USENIX Association

Proceedings of the
2001 USENIX Annud
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Virtual-Time Round-Robin:
An O(1) Proportional Share Scheduler

Jason Nieh Chris Vaill Hua Zhong
Department of Computer Science
Columbia University
{nieh, cvaill, huat@cs.columbia.edu

Abstract cally fast, requiring only constant time to select a client
for execution. However, they were limited in the accu-
Proportional share resource management provides &cy with which they could achieve proportional shar-
flexible and useful abstraction for multiplexing time- ing. As a result starting in the late 1980s, fair queueing
shared resources. However, previous proportional shar@lgorithms were developed [3, 8] 14] 25, P8, 30,038, 34],
mechanisms have either weak proportional sharing acfirst for network packet scheduling and later for CPU
curacy or high scheduling overhead. We present Virtual-scheduling. These algorithms provided better propor-
Time Round-Robin (VTRR), a proportional share sched-tional sharing accuracy. However, the time to select a
uler that can provide good proportional sharing accuracyclient for execution using these algorithms grows with
with O(1) scheduling overhead. VTRR achieves thisthe number of clients. Most implementations require
by combining the benefits of fair queueing algorithmslinear time to select a client for execution. For server
with a round-robin scheduling mechanism. Unlike manysystems which may service large numbers of clients, the
other schedulers, VTRR is simple to implement. Wescheduling overhead of linear time algorithms can waste
have implemented a VTRR CPU scheduler in Linux more than 20 percent of system resources [5] for large
in less than 100 lines of code. Our performance re-numbers of clients. Hierarchical data structures can be
sults demonstrate that VTRR provides accurate proporused to reduce the selection time complexity, but they
tional share allocation with constant, sub-microsecondare not generally used as they are often less efficient in
scheduling overhead. The scheduling overhead usingractice. This is because they add implementation com-
VTRR is two orders of magnitude less than the standargblexity and their performance depends on being able to
Linux scheduler for large numbers of clients. balance the data structures efficiently.
In this paper, we introduce VTRR, a Virtual-Time
Round-Robin scheduler for proportional share resource
1 Introduction management. VTRR combines the benefits of low over-
head round-robin execution with high accuracy virtual-

Proportional share resource management provides time allocations. It provides accurate control over client
flexible and useful abstraction for multiplexing scarce COMPutation rates, and it can schedule clients for exe-
resources among users and applications. The basic id&4!tion in O(1) time. The constant scheduling overhead
is that each client has an associated weight, and ré'@kes VTRR particularly suitable for server systems
sources are allocated to the clients in proportion to theifat must manage large numbers of clients. VTRR is
respective weights. Because of its usefulness, many prt?—'mp,le to |mpIem_ent and can be gasﬂy mcorpprated into
portional share scheduling mechanisms have been devefXiSting scheduling frameworks in commercial operat-
oped [3/B[0,14, 16, 18,25, 28] 30, 33, 34]. In addition N9 systems. Wg hgve m_1p|emented a pro_totype VTRR
higher-level abstractions have been developed on top ¢fPU scheduler in Linux in less than 100 lines of code.

these proportional share mechanisms to support flexible//e have compared our VTRR Linux prototype against

modular resource management policies [30, 33]. schedulers commonly used in practice and research, in-
Proportional share scheduling mechanisms were firsﬁ?lumng the standard Linux schedull'ar [2] and fair queue-

developed decades ago with the introduction of weightedd: Our performance results on micro-benchmarks and

round-robin schedulingt[29]. Later, fair-share algo- real applications demonstrate that VTRR delivers ex-

rithms based on controlling priority values were devel_cellent proportional share control with lower scheduling

oped and incorporated into some UNIX operating sys-CVérhead than other approaches. _ _
This paper is organized as follows: Sectign 2 dis-

tems [TO[T6["18]. These earlier mechanisms were typi-

cusses background and related work. Sediion 3 presentan by adjusting the position of the client in the queue so
the VTRR scheduling algorithm. Sectidh 4 describesthat it ends up at the front of the queue more or less often.
our prototype Linux implementation. Sectign 5 presentsThe other way is to adjust the size of the time quantum
performance results from both simulation studies andf a client so that it runs longer for a given allocation.
real kernel measurements that compare VTRR againsthe manner in which a scheduler determines how often
weighted round-robin, fair queueing, and standard Linuxa client runs and how long a client runs directly affects
scheduling. Finally, we present some concluding re-the accuracy and scheduling overhead of the scheduler.
marks and directions for future work. A proportional share scheduler is more accurate if it
allocates resources in a manner that is more proportion-
ally fair. We can formalize this notion of proportional
2 Background fairness in more technical terms. The definition we use
is a simple one that suffices for our discussion; more ex-

Previous proportional sharing mechanisms can bdended definitions are presented|inl [I[Z, [15,[76, 32]. Our
classified into four categories: those that are fast bufl€finition draws heavily from the ideal sharing mecha-
have weaker proportional fairness guarantees, those th8tsm GPS[19]. To simplify the discussion, we assume
map well to existing scheduler frameworks in currentthat clients do not sleep or block and can consume what-
commercial operating systems but have no well-define@Ver resources they are allocated. o
proportional fairness guarantees, those that have strong Ve flfSt deflnqaerfgct faWhesgan ideal state in W.h'Ch
proportional fairness guarantees and higher schedulinﬁaCh client has received service _exactly proporthnal to
overhead, and those that have weaker proportional fair!S share. We denote the proportional share of client
ness guarantees but have higher scheduling overhea@S s, and the amount of service received by cliént
The four categories correspond to round-robin, fair-during the time intervalt;, t) asWa(ty, tz). Formally, a
share, fair queueing, and lottery mechanisms. proportpnal sharing qlgonthm achleves perfect fairness

To discuss these different approaches, we first presef@r time interval(ty, tz) if, for any clientA,
in Section[Z]1 a simple proportional share model for S
scheduling a time-multiplexed resource and more pre- Wity) = (o —t1) —= Q)
cisely define the notion of proportional fairness. In Sec- 2iS
tions[Z:2 to[Z}4, we use this background to explain the If we had an ideal system in which all clients could
round-robin, fair-share, fair queueing, and lottery shar-consume their resource allocations simultaneously, then
ing mechanisms in further detail. We briefly mention an ideal proportional share scheduler could maintain the

other related work in Sectidn2.6. above relationship for all time intervals. However, in
scheduling a time-multiplexed resource in time units of
2.1 Proportional Fairness finite size, it is not possible for a scheduler to be per-

fectly proportionally fair as defined by Equatigh 1 for

Proportional share scheduling has a clear colloquiaf!l intervals.
meaning: given a set of clients with associated weights, Although no real-world scheduling algorithm can
a proportional share scheduler should allocate resourcégaintain perfect fairness, some algorithms stay closer to
to each client in proportion to its respective weight. Perfect fairness than others. To evaluate the fairness per-
In this paper, we use the term share and weight interformance of a proportional sharing mechanism, we must
changeably. Without loss of generality, we can modeldquantify how close an algorithm gets to perfect fairness.
the process of scheduling a time-multiplexed resourcéVe can use a variation of Equatipn 1 to define see-
among a set of clients in two steps: 1) the schedulevice time error E(ty,t2) for clientAover interval(ty, tz).
orders the clients in a queue, 2) the scheduler runs thé&he error is the difference between the amount time allo-
first client in the queue for itime quantumwhich is cated to the client during intervéth, to) under the given
the maximum time interval the client is allowed to run algorithm, and the amount of time that would have been
before another scheduling decision is made. Note tha@llocated under an ideal scheme that maintains perfect
the time quantum is typically expressed in time units offairness for all clients over all intervals. Service time
constant size determined by the hardware. As a resul€ITor is computed as:
we refer to the units of time quanta as time units (tu) in
this paper rather than an absolute time measure such as Ea(t1,t2) = Wa(ts,t2) — (t2 —tl)i (2
seconds. 2iS

