
USENIX Association

Proceedings of the
2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Virtual-Time Round-Robin:
An O(1) Proportional Share Scheduler

Jason Nieh Chris Vaill Hua Zhong
Department of Computer Science

Columbia University
{nieh, cvaill, huaz}@cs.columbia.edu

Abstract

Proportional share resource management provides a
flexible and useful abstraction for multiplexing time-
shared resources. However, previous proportional share
mechanisms have either weak proportional sharing ac-
curacy or high scheduling overhead. We present Virtual-
Time Round-Robin (VTRR), a proportional share sched-
uler that can provide good proportional sharing accuracy
with O(1) scheduling overhead. VTRR achieves this
by combining the benefits of fair queueing algorithms
with a round-robin scheduling mechanism. Unlike many
other schedulers, VTRR is simple to implement. We
have implemented a VTRR CPU scheduler in Linux
in less than 100 lines of code. Our performance re-
sults demonstrate that VTRR provides accurate propor-
tional share allocation with constant, sub-microsecond
scheduling overhead. The scheduling overhead using
VTRR is two orders of magnitude less than the standard
Linux scheduler for large numbers of clients.

1 Introduction

Proportional share resource management provides a
flexible and useful abstraction for multiplexing scarce
resources among users and applications. The basic idea
is that each client has an associated weight, and re-
sources are allocated to the clients in proportion to their
respective weights. Because of its usefulness, many pro-
portional share scheduling mechanisms have been devel-
oped [3, 8, 10, 14, 16, 18, 25, 28, 30, 33, 34]. In addition,
higher-level abstractions have been developed on top of
these proportional share mechanisms to support flexible,
modular resource management policies [30, 33].

Proportional share scheduling mechanisms were first
developed decades ago with the introduction of weighted
round-robin scheduling [29]. Later, fair-share algo-
rithms based on controlling priority values were devel-
oped and incorporated into some UNIX operating sys-
tems [10, 16, 18]. These earlier mechanisms were typi-

cally fast, requiring only constant time to select a client
for execution. However, they were limited in the accu-
racy with which they could achieve proportional shar-
ing. As a result starting in the late 1980s, fair queueing
algorithms were developed [3, 8, 14, 25, 28, 30, 33, 34],
first for network packet scheduling and later for CPU
scheduling. These algorithms provided better propor-
tional sharing accuracy. However, the time to select a
client for execution using these algorithms grows with
the number of clients. Most implementations require
linear time to select a client for execution. For server
systems which may service large numbers of clients, the
scheduling overhead of linear time algorithms can waste
more than 20 percent of system resources [5] for large
numbers of clients. Hierarchical data structures can be
used to reduce the selection time complexity, but they
are not generally used as they are often less efficient in
practice. This is because they add implementation com-
plexity and their performance depends on being able to
balance the data structures efficiently.

In this paper, we introduce VTRR, a Virtual-Time
Round-Robin scheduler for proportional share resource
management. VTRR combines the benefits of low over-
head round-robin execution with high accuracy virtual-
time allocations. It provides accurate control over client
computation rates, and it can schedule clients for exe-
cution in O(1) time. The constant scheduling overhead
makes VTRR particularly suitable for server systems
that must manage large numbers of clients. VTRR is
simple to implement and can be easily incorporated into
existing scheduling frameworks in commercial operat-
ing systems. We have implemented a prototype VTRR
CPU scheduler in Linux in less than 100 lines of code.
We have compared our VTRR Linux prototype against
schedulers commonly used in practice and research, in-
cluding the standard Linux scheduler [2] and fair queue-
ing. Our performance results on micro-benchmarks and
real applications demonstrate that VTRR delivers ex-
cellent proportional share control with lower scheduling
overhead than other approaches.

This paper is organized as follows: Section 2 dis-



cusses background and related work. Section 3 presents
the VTRR scheduling algorithm. Section 4 describes
our prototype Linux implementation. Section 5 presents
performance results from both simulation studies and
real kernel measurements that compare VTRR against
weighted round-robin, fair queueing, and standard Linux
scheduling. Finally, we present some concluding re-
marks and directions for future work.

2 Background

Previous proportional sharing mechanisms can be
classified into four categories: those that are fast but
have weaker proportional fairness guarantees, those that
map well to existing scheduler frameworks in current
commercial operating systems but have no well-defined
proportional fairness guarantees, those that have strong
proportional fairness guarantees and higher scheduling
overhead, and those that have weaker proportional fair-
ness guarantees but have higher scheduling overhead.
The four categories correspond to round-robin, fair-
share, fair queueing, and lottery mechanisms.

To discuss these different approaches, we first present
in Section 2.1 a simple proportional share model for
scheduling a time-multiplexed resource and more pre-
cisely define the notion of proportional fairness. In Sec-
tions 2.2 to 2.4, we use this background to explain the
round-robin, fair-share, fair queueing, and lottery shar-
ing mechanisms in further detail. We briefly mention
other related work in Section 2.6.

