it works well with cryptography, even though
it has no cryptography itself. We can use a message
authentication code such as HMAC [BCK96] in ad-
dition to this protocol, and if the MAC breaks, the
memory trick still works. Or course, all Trusted De-
vices must be trusted with copies of the memory
maps.

7 Conclusions

Security countermeasures must be commensurate
with the actual threats. In this paper we have pre-
sented a low-tech security solution that helps miti-
gate a speci�c threat, and can be used in conjunction
with other cryptographic countermeasures.

8 Acknowledgments

The authors would like to thank Chris Hall for his
helpful comments. Additionally, the authors would
like Niels Ferguson, who broke the MAC and subse-
quently inspired this research.

References

[And94] R. Anderson, \Why Cryptosystems
Fail," Communications of the ACM, v.
37, n. 11, Nov 1994, pp. 32{40.

[AK96] R. Anderson and M. Kuhn, \Tamper Re-
sistance { A Cautionary Note," Second

USENIX Workshop on Electronic Com-

merce Proceedings, USENIX Press, 1996,
pp. 1{11.

[AN95] R. Anderson and R. Needham, \Pro-
gramming Satan's Computer," Com-

puter Science Today: Recent Trends and

Developments, LNCS #1000, Springer-
Verlag, 1995, pp. 426{440.

[BCK96] M. Bellare, R. Canetti, and H. Kar-
wczyk, \Keying Hash Functions for Mes-
sage Authentication," Advances in Cryp-
tology | CRYPTO '96 Proceedings,
Springer-Verlag, 1996, pp. 1{15.

[BDL97] D. Boneh, R.A. Demillo, R.J. Lip-
ton, \On the Importance of Check-
ing Cryptographic Protocols for Faults,"
Advances in Cryptology|EUROCRYPT

'97 Proceedings, Springer-Verlag, 1997,
pp. 37{51.

[?, BGW98] M. Briceno, I. Goldberg,
D. Wagner, \Attacks on GSM security,"
work in progress.

[BS97] E. Biham and A. Shamir, \Di�eren-
tial Fault Analysis of Secret Key Cryp-
tosystems," Advances in Cryptology|



CRYPTO '97 Proceedings, Springer-
Verlag, 1997, pp. 513{525.

[CP93] D. Chaum and T. Pederson, \Wallet
Databases with Observers," Advances in
Cryptology | CRYPTO '92 Proceed-
ings, Springer-Verlag, 1993, pp. 391{407.

[DKL+99] J.-F. Dhem, F. Koeune, P.-A. Leroux,
P. Mestre, J.-J. Quisquater, and J.-L.
Willerns, \A Practical Implementation
of the Timing Attack," CARDIS '98

Proceedings, Spriger-Verlag, 1999, to ap-
pear.

[Koc96] P. Kocher, \Timing Attacks on Im-
plementations of Di�e-Hellman, RSA,
DSS, and Other Systems," Advances in

Cryptology|CRYPTO '96 Proceedings,
Springer-Verlag, 1996, pp. 104{113.

[Koc98] P. Kocher, \Di�erential
Power Analysis," available online from
http://www.cryptography.com/dpa/.

[KSWH98] J. Kelsey, B. Schneier, D. Wagner, and
C. Hall, \Side Channel Cryptanalysis of
Product Ciphers," ESORICS '98 Pro-

ceedings, Springer-Verlag, 1998, pp. pp
97{110.

[McC96] J. McCormac, European Scrambling Sys-
tems, Waterford University Press, 1996.

[RKM99] C. Radu, F. Klopfert, and J. De
Meester, \Interoperable and Untrace-
able Debit-Tokens for Electronic Fee
Collection," CARDIS '98 Proceedings,
Springer-Verlag, 1999, to appear.

[Row97] T. Rowley, \How to Break a Smart
Card," The 1997 RSA Data Security
Conference Proceedings, RSA Data Se-
curity, Inc., 1997.

[Sch97] B. Schneier, \Why Cryptography is
Harder than it Looks," Information Se-

curity Bulletin, v. 2, n. 2, March 1997,
pp. 31{36.

[Sch98] B. Schneier, \Cryptographic Design Vul-
nerabilities," IEEE Computer, v. 31, n.
9, September 1998, pp. 29{33.

[SK97] B. Schneier and J. Kelsey, \Remote
Auditing of Software Outputs Using a
Trusted Coprocessor," Journal of Future
Generation Computer Systems, v.13,
n.1, 1997, pp. 9{18.