Based on the above scheduler model, a scheduler can A positive service time error indicates that a client has
achieve proportional sharing in one of two ways. Onereceived more than its ideal share over an interval; a neg-
way is to adjust the frequency that a client is selected tative error indicates that a client has received less. To be

precise, the erroEa measures how much time clieAt user’s clients in a suitable way. Fair-share provides pro-
has received beyond its ideal allocation. portional sharing by effectively running clients at differ-
The goal of a proportional share scheduler should besnt frequencies, as opposed to WRR which only adjusts
to minimize the allocation error between clients. Inthe size of the clients’ time quanta. Fair-share sched-
this context, we now consider how effectively different ulers were compatible with UNIX scheduling frame-
classes of proportional share algorithms are in minimiz-works and relatively easy to deploy in existing UNIX

ing this allocation error. environments. Unlike round-robin scheduling, the fo-
cus was on providing proportional sharing to groups of
2.2 Round-Robin users as opposed to individual clients. However, the ap-

proaches were often ad-hoc and it is difficult to formal-

One of the oldest, simplest and most widely usedize€ the proportional fairess guarantees they provided.
proportional share scheduling algorithms is round-robin Empirical measurements of show that these approaches
Clients are placed in a queue and allowed to execute i@nly provide reasonable proportional fairness over rela-
turn. When all client shares are equal, each client idively large time intervalsi[10]. It is almost certainly the
assigned the same size time quantum. In the weighte@i@se that the allocation errors in these approaches can be
round-robin case, each client is assigned a time quantur¥ery large.
equal to its share. A client with a larger share, then, ef- The priority adjustments done by fair-share sched-
fectively gets a larger quantum than a client with a smallulers can generally be computed quickly@{l) time.
share. Weighted round-robin (WRR) provides propor-In some cases, the schedulers need to do an expensive
tional sharing by running all clients with the same fre- periodic re-adjustment of all client priorities, which re-
quency but adjusting the size of their time quanta. AquiredO(N) time, whereN is the number of clients.
more recent variant called deficit round-robinl[28] has
been developed for network packet scheduling with sim2.4 Fair Queueing
ilar behavior to a weighted round-robin CPU scheduler.

WRR is simple to implement and schedules clients in Fair queueing was first proposed by Demers et. al. for
O(1) time. However, it has a relatively weak propor- network packet scheduling as Weighted Fair Queueing
tional fairness guarantee as its service ratio error can b&VFQ) [8], with a more extensive analysis provided by
quite large. Consider an example in which 3 clients A,Parekh and Gallagei{25], and later applied by Wald-
B, and C, have shares 3, 2, and 1, respectively. WRRspurger and Weihl to CPU scheduling as stride schedul-
will execute these clients in the following order of time ing [33]. WFQ introduced the idea of a virtual finishing
units: A, A, A, B, B, C. The error in this example gets time (VFT) to do proportional sharing scheduling. To
as low as—1 tu and as high as-1.5 tu. The real trou- explain what a VFT is, we first explain the notion of vir-
ble comes with large share values: if the shares in théual time. Thevirtual timeof a client is a measure of the
previous example are changed to 3000, 2000, and 1000legree to which a client has received its proportional al-
the error ranges instead from1000 to+1500 tu. A location relative to other clients. When a client executes,
large error range like this illustrates the major drawbackits virtual time advances at a rate inversely proportional
of round-robin scheduling: each client gets all serviceto the client’s share. In other words, the virtual time of a
due to it all at once, while other clients get no service.clientA at timet is the ratio ofWj(t) to Sa:

After a client has received all its service, it is well ahead
of its ideal allocation (it has a high positive error), and VTA(t) = (t) 3)

all other clients are behind their allocations (they have S
low negative errors). Given a client’s virtual time, the clientigrtual finish-

ing time (VFT) is defined as the virtual time the client
2.3 Fair-Share would have after executing for one time quantum. WFQ

then schedules clients by selecting the client with the

Fair-share schedulers]10, 16] 18] arose as a result afmallest VFT. This is implemented by keeping an or-

a need to provide proportional sharing among users in @ered queue of clients sorted from smallest to largest
way compatible with a UNIX-style time-sharing frame- VFT, and then selecting the first client in the queue. Af-
work. In UNIX time-sharing, scheduling is done basedter a client executes, its VFT is updated and the client is
on multi-level feedback with a set of priority queues. inserted back into the queue. Its position in the queue
Each client has a priority which is adjusted as it executesis determined by its updated VFT. Fair queueing pro-
The scheduler executes the client with the highest priorvides proportional sharing by running clients at different
ity. The idea of fair-share was to provide proportional frequencies by adjusting the position in at which each
sharing among users by adjusting the priorities of aclient is inserted back into the queue; the same size time

guantum is used for all clients. than WRR for smaller share values.

To illustrate how this works, consider again the ex-
ample in which 3 clients A, B, and C, have shares 3,2.6 Other Related Work
2, and 1, respectively. Their initial VFTs are then 1/3,
1/2, and 1, respectively. WFQ would then execute the Higher-level resource management abstractions have
clients in the following order of time units: A, B, A, B, also been developed [1;133], and a number of these ab-
C, A. In contrast to WRR, WFQ’s service time error stractions can be used with proportional share schedul-
ranges from—5/6 to +1 tu in this example, which is ing mechanisms. This work is complementary to our
less than the allocation error efl to+1.5 tu for WRR. focus here on the underlying scheduling mechanisms.
The difference between WFQ and WRR is greatly exag-Other scheduling work has also been done in support-
gerated if larger share values are chosen: if we make thimg clients with real-time requirements [4,6] 13} 17, 20,
shares 3000, 2000, and 1000 instead of 3, 2, and 1, WF@1, 22,[2B/24] and improving the response time of in-
has the same service time error range while WRR's erroteractive clients[j9,"1.1,24]. Considering these issues in
range balloons te-1000 to-+1500 tu. depth is beyond the scope of this paper.

It has been shown that WFQ guarantees that the ser-
vice time error for any client never falls belowl, which
means that a client can never fall behind its ideal alloca3 \/TRR Scheduling
tion by more than a single time quantuml[25]. More

recent fair queueing algorithms [3,130] provide more ac- yTRR is an accurate, low-overhead proportional
curate proportional sharing (by also guaranteeing an Upshare scheduler for multiplexing time-shared resources
per bound on error) at the expense of additional schedulamong a set of clients. VTRR combines the benefit of
ing overhead. Fair queueing provides stronger proporiow overhead round-robin scheduling with the high ac-
tional fairness guarantees than round-robin or fair-shar%uracy mechanisms of virtual time and virtual finishing
scheduling. Unfortunately, fair queueing is more dif- time used in fair gueueing algorithms. At a high-level,

ficult to implement, and the time it takes to select athe VTRR scheduling algorithm can be briefly described
client to execute i©(N) time for mostimplementations, i, three steps:

whereN is the number of clients. With more complex

data structures, is possible to implement fair queueing 1. Order the clients in the run queue from largest to
such that selection of a client requir€logN) time. smallest share. Unlike fair queueing, a client’s po-
However, the added difficulty of managing complex data sition on the run queue only changes when its share
structures in kernel space causes most implementers of changes, an infrequent event, not on each schedul-
fair queueing to choose the more straightforwexd) ing decision.

implementation. _ o
2. Starting from the beginning of the run queue, run

2.5 Lottery each client for one time quantum in a round-robin

manner. VTRR uses the fixed ordering property
of round-robin in order to choose in constant time
which client to run. Unlike round-robin, the time
guantum is the same size for all clients.