2.1 Proportional Fairness

Proportional share scheduling has a clear colloquial
meaning: given a set of clients with associated weights,
a proportional share scheduler should allocate resources
to each client in proportion to its respective weight.
In this paper, we use the term share and weight inter-
changeably. Without loss of generality, we can model
the process of scheduling a time-multiplexed resource
among a set of clients in two steps: 1) the scheduler
orders the clients in a queue, 2) the scheduler runs the
first client in the queue for itstime quantum, which is
the maximum time interval the client is allowed to run
before another scheduling decision is made. Note that
the time quantum is typically expressed in time units of
constant size determined by the hardware. As a result,
we refer to the units of time quanta as time units (tu) in
this paper rather than an absolute time measure such as
seconds.

Based on the above scheduler model, a scheduler can
achieve proportional sharing in one of two ways. One
way is to adjust the frequency that a client is selected to

run by adjusting the position of the client in the queue so
that it ends up at the front of the queue more or less often.
The other way is to adjust the size of the time quantum
of a client so that it runs longer for a given allocation.
The manner in which a scheduler determines how often
a client runs and how long a client runs directly affects
the accuracy and scheduling overhead of the scheduler.

A proportional share scheduler is more accurate if it
allocates resources in a manner that is more proportion-
ally fair. We can formalize this notion of proportional
fairness in more technical terms. The definition we use
is a simple one that suffices for our discussion; more ex-
tended definitions are presented in [12, 15, 26, 32]. Our
definition draws heavily from the ideal sharing mecha-
nism GPS [19]. To simplify the discussion, we assume
that clients do not sleep or block and can consume what-
ever resources they are allocated.

We first defineperfect fairness, an ideal state in which
each client has received service exactly proportional to
its share. We denote the proportional share of clientA
as SA, and the amount of service received by clientA
during the time interval(t1, t2) asWA(t1, t2). Formally, a
proportional sharing algorithm achieves perfect fairness
for time interval(t1, t2) if, for any clientA,

WA(t1, t2) = (t2− t1)
SA

∑i Si
(1)

If we had an ideal system in which all clients could
consume their resource allocations simultaneously, then
an ideal proportional share scheduler could maintain the
above relationship for all time intervals. However, in
scheduling a time-multiplexed resource in time units of
finite size, it is not possible for a scheduler to be per-
fectly proportionally fair as defined by Equation 1 for
all intervals.

Although no real-world scheduling algorithm can
maintain perfect fairness, some algorithms stay closer to
perfect fairness than others. To evaluate the fairness per-
formance of a proportional sharing mechanism, we must
quantify how close an algorithm gets to perfect fairness.
We can use a variation of Equation 1 to define theser-
vice time error EA(t1, t2) for clientA over interval(t1, t2).
The error is the difference between the amount time allo-
cated to the client during interval(t1, t2) under the given
algorithm, and the amount of time that would have been
allocated under an ideal scheme that maintains perfect
fairness for all clients over all intervals. Service time
error is computed as:

EA(t1, t2) = WA(t1, t2)− (t2− t1)
SA

∑i Si
(2)

A positive service time error indicates that a client has
received more than its ideal share over an interval; a neg-
ative error indicates that a client has received less. To be



precise, the errorEA measures how much time clientA
has received beyond its ideal allocation.

The goal of a proportional share scheduler should be
to minimize the allocation error between clients. In
this context, we now consider how effectively different
classes of proportional share algorithms are in minimiz-
ing this allocation error.

2.2 Round-Robin

One of the oldest, simplest and most widely used
proportional share scheduling algorithms is round-robin.
Clients are placed in a queue and allowed to execute in
turn. When all client shares are equal, each client is
assigned the same size time quantum. In the weighted
round-robin case, each client is assigned a time quantum
equal to its share. A client with a larger share, then, ef-
fectively gets a larger quantum than a client with a small
share. Weighted round-robin (WRR) provides propor-
tional sharing by running all clients with the same fre-
quency but adjusting the size of their time quanta. A
more recent variant called deficit round-robin [28] has
been developed for network packet scheduling with sim-
ilar behavior to a weighted round-robin CPU scheduler.

WRR is simple to implement and schedules clients in
O(1) time. However, it has a relatively weak propor-
tional fairness guarantee as its service ratio error can be
quite large. Consider an example in which 3 clients A,
B, and C, have shares 3, 2, and 1, respectively. WRR
will execute these clients in the following order of time
units: A, A, A, B, B, C. The error in this example gets
as low as−1 tu and as high as+1.5 tu. The real trou-
ble comes with large share values: if the shares in the
previous example are changed to 3000, 2000, and 1000,
the error ranges instead from−1000 to+1500 tu. A
large error range like this illustrates the major drawback
of round-robin scheduling: each client gets all service
due to it all at once, while other clients get no service.
After a client has received all its service, it is well ahead
of its ideal allocation (it has a high positive error), and
all other clients are behind their allocations (they have
low negative errors).

