Push vs. Pull: Implications of Protocol Design on Controlling Unwanted Traffic

Zhenhai Duan, Kartik Gopalan

Florida State University **Yingfei Dong** University of Hawaii

Objectives and Scope

- Controlling spam-like unwanted traffic
 - We target unsolicited asynchronous messages
 - These rely on content being read/heard by the receiver
- Two objectives
 - 1. Examine two protocol design choices
 - Sender-push vs. receiver-pull
 - 2. Study the feasibility of using receiver-pull for asynchronous message applications

Outline of the Talk

- Message delivery models and their variants
 - Sender-Push (SP)
 - Receiver-Intent-based Sender-Push (RISP)
 - Receiver-Pull (RP)
 - Sender-Intent-based Receiver-Pull (SIRP)
- A simple receiver-pull-based email delivery system
 - The Differentiated Mail Transfer Protocol (DMTP)
- Summary

- Examples: SMTP-based email, asynchronous voice messages
- Roles
 - S: Controls what content is delivered and when it is delivered
 - R: Passively receives the *entire message* before processing/discarding
- Responsibilities
 - S: Prepare and transmit message when ready
 - R: Has to wait, receive, process, store/discard each message.
- Accountability
 - Senders can vanish after pushing messages

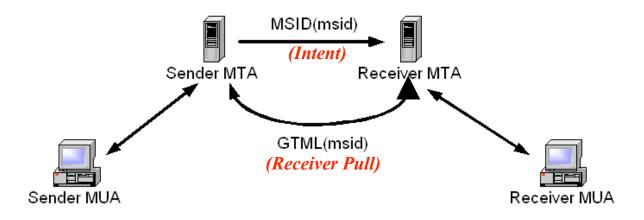
Receiver-Intent-based Sender-Push (RISP)

- Examples:
 - Mailing lists, subscription-based stock/news ticker, instant messaging.

(b) Receiver Intent Based Sender Push

- Receiver can exercise minimal control over sender
 - Subscribe/unsubscribe
 - Whitelist/blacklist
- Basic problems for SP
 - Senders control what/when to send
 - Receiver must accept entire message.
 - Poor accountability

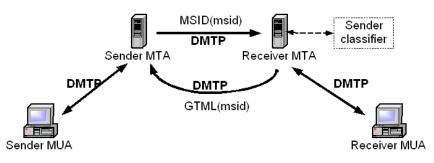
- (c) Receiver Pull
- Examples: HTTP and FTP
- Roles
 - S: Stores the message and passively waits for retrieval
 - R: Controls if and when to retrieve the message
- Responsibilities
 - S: Prepare, store, manage the content and wait (stay online)
 - R: Retrieve the message when convenient
- Accountability
 - Sender's identity is visible for a larger window of time


Sender-intent-based Receiver Pull (SIRP)

(d) Sender Intent Based Receiver Pull

- Example: Pager service
- Allow senders to express short intent to send a message
 - Content delivery is still controlled by receiver
 - Primary advantages of RP
 - Receivers control delivery
 - Senders commit more resources
 - Senders can be held accountable
 - Senders cannot vanish before message is retrieved
- Disadvantage:
 - To some extent, intent notice may itself be considered as SPAM.
 - Definitely better than receiving the whole message.

SIRP Email Architecture



Issue: All messages, whether spam or legitimate, are affected by the two-step delivery

DMTP: Differentiated Mail Transfer Protocol

- Classify the senders
 - Allowed regular contacts
 - Denied well-known spammers
 - Unclassified anyone not in allowed/denied
- Differentiate delivery of messages based on sender classification
 - Allowed: Directly accept the entire message
 - Denied: Directly decline the message before content is delivered.
 - Unclassified: Use the SIRP model to retrieve message
- Classification granularity at
 - MTA level and
 - (optionally) Email address level

DMTP Message Reception


```
If (SMTA is Denied)
return 550 (PE)
close TCP session
else (SMTA is allowed)
proceed using SMTP
else /* SMTA is unclassified */
accept MSID
(reject any DATA command)
/* pull message later if and when user wants */
```

Example DMTP transactions

SMTA: open TCP connection RMTA: Get IP address of SMTA

// Case 1: SMTA IP is Allowed RMTA: 220

// Case 2: SMTA IP is Denied RMTA: 550 RMTA: close TCP connection // Case 3: SMTA IP is Unclassified RMTA: 220 SMTA: EHLO domain.com RMTA: 220 MSID SMTA: MAIL FROM: <yyy> DMTP RMTA: 220 SMTA: RCPT TO: <xxx> RMTA: 220 SMTA: MSID <identifier> RMTA: 220

// if DATA command is attemptedSMTA: DATARMTA: 550

Other aspects

- DMTP can be incrementally deployed
 - No need to change everyone from SMTP → DMTP overnight
- SIRP model is also applicable to mobile text messages, asynchronous voice message etc.
- Other references:
 - *Receiver-Driven Extensions to SMTP*, Internet Draft
 - DiffMail: Controlling Spam Through Message Differentiation, TR, FSU
 - DiffMail Project webpage: http://www.cs.fsu.edu/~duan/projects/diffmail/

Summary

- We examined two message delivery models and their variants
 - Receiver-pull model preferred in controlling unwanted messages
- Presented application of receiver-pull to email delivery
 - Differentiated Mail Transfer protocol (DMTP)
 - Currently implementing DMTP in Sendmail.
 (code to be available soon)
- Thank you!