Lottery scheduling was proposed by Waldspurger and
Weihl [33] after WFQ was first developed. In lottery
scheduling, each client is given a number of tickets pro-
portional to its share. A ticket is then randomly selected 3. |n step 2, if a client has received more than its
by the scheduler and the client that owns the selected proportional allocation, skip the remaining clients

ticket is scheduled to run for a time quantum. Like fair in the run queue and start running clients from
queueing, Ipttery scheduli_ng provides proportional ;har- the beginning of the run queue again. Since the
ing by running clients at different frequencies by adjust- clients with larger share values are placed first in

ing the position in at which each client is inserted back the queue, this allows them to get more service than
into the queue; the same size time quantum is typically the lower-share clients at the end of the queue.
used for all clients.

Lottery scheduling is somewhat simpler to implement To provide a more in depth description of VTRR, we
than fair queueing, but has the same high schedulindirst define the state VTRR associates with each client,
overhead as fair queuein@(N) for most implemen- then describe precisely how VTRR uses that state to
tations orO(logN) for more complex data structures. schedule clients. In VTRR, a client has five values as-
However, because lottery scheduling relies on the law oBociated with its execution state: share, virtual finishing
large numbers for providing proportional fairness, its ac-time, time counter, id number, and run state. A client’s
curacy is much worse than WF@Q]33], and is also worseshare defines its resource rights. Each client receives

a resource allocation that is directly proportional to itsilarly, a later virtual time indicates that it has used more
share. A client'svirtual finishing time(VFT) is defined than its proportional share. Since the QVT advances at
in the same way as in Sectipn]2.4. Since a client has ¢he same rate for all clients on the run queue, the relative
VFT, it also has an implicit virtual time. A client's VFT magnitudes of the virtual times provide a relative mea-
advances at a rate proportional to its resource consumgsure of the degree to which each client has received its
tion divided by its share. The VFT is used to decideproportional share of resources.

when VTRR should reset to the first client in the queue. First, we explain the role of the time counters in
This is described in greater detail in Sectfor] 3.1, belowVTRR. In relation to this, we define scheduling cy-

A client’s time counterensures that the pattern of allo- cle as a sequence of allocations whose length is equal to
cations is periodic, and that perfect fairness is achievedhe sum of all client shares. For example, for a queue of
at the end of each period. Specifically, the time countethree clients with shares 3, 2, and 1, a scheduling cycle
tracks the number of quanta the client must receive beis a sequence of 6 allocations. The time counter for each
fore the period is over and perfect fairness is reachedclient is reset at the beginning of each scheduling cycle
A client’s id numberis a unique client identifier that is to the client’s share value, and is decremented every time
assigned when the client is created. A cliemtia state a client receives a time quantum. VTRR uses the time
is an indication of whether or not the client can be exe-counters to ensure that perfect fairness is attained at the
cuted. A client isunnableif it can be executed, and not end of every scheduling cycle. At the end of the cycle,
runnable if it cannot. For example for a CPU scheduler,every counter is zero, meaning that for each cligrthe

a client would not be runnable if it is blocked waiting for number of quanta received during the cycle is exactly

I/0 and cannot execute. S, the client’s share value. Clearly, then, each client
has received service proportional to its share. In order
3.1 Basic VTRR Algorithm to guarantee that all counters are zero at the end of the

cycle, we enforce an invariant on the queue, called the

We will initially only consider runnable clients in our time counter invariantwe require that, for any two con-
discussion of the basic VTRR scheduling algorithm. Wesecutive clients in the queweandB, the counter value
will discuss dynamic changes in a client’s run state infor B must always be no greater than the counter value
Section[32. VTRR maintains the following scheduler for A.
state: time quantum, run queue, total shares, and queue The VTRR scheduling algorithm starts at the begin-
virtual time. As discussed in Sectipn]2.1, tirae quan- hing of the run queue and executes the first client for
tumis the duration of a standard time slice assigned to @ne time quantum. We refer to the client selected for ex-
client to execute. Theun queuds a sorted queue of all ecution as theurrent client Once the current client has
runnable clients ordered from largest to smallest sharéompleted its time quantum, its time counter is decre-
client. Ties can be broken either arbitrarily or using themented by one and its VFT is incremented by the time
client id numbers, which are unique. Ttwal shareds ~ quantum divided by its share. If we denote the system
the sum of the shares of all runnable clients. Goeue time quantum a®), the current client’s share &, and
virtual time (QVT) is a measure of what a client’s VFT the current client's VFT a¥FTc(t), VFTc(t) is updated
should be if it has received exactly its proportional shareas follows:

allocation.
Prgvious work in 'the domain of packet scheduling VFTc(t+ Q) :VFTC(t)Jrg (5)
provides the theoretical basis for the Q\VT [8] 25]. The &

QVT advances whenever a client executes at a rate in- The scheduler then moves on to the next client in

versely proportional to the total shares. If we denote thene run queue. First, the scheduler checks for viola-
system time quantum & and the share of cliemasS, {on of the time counter invariant: if the counter value of

then the QVT is updated as follows: the next client is greater than the counter of the current

Q client, the scheduler makes the next client the current
QVT(t+Q) =QVT({) + —= (4) client and executes it for a quantum, without question.
2iS This causes its counter to be decremented, preserving

The difference between the QVT and a client’s virtual the invariant. If the next client’s counter is not greater
time is a measure of whether the respective client hashan the current client’s counter, the time counter invari-
consumed its proportional allocation of resources. If aant cannot be violated whether the next client is run or
client’s virtual time is equal to the queue virtual time, not, so the scheduler makes a decision using virtual time:
it is considered to have received its proportional alloca-the scheduler compares the VFT of the next client with
tion of resources. An earlier virtual time indicates thatthe QVT the system would have after the next time quan-
the client has used less than its proportional share. Simtum a client executes. We call this comparison &

inequality. If we denote the system time quantum@s largest to smallest share client. Ties can be broken ei-
the current client's VFT a¥FT¢(t), and its share &, ther arbitrarily or using the unique client id numbers.

the VFT inequality is true if: One issue remains, which is how to determine the new
client’s initial VFT. When a client is created and be-
VFTe(t) — QVT(t+Q) < 9 (6) comes runnable, it has not yet consumed any resources,

so it is neither below or above its proportional share in

If the VFT inequality is true, the scheduler selects andterms of resource consumption. As a result, we set the
executes the next client in the run queue for one timeelient's implicit virtual time to be the same as the QVT.
guantum and the process repeats with the subsequeMfe can then calculate the VFT of a new clightvith
clients in the run queue. If the scheduler reaches a poirghareSa as:
in the run queue when the VFT inequality is not true,
the scheduler returns to the beginning of the run queue VFTa(t) = QVTA(t) + 9 7)
and selects the first client to execute. At the end of the S
scheduling cycle, when the time counters of all clients After a client is executed, it may become not runnable.
reach zero, the time counters are all reset to their initialf the client is the current client and becomes not
values corresponding to the respective client’s share, andinnable, it is preempted and another client is selected
the scheduler starts from the beginning of the run queugy the scheduler using the basic algorithm described in
again to select a client to execute. Note that throughougection311. The client that is not runnable is removed
this scheduling process, the ordering of clients on the&rom the run queue. If the client becomes not runnable
run queue does not change. and is not the current client, the client is simply removed