2.3 Fair-Share

Fair-share schedulers [10, 16, 18] arose as a result of
a need to provide proportional sharing among users in a
way compatible with a UNIX-style time-sharing frame-
work. In UNIX time-sharing, scheduling is done based
on multi-level feedback with a set of priority queues.
Each client has a priority which is adjusted as it executes.
The scheduler executes the client with the highest prior-
ity. The idea of fair-share was to provide proportional
sharing among users by adjusting the priorities of a

user’s clients in a suitable way. Fair-share provides pro-
portional sharing by effectively running clients at differ-
ent frequencies, as opposed to WRR which only adjusts
the size of the clients’ time quanta. Fair-share sched-
ulers were compatible with UNIX scheduling frame-
works and relatively easy to deploy in existing UNIX
environments. Unlike round-robin scheduling, the fo-
cus was on providing proportional sharing to groups of
users as opposed to individual clients. However, the ap-
proaches were often ad-hoc and it is difficult to formal-
ize the proportional fairness guarantees they provided.
Empirical measurements of show that these approaches
only provide reasonable proportional fairness over rela-
tively large time intervals [10]. It is almost certainly the
case that the allocation errors in these approaches can be
very large.

The priority adjustments done by fair-share sched-
ulers can generally be computed quickly inO(1) time.
In some cases, the schedulers need to do an expensive
periodic re-adjustment of all client priorities, which re-
quiredO(N) time, whereN is the number of clients.

2.4 Fair Queueing

Fair queueing was first proposed by Demers et. al. for
network packet scheduling as Weighted Fair Queueing
(WFQ) [8], with a more extensive analysis provided by
Parekh and Gallager [25], and later applied by Wald-
spurger and Weihl to CPU scheduling as stride schedul-
ing [33]. WFQ introduced the idea of a virtual finishing
time (VFT) to do proportional sharing scheduling. To
explain what a VFT is, we first explain the notion of vir-
tual time. Thevirtual timeof a client is a measure of the
degree to which a client has received its proportional al-
location relative to other clients. When a client executes,
its virtual time advances at a rate inversely proportional
to the client’s share. In other words, the virtual time of a
clientA at timet is the ratio ofWA(t) to SA:

VTA(t) =
WA(t)

SA
(3)

Given a client’s virtual time, the client’svirtual finish-
ing time (VFT) is defined as the virtual time the client
would have after executing for one time quantum. WFQ
then schedules clients by selecting the client with the
smallest VFT. This is implemented by keeping an or-
dered queue of clients sorted from smallest to largest
VFT, and then selecting the first client in the queue. Af-
ter a client executes, its VFT is updated and the client is
inserted back into the queue. Its position in the queue
is determined by its updated VFT. Fair queueing pro-
vides proportional sharing by running clients at different
frequencies by adjusting the position in at which each
client is inserted back into the queue; the same size time



quantum is used for all clients.
To illustrate how this works, consider again the ex-

ample in which 3 clients A, B, and C, have shares 3,
2, and 1, respectively. Their initial VFTs are then 1/3,
1/2, and 1, respectively. WFQ would then execute the
clients in the following order of time units: A, B, A, B,
C, A. In contrast to WRR, WFQ’s service time error
ranges from−5/6 to +1 tu in this example, which is
less than the allocation error of−1 to+1.5 tu for WRR.
The difference between WFQ and WRR is greatly exag-
gerated if larger share values are chosen: if we make the
shares 3000, 2000, and 1000 instead of 3, 2, and 1, WFQ
has the same service time error range while WRR’s error
range balloons to−1000 to+1500 tu.

It has been shown that WFQ guarantees that the ser-
vice time error for any client never falls below−1, which
means that a client can never fall behind its ideal alloca-
tion by more than a single time quantum [25]. More
recent fair queueing algorithms [3, 30] provide more ac-
curate proportional sharing (by also guaranteeing an up-
per bound on error) at the expense of additional schedul-
ing overhead. Fair queueing provides stronger propor-
tional fairness guarantees than round-robin or fair-share
scheduling. Unfortunately, fair queueing is more dif-
ficult to implement, and the time it takes to select a
client to execute isO(N) time for most implementations,
whereN is the number of clients. With more complex
data structures, is possible to implement fair queueing
such that selection of a client requiresO(logN) time.
However, the added difficulty of managing complex data
structures in kernel space causes most implementers of
fair queueing to choose the more straightforwardO(N)
implementation.

2.5 Lottery

Lottery scheduling was proposed by Waldspurger and
Weihl [33] after WFQ was first developed. In lottery
scheduling, each client is given a number of tickets pro-
portional to its share. A ticket is then randomly selected
by the scheduler and the client that owns the selected
ticket is scheduled to run for a time quantum. Like fair
queueing, lottery scheduling provides proportional shar-
ing by running clients at different frequencies by adjust-
ing the position in at which each client is inserted back
into the queue; the same size time quantum is typically
used for all clients.

