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Motivation

• We are getting very good at recording provenance of data:
– multiple data models (OPM, Provenir, Janus, Karma, PML,...)
– provenance-aware system / service architectures ...

• PASS, Karma
– ... and workflows

• Kepler, Taverna, Galaxy, VisTrails,...

• But, what are systems/applications really doing with it?
– deliver value to users?  i.e., in e-science, in the Web

• scientific reproducibility, quality, trust
– optimize system analysis, performance?

• enable partial re-run of resource-intensive processes
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Despite the growing momentum around provenance as a premiere 
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Broad goal and specific research context

• An opportunistic starting point:
optimization of resource-intensive, repetitive, provenance-aware e-
science workflows
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[1] IBM. An architectural blueprint for autonomic computing. Tech. rep., IBM, 2011
[2] Huebscher, M. C., and McCann, J. A. A survey of autonomic computing - degrees, models, and 
applications. ACM Computing Surveys CSUR 40, 3 (2008), 1–28.

A systematic study on methods and applications of mining / learning 
techniques applied to large corpora of provenance metadata

• Reference framework:
adaptive, self-managing software systems
– systems that can dynamically adapt their behaviour in response to changing conditions in 

the inputs or in their environment  [1,2]

sequent states of the managed element, and might
also include forecasts of any external processes
that generate workflow or traffic processed by the
managed element.

A key factor limiting rapid adoption and wide
usage of self-* managing systems such as the sys-
tem in Figure 1 is the difficulty of engineering a
sufficiently accurate knowledge module that can
achieve acceptable performance in deployed sys-
tems. Because today’s computing systems are high-
ly complex and distributed, developing accurate
models of them is a potentially complex and time-
consuming task. Moreover, developing such mod-
els might require original research. For example,
queuing network models of multitier Internet serv-
ices have only recently appeared in the literature.4

In particular, researchers are only beginning to
approach proper treatment of the full range of
computing systems’ complex dynamic behaviors
within standard model-building frameworks. Stan-
dard control models, for example, model such
effects only approximately, and standard queuing
models ignore them entirely given that they
assume steady-state system behavior.

A further challenge for model-based approach-
es is that today’s computing systems, as well as the
workflow characteristics and business processes
that they support, are continually evolving, so
periodic redesign of the knowledge modules of
self-* systems will be necessary.

Defeating the Knowledge
Bottleneck with Machine Learning
Machine learning (ML) might hold great promise
in overcoming the knowledge bottleneck just
described. ML is a subfield of artificial intelligence
that aims to develop methods for automatically
acquiring knowledge from data. For example, the
broad paradigm of supervised learning uses a data
set of (input, output) pairs to learn a classification
or regression model exhibiting a deeper “under-
standing” of the relation between inputs and out-
puts beyond the specific training exemplars.
Ideally, the learning algorithm will correctly gen-
eralize to novel exemplars not seen during train-
ing. Likewise, unsupervised learning is another
broad paradigm that uses input exemplars only (no
target outputs), with the goal of discovering pre-
viously unknown structures or relationships
between exemplars or their components. Such
knowledge can be useful in data mining or for
grouping exemplars into closely related clusters.

To overcome the knowledge bottleneck in devel-
oping self-* systems, ML approaches would ideally
use so-called tabula rasa learning methods — that
is, methods that learn with little or no built-in
domain knowledge. Having to build significant
knowledge into the learning algorithm’s architec-
ture would defeat the purpose. However, given that
some level of domain knowledge is usually avail-
able for most systems, and that completely
knowledge-free learning might be impractical for
various reasons, another desideratum of machine-
learning methods is that they can also gracefully
incorporate any available initial domain knowledge.

Consider the ML paradigms that would be
appropriate for learning self-* management poli-
cies — that is, mappings from system states to
selected management actions. (Note that this def-
inition of “policy” differs from other more general
meanings used in autonomic computing.) Adap-
tive control,5 one such paradigm already used in
systems management, fits readily into the model-
based control theory framework. Adaptive control
methods aim to automatically and continuously
adapt model parameters as system characteristics
change, and to automatically perform system iden-
tification — that is, develop a model of how con-
trol actions influence the system state’s evolution.
To the extent that such efforts require little engi-
neering of domain-specific knowledge, they can
contribute to our overall goal of avoiding the
knowledge bottleneck.
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Reinforcement Learning

Figure 1. A standard autonomic computing monitor-analyze-plan-
execute (MAPE) loop. The autonomic manager continually monitors
sensor readings, analyzes and plans management decisions, and
executes the decisions via effectors. The MAPE components have
access to a central knowledge base containing information
pertaining to the likely effectiveness of different management
decisions in achieving policy objectives.