To illustrate how this works, consider again the exam-from the run queue. While the client is not runnable, its
ple in which 3 clients A, B, and C, have shares 3, 2, andvFT is not updated. When the client is removed from
1, respectively. Their initial VFTs are then 1/3, 1/2, andthe run queue, it records the client that was before it
1, respectively. VTRR would then execute the clients inon the run queue, and the client that was after it on the
the following repeating order of time units: A, B, C, A, run queue. We refer to these clients aslds-previous
B, A. In contrast to WRR and WFQ, VTRR has a max- client andlast-nexiclient, respectively.
imum allocation error between A and B of 1/3 tuin this \When a client that is not runnable becomes runnable
example. This allocation error is much better than WRRagain, VTRR inserts the now runnable client back into
and comparable to WFQ. the run queue. If the client’s references to its last-

Since VTRR simply selects each client in turn to exe-previous and last-next client are still valid, it can use
cute, selecting a client for execution can be don®() those references to determine its position in the run
time. We defer a more detailed discussion of the comqueue. If either the last-previous or the last-next ref-

plexity of VTRR to Sectionn3]3. erence is not valid, VTRR then simply traverses the run
queue to find the insertion point for the now runnable
3.2 VTRR Dynamic Considerations client.

Determining whether the last-previous and last-next
In the previous section, we presented the basic VTRReferences are valid can be done efficiently as follows.
scheduling algorithm, but we did not discuss how VTRR The last-previous and last-next client references are
deals with dynamic considerations that are a necessamalid if both clients have not exited and are runnable,
part of any on-line scheduling algorithm. We now dis- if there are no clients between them on the run queue,
cuss how VTRR allows clients to be dynamically cre- and if the share of the newly-runnable client is no more
ated, terminated, change run state, and change thetihan the last-previous client and no less than the last-
share assignments. next client. Care must be taken, however, to ensure that
We distinguish between clients that are runnable andhe last-previous and last-next references are still valid
not runnable. As mentioned earlier, clients that arebefore dereferencing them: if either client has exited
runnable can be selected for execution by the scheduleand been deallocated, last-previous and last-next may no
while clients that are not runnable cannot. Only runnabldonger refer to valid memory regions. To deal with this,
clients are placed in the run queue. With no loss of gena hash table can be kept that stores identifiers of valid
erality, we assume that a client is created before it carlients. Hash function collisions can be resolved by sim-
become runnable, and a client becomes not runnable b@le replacement, so the table can be implemented as an
fore it is terminated. As a result, client creation and ter-array of identifiers. A client’s identifier is put into the ta-
mination have no affect on the VTRR run queue. ble when it is created, and deleted when the client exits.
When a client becomes runnable, it is inserted intoThe last-previous and last-next pointers are not derefer-
the run queue so that the run queue remains sorted fromnced, then, unless the identifier of the last-previous and

last-next clients exist in the hash table. As described ir3.3 Complexity
Section[#, the use of a hash table was not necessary in

our Linux VTRR implementation. _ _ The primary function of a scheduler is to select a
Once the now runnable client has been inserted in thyit 1o execute when the resource is available. A key
run queue, the client's VFT must be updated. The upygnefit of VTRR is that it can select a client to execute
date is analogous to the VFT |n|t|allzgt|on useq when g, O(1) time. To do this, VTRR simply has to main-

new client becomes runnable. The difference is that Wi 5 sorted run queue of clients and keep track of its
also account for the client's original VFT in updating ¢, rent position in the run queue. Updating the current
the VFT. If we denote the original VFT of a clieAtas 1 qeye position and updating a client's VFT are both
VFTA(t'), then the client's VFT is updated as follows: 1) time operations. While the run queue needs to be
sorted by client shares, the ordering of clients on the run

gueue does not change in the normal process of select-

VFTa(t) = MAX {QVTx(t) + Q,VFTA(t’)} (8) ing clients to execute. This is an important advantage
E) over fair queueing algorithms, in which a client needs

to be reinserted into a sorted run queue after each time

This treats a client that has been not runnable for 3 executes. As a result, fair queueing has much higher

while like a new client that has not yet executed. At thecomplexity than VTRR, requirin@(N) time to select
same time, the system keeps track of the client's VFT S, client to execute, o@klogN) time if more complex

that if it that has recently used more than its proportionaldata structures are used (but this is rarely implemented
allocation, it cannot somehow game the system by mak

o _ _ in practice).
ing itself not runnable and becoming runnable again. b)

Wi I liov t t the initial val ‘ When all clients on the run queue have zero counter
'€ u,se an analogous policy C,) setthe initial value o values, VTRR resets the counter values of all clients on
a client's time counter. A client’s time counter tracks

: he run queue. The complete counter reset takdé
the number of quanta due to the client before the encﬁ d P Ded)

fth t scheduli | 41 ¢ at the b ime, whereN is the number of clients. However, this
ot the current scheduling cycle, and 1S reset at the bepaqat 5 done at most once evéytimes the scheduler
ginning of each new cycle. We set the time counter of

; . . o selects a client to execute (and much less frequently in
a newly-inserted client to a value which will give it the

. f . in thi le. Th practice). As a result, the reset of the time counters is
correct proportion o remaining quanta in this cycle. The, g ized over many client selections so that the effec-
counterCy for the new clienfA is computed:

tive running time of VTRR is stilD(1) time. In addition,
the counter resets can be done incrementally on the first
Ca= S ZC‘ 9) pass through the run queue with the new counter values.
YiS 4 In addition to selecting a client to execute, a scheduler
must also allow clients to be dynamically created and
Note that this is computeldeforeclient A is inserted, terminated, change run state, and change scheduling pa-
s0S is not included in th§; § summation. rameters such as a client’s share. These scheduling op-
This value is modified by a rule similar to the rule en- erations typically occur much less frequently than client
acted for the VFT: we require that a client cannot comeselection. In VTRR, operations such as client creation
back in the same cycle and receive a larger time counand termination can be done @(1) time since they do
than it had previously. Therefore, if the client is being not directly affect the run queue. Changing a client’'s
inserted during the same cycle in which it was removedyun state from runnable to not runnable can also be done
the counter is set to the minimum 64 and the previ- in O(1) time for any reasonable run queue implementa-
ous counter value. Finally, to preserve the time countetion since all it involves is removing the respective client
invariant (as described in Sectipn]3.1), the counter valuédrom the run queue. The scheduling operations with
must be restricted to be between the time counter valuethe highest complexity are those that involve changing
of the clients before and after the inserted client. a client’s share assignment and changing a client’s run
If a client’s share changes, there are two cases to corstate to runnable. In particular, a client typically be-
sider based on the run state of the client. If the client iscomes runnable after it is created or after an I/O op-
not runnable, no run queue modifications are needed. lération that it was waiting for completes. If a client's
the client is runnable and its share changes, the client'share changes, the client’s position in the run queue may
position in the run queue may need to be changed. Thikave change as well. If a client becomes runnable, the
operation can be simplified by removing the client from client will have to be inserted into the run queue in the
the run queue, changing the share, and then reinsertingroper position based on its share. Using a doubly linked
it. Removal and insertion can then be performed just adist run queue implementation, insertion into the sorted
described above. queue can requir®(N) time, whereN is the number of