Lottery scheduling is somewhat simpler to implement
than fair queueing, but has the same high scheduling
overhead as fair queueing,O(N) for most implemen-
tations orO(logN) for more complex data structures.
However, because lottery scheduling relies on the law of
large numbers for providing proportional fairness, its ac-
curacy is much worse than WFQ [33], and is also worse

than WRR for smaller share values.

2.6 Other Related Work

Higher-level resource management abstractions have
also been developed [1, 33], and a number of these ab-
stractions can be used with proportional share schedul-
ing mechanisms. This work is complementary to our
focus here on the underlying scheduling mechanisms.
Other scheduling work has also been done in support-
ing clients with real-time requirements [4, 6, 13, 17, 20,
21, 22, 23, 24] and improving the response time of in-
teractive clients [9, 11, 24]. Considering these issues in
depth is beyond the scope of this paper.

3 VTRR Scheduling

VTRR is an accurate, low-overhead proportional
share scheduler for multiplexing time-shared resources
among a set of clients. VTRR combines the benefit of
low overhead round-robin scheduling with the high ac-
curacy mechanisms of virtual time and virtual finishing
time used in fair queueing algorithms. At a high-level,
the VTRR scheduling algorithm can be briefly described
in three steps:

1. Order the clients in the run queue from largest to
smallest share. Unlike fair queueing, a client’s po-
sition on the run queue only changes when its share
changes, an infrequent event, not on each schedul-
ing decision.

2. Starting from the beginning of the run queue, run
each client for one time quantum in a round-robin
manner. VTRR uses the fixed ordering property
of round-robin in order to choose in constant time
which client to run. Unlike round-robin, the time
quantum is the same size for all clients.

3. In step 2, if a client has received more than its
proportional allocation, skip the remaining clients
in the run queue and start running clients from
the beginning of the run queue again. Since the
clients with larger share values are placed first in
the queue, this allows them to get more service than
the lower-share clients at the end of the queue.

To provide a more in depth description of VTRR, we
first define the state VTRR associates with each client,
then describe precisely how VTRR uses that state to
schedule clients. In VTRR, a client has five values as-
sociated with its execution state: share, virtual finishing
time, time counter, id number, and run state. A client’s
sharedefines its resource rights. Each client receives



a resource allocation that is directly proportional to its
share. A client’svirtual finishing time(VFT) is defined
in the same way as in Section 2.4. Since a client has a
VFT, it also has an implicit virtual time. A client’s VFT
advances at a rate proportional to its resource consump-
tion divided by its share. The VFT is used to decide
when VTRR should reset to the first client in the queue.
This is described in greater detail in Section 3.1, below.
A client’s time counterensures that the pattern of allo-
cations is periodic, and that perfect fairness is achieved
at the end of each period. Specifically, the time counter
tracks the number of quanta the client must receive be-
fore the period is over and perfect fairness is reached.
A client’s id numberis a unique client identifier that is
assigned when the client is created. A client’srun state
is an indication of whether or not the client can be exe-
cuted. A client isrunnableif it can be executed, and not
runnable if it cannot. For example for a CPU scheduler,
a client would not be runnable if it is blocked waiting for
I/O and cannot execute.

3.1 Basic VTRR Algorithm

We will initially only consider runnable clients in our
discussion of the basic VTRR scheduling algorithm. We
will discuss dynamic changes in a client’s run state in
Section 3.2. VTRR maintains the following scheduler
state: time quantum, run queue, total shares, and queue
virtual time. As discussed in Section 2.1, thetime quan-
tum is the duration of a standard time slice assigned to a
client to execute. Therun queueis a sorted queue of all
runnable clients ordered from largest to smallest share
client. Ties can be broken either arbitrarily or using the
client id numbers, which are unique. Thetotal sharesis
the sum of the shares of all runnable clients. Thequeue
virtual time (QVT) is a measure of what a client’s VFT
should be if it has received exactly its proportional share
allocation.

Previous work in the domain of packet scheduling
provides the theoretical basis for the QVT [8, 25]. The
QVT advances whenever a client executes at a rate in-
versely proportional to the total shares. If we denote the
system time quantum asQ and the share of clienti asSi ,
then the QVT is updated as follows:

QVT(t +Q) = QVT(t)+
Q

∑i Si
(4)

The difference between the QVT and a client’s virtual
time is a measure of whether the respective client has
consumed its proportional allocation of resources. If a
client’s virtual time is equal to the queue virtual time,
it is considered to have received its proportional alloca-
tion of resources. An earlier virtual time indicates that
the client has used less than its proportional share. Sim-

ilarly, a later virtual time indicates that it has used more
than its proportional share. Since the QVT advances at
the same rate for all clients on the run queue, the relative
magnitudes of the virtual times provide a relative mea-
sure of the degree to which each client has received its
proportional share of resources.