Sensor readings Effectors

Autonomic manager

Analyze Plan

Monitor ExecuteKnowledge

Managed element

Sensor readings Effectors

– valuable testbed readily available:
• real e-science applications
• large provenance graphs

– dynamic optimization requires many runs

Cloud-based workflows come with a 
clear cost model
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Research

Approach: Add adaptive control to an existing workflow, with provenance 
analysis at its core → new recommender task
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Hypothesis: Provenance traces recorded for past runs of a workflow can be 
used to make future runs more efficient
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Research

Approach: Add adaptive control to an existing workflow, with provenance 
analysis at its core → new recommender task

4

Hypothesis: Provenance traces recorded for past runs of a workflow can be 
used to make future runs more efficient

Applicable for instance to a “Panel of Experts” (Poe) 
pattern:

– N experts are activated on same inputs, best outputs are 
selected

Panel of Experts

step

step

output queue

Expert 1 Expert n

input queue

provenance
case base

online
provenance

analysis

expert
select

results
merge

recommender

Provenance used for incremental correlation 
of the inputs to the experts’ success rate

- Provenance of run i indicates which 
experts performed well on their input

- Adaptively pruning the process space: 
on run i+1, use provenance of output 
computed by runs 1..n to select/prioritize 
invocation of experts
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Feature Selection

Model Discovery

MB1 MBh

M(i)11 M(i)1h M(i)k1 M(i)kh

FS(i)1 FS(i)k

DS(i)

Case study: DiscoveryBus workflow
• QSAR: Quantitative structure-activity relationships

– at forefront of Chemical Engineering research

• OpenQsar project (http://www.openqsar.com):
– Establish correlations between the structure of molecular compounds and some of 

their associated activities (toxicity, solubility, etc)

5

• DiscoveryBus: a workflow 
implementation of OpenQSAR
– eScience Central cloud-based 

workflow system
–  datasets DS(i) are a family of 

structurally homogeneous molecules
– Feature Selection extracts few 

relevant features from DS(i)

– Each learning scheme MB1...MBh 
generates a different predictive 
models for molecular activity

Repetitive and resource-intensive:
Workflow execution repeated over about 
10K different input datasets
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Role of provenance in DiscoveryBus

6

Feature Selection

Model Discovery

MB1 MBh

M(i)11 M(i)1h M(i)k1 M(i)kh

FS(i)1 FS(i)k

DS(i)

M (i)
jh

WasGeneratedBy→ MBh
used→ FS (i)

j
WasDerivedFrom→ DS (i)

Provenance correlates quality of output models M(i)jk to intermediate 
feature sets FS(i)j:

• Connection to Panel of Experts:
– Experts ⇒ model builders MBi

– Experts outcome ⇒ quality of generated 
model (predictive power, stability)

• Optimization goal:
– to prioritize invocation of the MBi based on 

their past performance on inputs similar to 
FS(i)j
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The recommender
• One Quality Matrix QMFS is associated to each Feature Set FS
• QMFS[MBi] encodes the success history of model builder MBi in the workflow 

every time FS is used as input:
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QM FS [MBh] = �G, B�

• G (resp B): number of times MBh has been 
observed to produce a good (resp. bad) 
model when applied to input FS

• QMFS is updated every time FS appears in 
the provenance graph

• The builders’ historical success rate G 
induces a dynamic partial order on the MBi 

• For each run, the Recommender:
• intercepts FS in the flow
• returns partial order from QMFS 

Panel of Experts

step

step

output queue

Expert 1 Expert n

input queue

provenance
case base

online
provenance

analysis

expert
select

results
merge

recommender
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Early experimental results

• max_attempts is the accuracy/resources trade-off parameter
– max_attempts = n: only first n out of H model builders are invoked

• Chart shows net accuracy over the entire available history of runs
– success rate / number of recommendations given
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Limitations and ongoing work

• Approach suffers when FS space is 
sparse
– most FS seen only once

• Recommender abstains when QMFS 
not sufficiently populated

• This is the main hurdle to successful 
optimization
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• Strategy: increase space density by clustering the FS
• needs a distance metric over the set of FS
• hierarchical clustering should provide a way to experiment with 

accuracy/efficiency trade-offs
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Short summary
• What happens when you try to apply mining/learning techniques to 

large corpora of provenance metadata?
– any interesting applications / use cases?
– which techniques apply?
– are there significant research challenges, or an orchard of low-hanging fruits?

• privacy in provenance mining
• what provenance models lend themselves well to mining
• ...
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