runnable clients. A priority queue implementation could clients that can be assigned different priorities. The pri-
be used for the run queue to reduce the insertion costrities are used to compute a per client measure called
to O(logN), but probably does not have better overall goodnesdo schedule the set of clients. Each time the
performance than a simple sorted list in practice. scheduler is called, the goodness value for each client
Because queue insertion is required much less frein the run queue is calculated. The client with the high-
guently than client selection in practice, the queue inserest goodness value is then selected as the next client to
tion cost is not likely to dominate the scheduling cost. Inexecute. In the case of ties, the first client with the high-
particular, if only a constant number of queue insertionsest goodness value is selected. Because the goodness
are required for everid times a client selection is done, of each client is calculated each time the scheduler is
then the effective cost of the queue insertions is still onlycalled, the scheduling overhead of the Linux scheduler
O(1) time. Furthermore, the most common schedulingis O(N), whereN is the number of runnable clients.
operation that would require queue insertion is when a The standard way Linux calculates the goodness for
client becomes runnable again after it was blocked waitall clients is based on a client’s priority and counter. The
ing on a resource. In this case, the insertion overheadounter is not the same as the time counter value used by
can beO(1) time if the last-previous client and last-next VTRR, but is instead a measure of the remaining time
client references remain valid at queue insertion time. Ifleft in a client’s time quantum. The standard time unit
the references are valid, then the position of the client isused in Linux for the counter and time quantum is called
already known on the run queue so the scheduler does jiffy, which is 10 ms by default. The basic idea is that
not have to find the insertion point. the goodness of a client is its priority plus its counter
An alternative implementation can be done that allowsvalue. The client’s counter is initially set equal to the
all queue insertions to be done@{1) time, if the range client’s priority, which has a value of 20 by default. Each
of share values is fixed in advance. The idea is similatime a client is executed for a jiffy, the client’s counter is
to priority schedulers which have a fixed range of pri- decremented. A client’'s counter is decremented until it
ority values and have separate run queue for each priodrops below zero, at which point the client cannot be se-
ity. Instead of using priorities, we can have a separatdected to execute. As a result, the default time quantum
run queue for each share value and keep track of the rufor each client is 21 jiffies, or 210 ms. When the coun-
gueues using an array. We can then find the queue coters of all runnable clients drop below zero, the sched-
responding to a client’s share and insert the client at theller resets all the counters to their initial value. There
end of the corresponding queue@{l) time. Such an is some additional logic to support static priority real-
implementation maps well to scheduling frameworks intime clients and clients that become not runnable, but
a number of commercial operating systems, includingan overview of the basic way in which the Linux sched-
Solaris [31] and Windows NT7]. uler works is sufficient for our discussion here. Further
details are available elsewhere [2].
To implement VTRR in Linux, we reused much of
4 Implementation the existing scheduling infrastructure. We used the same
doubly linked list run queue structure as the standard

We have implemented a prototype VTRR CPU SChed_Linux scheduler. The primary change to the run queue
uler in the Linux operating system. For this work, we was sorting the clients from largest to smallest share.

used the Red Hat Linux version 6.1 distribution and Rather than scanning all the clients when a scheduling
the Linux version 2.2.12-20 kernel. We had to add ord€cision needs to be made, our VTRR Linux implemen-
modify less than 100 lines of kernel code to completetation simply picks the_ next clie_nt in the run queue based
the VTRR scheduler implementation. We describe our®" the _/TRR scheduling algprlthm. .

Linux VTRR implementation in further detail to illus- One |d|psyncra§y of the Linux scheduler that is rele-
trate how easy VTRR is to implement. These schedulind’am to this work is that the smallest counter value that

frameworks are commonly found in commercial operat-May be assigned to a client is 1. This means that the
ing systems. While VTRR can be used in a muItiproces-SmaIIESt time quantum a client can have is 2 jiffies. To
rovide a comparable implementation of VTRR, the de-

sor scheduling context, we only discuss the single cpl .)) e
implementation here. fault time quantum used in our VTRR implementation is
The Linux scheduling framework for a single CPU is also 2 J|ﬁ!§s, or 2?] ms. i fields th
based on a run queue implemented as a single doubly N @ddition to the VTRR client state, two fields that
linked list. We first describe how the standard Linux Were added to _the standard client datg structur_e In Linux
scheduler works, and then discusses the changes W& last-previous and last-next pointers which were
made to implement VTRR in Linux used to optimize run queue insertion efficiency. In the
The standard Linux scheduler multiplexes a set 0fLinux 2.2 kernel, memory for the client data structures

is statically allocated, and never reclaimed for anythingresolution clock cycle counter available with the Intel
other than new client data structures. Therefore, in ouCPU to provide measurement resolution at the granu-
implementation, we were free to reference the last-nextarity of a few nanoseconds. Getting a timestamp sim-
and last-previous pointers to check their validity, as theyply involved reading the hardware cycle counter register,
always refer to some client’s data; the hash table metho#vhich could be read from user-level or kernel-level code.
described in Sectiop_3.2 was unnecessary. We measured the cost of the mechanism on the system

to be roughly 70 ns per event.

The kernel scheduler measurements were performed

5 Measurements and Results on a fully functional system to represent a realistic sys-

tem environment. By fully functional, we mean that all

To demonstrate the effectiveness of VTRR. we haveexperiments were performed with all system functions

quantitatively measured and compared its performancE!"Ning and the system connected to the network. Atthe
against other leading approaches from both industriaf@me tlme,'an effort was made to ellml'nate variations in
practice and research. We have conducted both exteﬁhe test environment to make the experiments repeatable.
sive simulation studies and detailed measurements of
real kernel scheduler performance on real applications.5-1 Simulation Studies

We conducted simulation studies to compare the pro-
portional sharing accuracy of VTRR against both WRR We built a scheduling simulator that we used to eval-
and WFQ. We used a simulator for these studies for twaiate the proportional fairness of VTRR in comparison
reasons. First, our simulator enabled us to isolate impadb two other schedulers, WRR and WFQ. The simulator
of the scheduling algorithms themselves and purposeis a user-space program that measures the service time
fully do not include the effects of other activity present error, described in Sectidn P.1, of a scheduler on a set
in an actual kernel implementation. Second, our simu-of clients. The simulator takes four inputs, the schedul-
lator enabled us to examine the scheduling behavior oing algorithm, the number of clientd, the total num-
these different algorithms across hundreds of thousandser of share§, and the number of client-share combina-
of different combinations of clients with different share tions. The simulator randomly assigns shares to clients
values. It would have been much more difficult to ob- and scales the share values to ensure that they sum to
tain this volume of data in a repeatable fashion fromS. It then schedules the clients using the specified algo-
just measurements of a kernel scheduler implementarithm as a real scheduler would, and tracks the result-
tion. Our simulation results are presented in Sedfign 5.1ing service time error. The simulator runs the sched-

We also conducted detailed measurements of real kemrler until the resulting schedule repeats, then computes
nel scheduler performance by comparing our prototypghe maximum (most positive) and minimum (most neg-
VTRR Linux implementation against both the standardative) service time error across the nonrepeating portion
Linux scheduler and a WFQ scheduler. In particular,of the schedule for the given set of clients and share as-
comparing against the standard Linux scheduler angignments. The simulator assumes that all clients are
measuring its performance is important because of itsunnable at all times. This process of random share
growing popularity as a platform for server as well asallocation and scheduler simulation is repeated for the
desktop systems. The experiments we have done quaspecified number of client-share combinations. We then
tify the scheduling overhead and proportional share alcompute an average highest service time error and av-
location accuracy of these schedulers in a real operatingrage lowest service time error for the specified number
system environment under a number of different work-of client-share combinations to obtain an “average-case”
loads. Our measurements of kernel scheduler perforerror range.
mance are presented in Sectign$ 5.2 5.4. To measure proportional fairness accuracy, we ran