First, we explain the role of the time counters in
VTRR. In relation to this, we define ascheduling cy-
cleas a sequence of allocations whose length is equal to
the sum of all client shares. For example, for a queue of
three clients with shares 3, 2, and 1, a scheduling cycle
is a sequence of 6 allocations. The time counter for each
client is reset at the beginning of each scheduling cycle
to the client’s share value, and is decremented every time
a client receives a time quantum. VTRR uses the time
counters to ensure that perfect fairness is attained at the
end of every scheduling cycle. At the end of the cycle,
every counter is zero, meaning that for each clientA, the
number of quanta received during the cycle is exactly
SA, the client’s share value. Clearly, then, each client
has received service proportional to its share. In order
to guarantee that all counters are zero at the end of the
cycle, we enforce an invariant on the queue, called the
time counter invariant: we require that, for any two con-
secutive clients in the queueA andB, the counter value
for B must always be no greater than the counter value
for A.

The VTRR scheduling algorithm starts at the begin-
ning of the run queue and executes the first client for
one time quantum. We refer to the client selected for ex-
ecution as thecurrent client. Once the current client has
completed its time quantum, its time counter is decre-
mented by one and its VFT is incremented by the time
quantum divided by its share. If we denote the system
time quantum asQ, the current client’s share asSC, and
the current client’s VFT asVFTC(t), VFTC(t) is updated
as follows:

VFTC(t +Q) = VFTC(t)+
Q
SC

(5)

The scheduler then moves on to the next client in
the run queue. First, the scheduler checks for viola-
tion of the time counter invariant: if the counter value of
the next client is greater than the counter of the current
client, the scheduler makes the next client the current
client and executes it for a quantum, without question.
This causes its counter to be decremented, preserving
the invariant. If the next client’s counter is not greater
than the current client’s counter, the time counter invari-
ant cannot be violated whether the next client is run or
not, so the scheduler makes a decision using virtual time:
the scheduler compares the VFT of the next client with
the QVT the system would have after the next time quan-
tum a client executes. We call this comparison theVFT



inequality. If we denote the system time quantum asQ,
the current client’s VFT asVFTC(t), and its share asSC,
the VFT inequality is true if:

VFTC(t)−QVT(t +Q)<
Q
SC

(6)

If the VFT inequality is true, the scheduler selects and
executes the next client in the run queue for one time
quantum and the process repeats with the subsequent
clients in the run queue. If the scheduler reaches a point
in the run queue when the VFT inequality is not true,
the scheduler returns to the beginning of the run queue
and selects the first client to execute. At the end of the
scheduling cycle, when the time counters of all clients
reach zero, the time counters are all reset to their initial
values corresponding to the respective client’s share, and
the scheduler starts from the beginning of the run queue
again to select a client to execute. Note that throughout
this scheduling process, the ordering of clients on the
run queue does not change.

To illustrate how this works, consider again the exam-
ple in which 3 clients A, B, and C, have shares 3, 2, and
1, respectively. Their initial VFTs are then 1/3, 1/2, and
1, respectively. VTRR would then execute the clients in
the following repeating order of time units: A, B, C, A,
B, A. In contrast to WRR and WFQ, VTRR has a max-
imum allocation error between A and B of 1/3 tu in this
example. This allocation error is much better than WRR
and comparable to WFQ.

Since VTRR simply selects each client in turn to exe-
cute, selecting a client for execution can be done inO(1)
time. We defer a more detailed discussion of the com-
plexity of VTRR to Section 3.3.

3.2 VTRR Dynamic Considerations

In the previous section, we presented the basic VTRR
scheduling algorithm, but we did not discuss how VTRR
deals with dynamic considerations that are a necessary
part of any on-line scheduling algorithm. We now dis-
cuss how VTRR allows clients to be dynamically cre-
ated, terminated, change run state, and change their
share assignments.

We distinguish between clients that are runnable and
not runnable. As mentioned earlier, clients that are
runnable can be selected for execution by the scheduler,
while clients that are not runnable cannot. Only runnable
clients are placed in the run queue. With no loss of gen-
erality, we assume that a client is created before it can
become runnable, and a client becomes not runnable be-
fore it is terminated. As a result, client creation and ter-
mination have no affect on the VTRR run queue.

When a client becomes runnable, it is inserted into
the run queue so that the run queue remains sorted from

largest to smallest share client. Ties can be broken ei-
ther arbitrarily or using the unique client id numbers.
One issue remains, which is how to determine the new
client’s initial VFT. When a client is created and be-
comes runnable, it has not yet consumed any resources,
so it is neither below or above its proportional share in
terms of resource consumption. As a result, we set the
client’s implicit virtual time to be the same as the QVT.
We can then calculate the VFT of a new clientA with
shareSA as:

VFTA(t) = QVTA(t)+
Q
SA

(7)

After a client is executed, it may become not runnable.
If the client is the current client and becomes not
runnable, it is preempted and another client is selected
by the scheduler using the basic algorithm described in
Section 3.1. The client that is not runnable is removed
from the run queue. If the client becomes not runnable
and is not the current client, the client is simply removed
from the run queue. While the client is not runnable, its
VFT is not updated. When the client is removed from
the run queue, it records the client that was before it
on the run queue, and the client that was after it on the
run queue. We refer to these clients as thelast-previous
client andlast-nextclient, respectively.