All of our kernel scheduler measurements were persimulations for each scheduling algorithm considered on
formed on a Gateway 2000 E1400 system with a 43340 different combinations o andS. For each set of
MHz Intel Celeron CPU, 128 MB RAM, and 10 GB (N,S), we ran 10,000 client-share combinations and de-
hard drive. The system was installed with the Red Hatermined the resulting average error ranges. The average
Linux 6.1 distribution running the Linux version 2.2.12- service time error ranges for VTRR, WRR, and WFQ
20 kernel. The measurements were done by using a mirare shown in Figure 1 aff 2.
imally intrusive tracing facility that logs events at sig- Figure[1l shows a comparison of the error ranges for
nificant points in the application and the operating sys-VTRR versus WRR, one graph showing the error ranges
tem code. This is done via a light-weight mechanismfor VTRR and the other showing the error ranges for
that writes timestamped event identifiers into a mem-WRR. Each graph shows two surfaces plotted on axes
ory log. The mechanism takes advantage of the highef the same scale, representing the maximum and mini-

WRR Error Range WFQ Error Range

Error Error

100 90 100 90
Number of clients Number of clients
VTRR Error Range VTRR Error Range
Error Error

400
200

-200
-400

100 S0 100 S0

2000 500 150 2000 200 150
Number of clients Number of clients

Figure 1: VTRR vs. WRR service time error Figure 2: VTRR vs. WFQ service time error

mum service time error as a functiondfandS. Within ~ to VTRR’s error range from-3.8 to 106 tu. The er-
the range of values ™ andSshown, WRR’s error range ror ranges for WFQ are smaller than VTRR, but the dif-
reaches as low as398 tu and as high as 479 tu. With the ference between WFQ and VTRR is much smaller than
time units expressed in 10 ms jiffies as in Linux, a clientthe difference between VTRR and WRR. With the time
under WRR can on average get ahead of its correct CPUnits expressed in 10 ms jiffies as in Linux, a client under
time allocation by 4.79 seconds, or behind by 3.98 secWFQ can on average get ahead of its correct CPU time
onds, which is a substantial amount of service time erallocation by 10 ms, or behind by 20 ms, while a client
ror. In contrast, Figurg 1 shows that VTRR has a muchunder VTRR can get ahead by 38 ms or behind by 106
smaller error range than WRR and is much more accums. In both cases, the service time errors are small. In
rate. Because the error axis is scaled to display the widéact, the service time errors are even below the threshold
range of WRR's error values, it is difficult to even distin- of delay noticeable by most human beings for response
guish the two surfaces for VTRR in Figure 1. VTRR’s time on interactive applications]27]. Note that another
service time error only ranges from3.8 to 106 tu; this fair queueing algorithm WAQ was not simulated, but its
can be seen more clearly in Figuie 2. error is mathematically bounded [3] betweeh and+1
Figure[2 shows a comparison of the error ranges foitu, and so would be very similar to WFQ in practice.
VTRR versus WFQ, one graph showing the error ranges The data produced by our simulations confirm that
for VTRR and the other showing the error ranges forVTRR has fairness properties that are much better than
WFQ. As in the case in Figuig 2, each graph shows twoVRR, and nearly as good as WFQ. For the domain of
surfaces plotted on axes of the same scale, representinmglues simulated, the service time error for VTRR falls
the maximum and minimum service time error as a func4into an average range almost two orders of magnitude
tion of N andS. The VTRR graph in Figurg 2 includes smaller than WRR’s error range. While VTRR's error
the same data as the VTRR graph in FighQre 1, but theange is not quite as good as WFQ, even the largest error
error axis is scaled more naturally. Within the range ofmeasured, 16 tu, would likely be unnoticeable in most
values ofN and S shown, WFQ's average error range applications, given the size of time unit used by most
reaches as low as1 tu and as high as 2 tu, as opposedschedulers. Furthermore, we show in Secfioh 5.2 that

arate, fixed-length array was necessary to maintain the
heap-based priority queue. If the number of clients ever
exceeds the length of the array, a costly array realloca-
tion must be performed. We chose an initial array size
large enough to contain more than 200 clients, so this
additional cost is not reflected in our measurements.

As shown in Figurg]3, the increase in scheduling over-
head as the number of clients increases varies a great

i
E/ |
¥ L S S O s O R B O DO

Average scheduling cost (us)

=] deal between different schedulers. VTRR has the small-

g 1 est scheduling overhead. It requires less than 800 ns

o | 1 1 1 | to select a client to execute and the scheduling over-

“o 50 100 150 200 head is essentially constant for all numbers of clients.
Number of clients In contrast, the overhead for Linux and f0fN) WFQ

scheduling grows linearly with the number of clients.
The Linux scheduler imposes 100 times more overhead
VTRR provides this degree of accuracy at much Iowerth"jm VTRR. when schedulmg a mix of 200 cllents: In
fact, the Linux scheduler still spends almost 10 times
overhead than WFQ. . .) .
as long scheduling a single micro-benchmark client as
VTRR does scheduling 200 clients. VTRR outperforms

Linux and WFQ even for small numbers of clients be-
To evaluate the scheduling overhead of VTRR wecause the VTRR scheduling code is simpler and hence

implemented VTRR in the Linux operating system and"I"S significantly _faster. VTRR performs even bet-
compared the overhead of our prototype VTRR imple-te,r compared to. Linux and WFQ for large numbers of
mentation against the overhead of both the Linux schedC!i€nts because it has constant time overhead as opposed
uler and a WFQ scheduler. We conducted a series P the linear time overhead of the other schedulers.
experiments to quantify how the scheduling overhead While O(logN) WFQ has much smaller overhead

for each scheduler varies as the number of clients inIh‘?‘m Linux orO(N) WFQ, it still imposes significantly

creases. For this experiment, each client executed J10€ overhead than VTRR, particularly with large num-
simple micro-benchmark which performed a few oper-P€rs of clients. With 200 client€)(logN) WFQ has an

ations in a while loop. A control program was used °verhead more than 6 times that of VTRR. WFQ's more
to fork a specified number of clients. Once all clients ©0MPIex data structures require more time to maintain,

were runnable, we measured the execution time of eacﬁr_‘d the time required to make a scheduling decision is
scheduling operation that occurred during a fixed timeStIII dependent on th_e number of clients, so the over-
duration of 30 seconds. This was done by inserting d'¢2d would only continue to grow worse as more clients
counter and timestamped event identifiers in the Linux@® @dded. VTRR’s scheduling decisions always take
scheduling framework. The measurements required twd€ Same amount of time, regardless of the number of
timestamps for each scheduling decision, so variationgl'ents'
of 140 ns are possible due to measurement overhead.
We performed these experiments on the standard Linu®-3 Microscopic View of Scheduling
scheduler, WFQ, and VTRR for 1 client up to 200
clients. Using our prototype VTRR implementation, we con-
Figure[B shows the average execution time requirediucted a number of experiments to measure the schedul-
by each scheduler to select a client to execute. For thijmg behavior of the standard Linux scheduler, WFQ,
experiment, the particular implementation details of theand VTRR at fine time resolutions. We discuss the re-
WFQ scheduler affect the overhead, so we include results of one of the studies in which we ran a 30 second
sults from two different implementations of WFQ. In workload of five micro-benchmarks with different pro-
the first, labeled “WFQQ®(N)]” the run queue is imple- portional sharing parameters. Using VTRR and WFQ,
mented as a simple linked list which must be searchedve ran the five micro-benchmarks with shares 1, 2, 3,
on every scheduling decision. The second, labeled}, and 5, respectively. To provide similar proportional
“WFQ [O(logN)]” uses a heap-based priority queue sharing behavior using the Linux scheduler, we ran the
with O(logN) insertion time. Most fair queueing-based five micro-benchmarks with user priorities 19, 17, 15,
schedulers are implemented in the first fashion, due td.3, and 11, respectively. This translates to internal pri-
the difficulty of maintaining complex data structures in orities used by the scheduler of 1, 3, 5, 7, and 9, respec-
the kernel. In our implementation, for example, a sep-tively. This then translates into the clients running for 20

Figure 3: Average scheduling overhead

5.2 Scheduling Overhead

ms, 40 ms, 60 ms, 80 ms, and 100 ms time quanta, re-
spectively. The smallest time quantum used is the same
for all three schedulers. At the very least, the mapping
between proportional sharing and user input priorities
is non-intuitive in Linux. The scheduling behavior for

this workload appears similar across all of the sched- ¢

[}

ulers when viewed at a coarse granularity. The relative §
resource consumption rates of the micro-benchmarks ares
virtually identical to their respective shares at a coarse %
granularity.

We can see more interesting behavior when we view
the measurements over a shorter time scale of one sec-
ond. We show the actual scheduling sequences on each
scheduler over this time interval in Figurgs[4, 5, a&hd 6.
These measurements were made by sampling a client's
execution from within the client by recording multiple
high resolution timestamps each time that a client was
executed. We can see that the Linux scheduler does
the poorest job of scheduling the clients evenly and pre-
dictably. Both WFQ and VTRR do a much better job of
scheduling the clients proportionally at a fine granular-
ity. In both cases, there is a clear repeating scheduling
pattern every 300 ms.

Linux does not have a perfect repeating pattern be-
cause the order in which it schedules clients changes
depending on exactly when the scheduler function is g
called. This is because once Linux selects a client to 35
execute, it does not preempt the client even if its good-
ness drops below that of other clients. Instead, it runs the
client until its counter drops below zero or an interrupt or
other scheduling event occurs. If a scheduling event oc-
curs, then Linux will again consider the goodness of all
clients, otherwise it does not. Since interrupts can cause
a scheduling event and can occur at arbitrary times, the
resulting order in which clients are scheduled does not
have a repeating pattern. As a result, applications being
scheduled using WFQ and VTRR will receive a more
even level of CPU service than if they are scheduled us-
ing the Linux scheduler.

[
=
[
=
n
°
c

5.4 Application Workloads

To demonstrate VTRR'’s efficient proportional sharing
of resources on real applications, we briefly describe two
of our experiments, one running multimedia applications
and the other running virtual machines. We contrast the
performance of VTRR versus the standard Linux sched-
uler and WFQ.

One experiment we performed was to run multiple
MPEG audio encoders with different shares on each of
the three schedulers. The encoder test was implemented
by running five copies of an MPEG audio encoder. The
encoder clients were allotted shares of 1, 2, 3, 4, and 5,
and were instrumented with time stamp event recorders

Client and Share

O Il Il Il Il
0 200 400 600 800 1000

Execution Time (ms)

Figure 4: Linux scheduling behavior

0 200 400 600 800 1000
Execution Time (ms)

Figure 5: WFQ scheduling behavior

0 | | | |
0 200 400 600 800 1000

Execution Time (ms)

Figure 6: VTRR scheduling behavior

in a manner similar to how we recorded time in our
micro-benchmark programs. Each encoder took its in-
put from the same file, but wrote output to its own file.
MPEG audio is encoded in chunks called frames, so
our instrumented encoder records a timestamp after eachg
frame is encoded, allowing us to easily observe the effect 2
of resource share on single-frame encoding time.

Figures[T7,[B, andl] 9 show the number of frames en-
coded over time for the Linux default scheduler, WFQ,
and VTRR. The Linux scheduler clearly does not pro-
vide sharing as fairly as WFQ or VTRR when viewed
over a short time interval. The “staircase” effect indi-
cates that CPU resources are provided in bursts, which,
for a time-critical task like audio streaming, can mean
extra jitter, resulting in delays and dropouts. It can be in-
ferred from the smoother curves of the WFQ and VTRR
graphs that WFQ and VTRR scheduling provide fair re-
source allocation at a much smaller granularity. When
analyzed at a fine resolution, we can detect some dif-
ferences in the proportional sharing behavior of the ap-
plications when running under WFQ versus VTRR, but
the difference is far smaller than the difference com-
pared with Linux, which is clearly visible. VTRR trades
some precision in instantaneous proportional fairness for
much lower scheduling overhead.

Schedulers that explicitly support time constraints can
do a more effective job than just proportional share
schedulers of ensuring that real-time applications can
meet their deadlines’[24]. However, these real-time
schedulers typically require modifying an application
in order for the application to make use of scheduler-
supported time constraints. For applications that have
soft timing constraints but can adapt to the availability
of resources, accurate proportional sharing may provide
sufficient benefit in some cases without the cost of hav-
ing to modify the applications.

Another experiment we performed was to run several
VMware virtual machines on top a Linux operating sys-
tem, and then compare the performance of applications
within the virtual machines when the virtual machines
were scheduled using different schedulers. For this ex- &
periment, we ran three virtual machines simultaneously E

MPEG frames ren

EG frames rendered

o
=

with respective shares of 1, 2, and 3. We then executed ag
simple timing benchmark within each virtual machineto §
measure the relative performance of the virtual machine. “8'
We were careful to make use of the hardware clock cy- &
cle counters in doing these measurements as the standard
operating system timing mechanisms within a virtual
machine are a poor measure of elapsed time. We con-
ducted the experiment using the standard Linux sched-
uler, WFQ, and VTRR. The results were similar to the
previous experiments, with Linux doing the worst job in
terms of evenly distributing CPU cycles, and VTRR and
WFQ scheduling providing more comparable schedul-

20

15

10 +

25

20 r

15 -

10 +

25

20

o 15 -

10

5+

0

—— share'l

- share 2

% share 3 o
e share 4 T

ffffff share 5 ie

600 800 1000 1200 1400
Time (ms)

Figure 7: MPEG encoding with Linux

—— share'l
-~ share 2

—x-— share 3 -
e share 4 "
ffffff share 5 M 9

600 800 1000 1200 1400
Time (ms)

Figure 8: MPEG encoding with WFQ

—+— share 1
-~ share 2 -
- share 3 -
e share 4
ffffff share 5 o
F/, L
] a
.n/ l* a * o X
[x
'“’;d'%‘w =~ L L L L L L
0 200 400 600 800 1000 1200 1400

Time (ms)

Figure 9: MPEG encoding with VTRR

ing accuracy in proportionally allocating resources. [5]

6 Conclusions and Future Work el

We have designed, implemented, and evaluated
Virtual-Time Round-Robin scheduling in the Linux op-
erating system. Our experiences with VTRR show that it 71
is simple to implement and easy to integrate into existing
commercial operating systems. We have measured thésl
performance of our Linux implementation and demon-
strated that VTRR combines the benefits of accurateq,
proportional share resource management with very low
overhead. Our results show that VTRR scheduling over-
head is constant, even for large numbers of clients. De-
spite the popularity of the Linux operating system, our
results also show that the standard Linux scheduler suf~"!
fers fromO(N) scheduling overhead and performs much
worse than VTRR, especially for larger workloads.

VTRR’s ability to provide low overhead proportional
share resource allocation make it a particularly promis-
ing solution for managing resources in large-scale serve?]
systems. Since these systems are typically multiproces-
sor machines, we are continuing our evaluation of VTRR
in a multiprocessor context to demonstrate its effective 13l
ness in supporting large numbers of users and applica-
tions in these systems.