When a client that is not runnable becomes runnable
again, VTRR inserts the now runnable client back into
the run queue. If the client’s references to its last-
previous and last-next client are still valid, it can use
those references to determine its position in the run
queue. If either the last-previous or the last-next ref-
erence is not valid, VTRR then simply traverses the run
queue to find the insertion point for the now runnable
client.

Determining whether the last-previous and last-next
references are valid can be done efficiently as follows.
The last-previous and last-next client references are
valid if both clients have not exited and are runnable,
if there are no clients between them on the run queue,
and if the share of the newly-runnable client is no more
than the last-previous client and no less than the last-
next client. Care must be taken, however, to ensure that
the last-previous and last-next references are still valid
before dereferencing them: if either client has exited
and been deallocated, last-previous and last-next may no
longer refer to valid memory regions. To deal with this,
a hash table can be kept that stores identifiers of valid
clients. Hash function collisions can be resolved by sim-
ple replacement, so the table can be implemented as an
array of identifiers. A client’s identifier is put into the ta-
ble when it is created, and deleted when the client exits.
The last-previous and last-next pointers are not derefer-
enced, then, unless the identifier of the last-previous and



last-next clients exist in the hash table. As described in
Section 4, the use of a hash table was not necessary in
our Linux VTRR implementation.

Once the now runnable client has been inserted in the
run queue, the client’s VFT must be updated. The up-
date is analogous to the VFT initialization used when a
new client becomes runnable. The difference is that we
also account for the client’s original VFT in updating
the VFT. If we denote the original VFT of a clientA as
VFTA(t ′), then the client’s VFT is updated as follows:

VFTA(t) = MAX {QVTA(t)+
Q
SA
,VFTA(t ′)} (8)

This treats a client that has been not runnable for a
while like a new client that has not yet executed. At the
same time, the system keeps track of the client’s VFT so
that if it that has recently used more than its proportional
allocation, it cannot somehow game the system by mak-
ing itself not runnable and becoming runnable again.

We use an analogous policy to set the initial value of
a client’s time counter. A client’s time counter tracks
the number of quanta due to the client before the end
of the current scheduling cycle, and is reset at the be-
ginning of each new cycle. We set the time counter of
a newly-inserted client to a value which will give it the
correct proportion of remaining quanta in this cycle. The
counterCA for the new clientA is computed:

CA =
SA

∑i Si
∑
i

Ci (9)

Note that this is computedbeforeclient A is inserted,
soSA is not included in the∑i Si summation.

This value is modified by a rule similar to the rule en-
acted for the VFT: we require that a client cannot come
back in the same cycle and receive a larger time count
than it had previously. Therefore, if the client is being
inserted during the same cycle in which it was removed,
the counter is set to the minimum ofCA and the previ-
ous counter value. Finally, to preserve the time counter
invariant (as described in Section 3.1), the counter value
must be restricted to be between the time counter values
of the clients before and after the inserted client.

If a client’s share changes, there are two cases to con-
sider based on the run state of the client. If the client is
not runnable, no run queue modifications are needed. If
the client is runnable and its share changes, the client’s
position in the run queue may need to be changed. This
operation can be simplified by removing the client from
the run queue, changing the share, and then reinserting
it. Removal and insertion can then be performed just as
described above.

3.3 Complexity

The primary function of a scheduler is to select a
client to execute when the resource is available. A key
benefit of VTRR is that it can select a client to execute
in O(1) time. To do this, VTRR simply has to main-
tain a sorted run queue of clients and keep track of its
current position in the run queue. Updating the current
run queue position and updating a client’s VFT are both
O(1) time operations. While the run queue needs to be
sorted by client shares, the ordering of clients on the run
queue does not change in the normal process of select-
ing clients to execute. This is an important advantage
over fair queueing algorithms, in which a client needs
to be reinserted into a sorted run queue after each time
it executes. As a result, fair queueing has much higher
complexity than VTRR, requiringO(N) time to select
a client to execute, orO(logN) time if more complex
data structures are used (but this is rarely implemented
in practice).

When all clients on the run queue have zero counter
values, VTRR resets the counter values of all clients on
the run queue. The complete counter reset takesO(N)
time, whereN is the number of clients. However, this
reset is done at most once everyN times the scheduler
selects a client to execute (and much less frequently in
practice). As a result, the reset of the time counters is
amortized over many client selections so that the effec-
tive running time of VTRR is stillO(1) time. In addition,
the counter resets can be done incrementally on the first
pass through the run queue with the new counter values.