(11]

[14]
7 Acknowledgments

15
We thank the anonymous referees for their helpful[
comments on earlier drafts of this paper. This work
was supported in part by NSF grant EIA-0071954 and

an NSF CAREER Award. [16]

[17]

References

[1] G. Banga, P. Druschel, and J. Mogul, “Resource Containers: A
New Facility for Resource Management in Server Systems,” in[18]
Proceedings of the 3rd Symposium on Operating Systans Design
and ImplementationJSENIX, Berkeley, CA, Feb. 22-25 1999,

pp. 45-58. [19]
[2] M. Beck, H. Bohme, M. Dziadzka, and U. Kunitizinux Kernel [20]
Internals Reading, MA: Addison-Wesley, 2nd ed., 1998.
[3] J.Bennettand H. Zhang, “WR: Worst-case Fair Weighted Fair
Queueing,” inProceedings of INFOCOM ’'96San Francisco,
CA, Mar. 1996.
[21]

[4] G. Bollella and K. Jeffay, “Support for Real-Time Computing
Within General Purpose Operating Systems: Supporting Co-
resident Operating Systems,” Proceedings of the Real-Time
Technology and Applications SymposjufBEE Computer So-
ciety Press, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1995, pp. 4-14.

[22]

R. Bryant and B. Hartner, “Java Technology, Threads, and
Scheduling in Linux,” IBM developerWorks Library Paper, IBM
Linux Technology Center, Jan. 2000.

G. Coulson, A. Campbell, P. Robin, G. Blair, M. Papathomas,
and D. Hutchinson, “Design of a QoS Controlled ATM Based
Communication System in Chorus,” IEEE Journal of Selected
Areas in Communications (JSAC)3(4), May 1995, pp. 686—
699.

H. Custer,Inside Windows NTRedmond, WA, USA: Microsoft
Press, 1993.

A. Demers, S. Keshav, and S. Shenker, “Analysis and Simula-
tion of a Fair Queueing Algorithm,” iProceedings of ACM SIG-
COMM 89, Austin, TX, Sept. 1989, pp. 1-12.

K. Duda and D. Cheriton, “Borrowed-Virtual-Time (BVT)
Scheduling: Supporting Latency-Sensitive Threads in a General-
Purpose Scheduler,” iRroceedings of the 17th Symposium on
Operating Systems PrincipleA\CM Press, New York, Dec.
1999, pp. 261-276.

R. Essick, “An Event-Based Fair Share SchedulerProceed-
ings of the Winter 1990 USENIX ConferentiSENIX, Berke-
ley, CA, USA, Jan. 1990, pp. 147-162.

S. Evans, K. Clarke, D. Singleton, and B. Smaalders, “Opti-
mizing Unix Resource Scheduling for User Interaction,1893
Summer UsenpUSENIX, June 1993, pp. 205-218.

E. Gafni and D. Bertsekas, “Dynamic Control of Session Input
Rates in Communication Networks,” iEEE Transactions on
Automatic Contrgl29(10), 1984, pp. 1009-1016.

D. Golub, “Operating System Support for Coexistence of Real-
Time and Conventional Scheduling,” Tech. Rep. CMU-CS-94-
212, School of Computer Science, Carnegie Mellon University,
Nov. 1994.

P. Goyal, X. Guo, and H. Vin, “A Hierarchical CPU Scheduler
for Multimedia Operating System,” iRroceedings of the Second
Symposium on Operating Systems Design and Implementation
USENIX, Berkeley, CA, Oct. 1996, pp. 107-121.

] E. Hahne and R. Gallager, “Round Robin Scheduling for Fair

Flow Control in Data Communication Networks,” Tech. Rep.
LIDS-TH-1631, Laboratory for Information and Decision Sys-
tems, Massachusetts Institute of Technology, Dec. 1986.

G. Henry, “The Fair Share ScheduleAT&T Bell Laboratories
Technical Journal63(8), Oct. 1984, pp. 1845-1857.

M. Jones, D. Rosu, and M. Rosu, “CPU Reservations and Time
Constraints: Efficient, Predictable Scheduling of Independent
Activities,” in Proceedings of the 16th Symposium on Operating
Systems PrinciplefACM Press, New York, Oct. 1997, pp. 198—
211.

J. Kay and P. Lauder, “A Fair Share Schedul@@mmunications
of the ACM 31(1), Jan. 1988, pp. 44-55.

L. Kleinrock, Queueing Systems, Volume II: Computer Applica-
tions New York: John Wiley & Sons, 1976.

I. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Schedul-
ing Algorithm: Exact Characterization and Average Case Behav-
ior,” in Proceedings of the Real-Time Systems Symposium ; 1989
IEEE Computer Society Press, Santa Monica, California, USA,
Dec. 1989, pp. 166-171.

C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environmengdurnal of the
ACM, 20(1), Jan. 1973, pp. 46-61.

C. Locke,Best-Effort Decision Making for Real-Time Schedul-
ing. PhD thesis, Department of Computer Science, Carnegie-
Mellon University, May 1986.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

C. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Re-
serves: Operating System Support for Multimedia Applications,”
in Proceedings of the International Conference on Multimedia
Computing and SystemEEEE Computer Society Press, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994,
pp. 90-99.

J. Nieh and M. Lam, “The Design, Implementation and Evalua-
tion of SMART: A Scheduler for Multimedia Applications,” in
Proceedings of the 16th Symposium on Operating Systems Prin-
ciples 31(5), ACM Press, New York, Oct. 5-8 1997, pp. 184—
197.

A. Parekh and R. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,IEEE/ACM Transactions on Networking
1(3), June 1993, pp. 344-357.

K. Ramakrishnan, D. Chiu, and R. Jain, “Congestion Avoid-
ance in Computer Networks with a Connectionless Network
Layer, Part IV: A Selective Binary Feedback Scheme for Gen-
eral Topologies,” Tech. Rep. DEC-TR-510, DEC, Nov. 1987.

B. ShneidermanPesigning the User Interface: Strategies for
Effective Human-Computer InteractioReading, MA: Addison-
Wesley, 2nd ed., 1992.

M. Shreedhar and G. Varghese, “Efficient Fair Queueing Using
Deficit Round-Robin,” inProceedings of ACM SIGCOMM '95
4(3), Sept. 1995, pp. 231-242.

A. Silberschatz and P. GalvinQperating System Concepts
Reading, MA, USA: Addison-Wesley, 5th ed., 1998.

I. Stoica, H. Abdel-Wahab, and K. Jeffay, “On the Duality be-
tween Resource Reservation and Proportional Share Resource
Allocation,” in Multimedia Computing and Networking Proceed-
ings, SPIE Proceedings Serj&920, Feb. 1997, pp. 207-214.

“UNIX System V Release 4 Internals Student Guide, Vol. |, Unit
2.4.2" AT&T, 1990.

R. Tijdeman, “The Chairman Assignment Problerbiscrete
Mathematics32, 1980, pp. 323-330.

C. Waldspurger, Lottery and Stride Scheduling: Flexible
Proportional-Share Resource ManagemenPhD thesis, De-
partment of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Sept. 1995.

L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for
Packet Switched Networks,” iACM Transactions on Computer
Systems9(2), May 1991, pp. 101-125.

	Introduction
	Background
	Proportional Fairness
	Round-Robin
	Fair-Share
	Fair Queueing
	Lottery
	Other Related Work

	VTRR Scheduling
	Basic VTRR Algorithm
	VTRR Dynamic Considerations
	Complexity

	Implementation
	Measurements and Results
	Simulation Studies
	Scheduling Overhead
	Microscopic View of Scheduling
	Application Workloads

	Conclusions and Future Work
	Acknowledgments