In addition to selecting a client to execute, a scheduler
must also allow clients to be dynamically created and
terminated, change run state, and change scheduling pa-
rameters such as a client’s share. These scheduling op-
erations typically occur much less frequently than client
selection. In VTRR, operations such as client creation
and termination can be done inO(1) time since they do
not directly affect the run queue. Changing a client’s
run state from runnable to not runnable can also be done
in O(1) time for any reasonable run queue implementa-
tion since all it involves is removing the respective client
from the run queue. The scheduling operations with
the highest complexity are those that involve changing
a client’s share assignment and changing a client’s run
state to runnable. In particular, a client typically be-
comes runnable after it is created or after an I/O op-
eration that it was waiting for completes. If a client’s
share changes, the client’s position in the run queue may
have change as well. If a client becomes runnable, the
client will have to be inserted into the run queue in the
proper position based on its share. Using a doubly linked
list run queue implementation, insertion into the sorted
queue can requireO(N) time, whereN is the number of



runnable clients. A priority queue implementation could
be used for the run queue to reduce the insertion cost
to O(logN), but probably does not have better overall
performance than a simple sorted list in practice.

Because queue insertion is required much less fre-
quently than client selection in practice, the queue inser-
tion cost is not likely to dominate the scheduling cost. In
particular, if only a constant number of queue insertions
are required for everyN times a client selection is done,
then the effective cost of the queue insertions is still only
O(1) time. Furthermore, the most common scheduling
operation that would require queue insertion is when a
client becomes runnable again after it was blocked wait-
ing on a resource. In this case, the insertion overhead
can beO(1) time if the last-previous client and last-next
client references remain valid at queue insertion time. If
the references are valid, then the position of the client is
already known on the run queue so the scheduler does
not have to find the insertion point.

An alternative implementation can be done that allows
all queue insertions to be done inO(1) time, if the range
of share values is fixed in advance. The idea is similar
to priority schedulers which have a fixed range of pri-
ority values and have separate run queue for each prior-
ity. Instead of using priorities, we can have a separate
run queue for each share value and keep track of the run
queues using an array. We can then find the queue cor-
responding to a client’s share and insert the client at the
end of the corresponding queue inO(1) time. Such an
implementation maps well to scheduling frameworks in
a number of commercial operating systems, including
Solaris [31] and Windows NT [7].

4 Implementation

We have implemented a prototype VTRR CPU sched-
uler in the Linux operating system. For this work, we
used the Red Hat Linux version 6.1 distribution and
the Linux version 2.2.12-20 kernel. We had to add or
modify less than 100 lines of kernel code to complete
the VTRR scheduler implementation. We describe our
Linux VTRR implementation in further detail to illus-
trate how easy VTRR is to implement. These scheduling
frameworks are commonly found in commercial operat-
ing systems. While VTRR can be used in a multiproces-
sor scheduling context, we only discuss the single CPU
implementation here.

The Linux scheduling framework for a single CPU is
based on a run queue implemented as a single doubly
linked list. We first describe how the standard Linux
scheduler works, and then discusses the changes we
made to implement VTRR in Linux.

The standard Linux scheduler multiplexes a set of

clients that can be assigned different priorities. The pri-
orities are used to compute a per client measure called
goodnessto schedule the set of clients. Each time the
scheduler is called, the goodness value for each client
in the run queue is calculated. The client with the high-
est goodness value is then selected as the next client to
execute. In the case of ties, the first client with the high-
est goodness value is selected. Because the goodness
of each client is calculated each time the scheduler is
called, the scheduling overhead of the Linux scheduler
is O(N), whereN is the number of runnable clients.

The standard way Linux calculates the goodness for
all clients is based on a client’s priority and counter. The
counter is not the same as the time counter value used by
VTRR, but is instead a measure of the remaining time
left in a client’s time quantum. The standard time unit
used in Linux for the counter and time quantum is called
a jiffy, which is 10 ms by default. The basic idea is that
the goodness of a client is its priority plus its counter
value. The client’s counter is initially set equal to the
client’s priority, which has a value of 20 by default. Each
time a client is executed for a jiffy, the client’s counter is
decremented. A client’s counter is decremented until it
drops below zero, at which point the client cannot be se-
lected to execute. As a result, the default time quantum
for each client is 21 jiffies, or 210 ms. When the coun-
ters of all runnable clients drop below zero, the sched-
uler resets all the counters to their initial value. There
is some additional logic to support static priority real-
time clients and clients that become not runnable, but
an overview of the basic way in which the Linux sched-
uler works is sufficient for our discussion here. Further
details are available elsewhere [2].

To implement VTRR in Linux, we reused much of
the existing scheduling infrastructure. We used the same
doubly linked list run queue structure as the standard
Linux scheduler. The primary change to the run queue
was sorting the clients from largest to smallest share.
Rather than scanning all the clients when a scheduling
decision needs to be made, our VTRR Linux implemen-
tation simply picks the next client in the run queue based
on the VTRR scheduling algorithm.

One idiosyncrasy of the Linux scheduler that is rele-
vant to this work is that the smallest counter value that
may be assigned to a client is 1. This means that the
smallest time quantum a client can have is 2 jiffies. To
provide a comparable implementation of VTRR, the de-
fault time quantum used in our VTRR implementation is
also 2 jiffies, or 20 ms.

In addition to the VTRR client state, two fields that
were added to the standard client data structure in Linux
were last-previous and last-next pointers which were
used to optimize run queue insertion efficiency. In the
Linux 2.2 kernel, memory for the client data structures



is statically allocated, and never reclaimed for anything
other than new client data structures. Therefore, in our
implementation, we were free to reference the last-next
and last-previous pointers to check their validity, as they
always refer to some client’s data; the hash table method
described in Section 3.2 was unnecessary.

5 Measurements and Results

To demonstrate the effectiveness of VTRR, we have
quantitatively measured and compared its performance
against other leading approaches from both industrial
practice and research. We have conducted both exten-
sive simulation studies and detailed measurements of
real kernel scheduler performance on real applications.

We conducted simulation studies to compare the pro-
portional sharing accuracy of VTRR against both WRR
and WFQ. We used a simulator for these studies for two
reasons. First, our simulator enabled us to isolate impact
of the scheduling algorithms themselves and purpose-
fully do not include the effects of other activity present
in an actual kernel implementation. Second, our simu-
lator enabled us to examine the scheduling behavior of
these different algorithms across hundreds of thousands
of different combinations of clients with different share
values. It would have been much more difficult to ob-
tain this volume of data in a repeatable fashion from
just measurements of a kernel scheduler implementa-
tion. Our simulation results are presented in Section 5.1.

We also conducted detailed measurements of real ker-
nel scheduler performance by comparing our prototype
VTRR Linux implementation against both the standard
Linux scheduler and a WFQ scheduler. In particular,
comparing against the standard Linux scheduler and
measuring its performance is important because of its
growing popularity as a platform for server as well as
desktop systems. The experiments we have done quan-
tify the scheduling overhead and proportional share al-
location accuracy of these schedulers in a real operating
system environment under a number of different work-
loads. Our measurements of kernel scheduler perfor-
mance are presented in Sections 5.2 to 5.4.

All of our kernel scheduler measurements were per-
formed on a Gateway 2000 E1400 system with a 433
MHz Intel Celeron CPU, 128 MB RAM, and 10 GB
hard drive. The system was installed with the Red Hat
Linux 6.1 distribution running the Linux version 2.2.12-
20 kernel. The measurements were done by using a min-
imally intrusive tracing facility that logs events at sig-
nificant points in the application and the operating sys-
tem code. This is done via a light-weight mechanism
that writes timestamped event identifiers into a mem-
ory log. The mechanism takes advantage of the high-

resolution clock cycle counter available with the Intel
CPU to provide measurement resolution at the granu-
larity of a few nanoseconds. Getting a timestamp sim-
ply involved reading the hardware cycle counter register,
which could be read from user-level or kernel-level code.
We measured the cost of the mechanism on the system
to be roughly 70 ns per event.

The kernel scheduler measurements were performed
on a fully functional system to represent a realistic sys-
tem environment. By fully functional, we mean that all
experiments were performed with all system functions
running and the system connected to the network. At the
same time, an effort was made to eliminate variations in
the test environment to make the experiments repeatable.

5.1 Simulation Studies

We built a scheduling simulator that we used to eval-
uate the proportional fairness of VTRR in comparison
to two other schedulers, WRR and WFQ. The simulator
is a user-space program that measures the service time
error, described in Section 2.1, of a scheduler on a set
of clients. The simulator takes four inputs, the schedul-
ing algorithm, the number of clientsN, the total num-
ber of sharesS, and the number of client-share combina-
tions. The simulator randomly assigns shares to clients
and scales the share values to ensure that they sum to
S. It then schedules the clients using the specified algo-
rithm as a real scheduler would, and tracks the result-
ing service time error. The simulator runs the sched-
uler until the resulting schedule repeats, then computes
the maximum (most positive) and minimum (most neg-
ative) service time error across the nonrepeating portion
of the schedule for the given set of clients and share as-
signments. The simulator assumes that all clients are
runnable at all times. This process of random share
allocation and scheduler simulation is repeated for the
specified number of client-share combinations. We then
compute an average highest service time error and av-
erage lowest service time error for the specified number
of client-share combinations to obtain an “average-case”
error range.

To measure proportional fairness accuracy, we ran
simulations for each scheduling algorithm considered on
40 different combinations ofN andS. For each set of
(N,S), we ran 10,000 client-share combinations and de-
termined the resulting average error ranges. The average
service time error ranges for VTRR, WRR, and WFQ
are shown in Figures 1 and 2.

Figure 1 shows a comparison of the error ranges for
VTRR versus WRR, one graph showing the error ranges
for VTRR and the other showing the error ranges for
WRR. Each graph shows two surfaces plotted on axes
of the same scale, representing the maximum and mini-



WRR Error Range

050100150200250
Number of clients

0
500

1000
1500

2000
Sum of shares

-400

-200

0

200

400

Error

VTRR Error Range

050100150200250
Number of clients

0
500

1000
1500

2000
Sum of shares

-400

-200

0

200

400

Error

Figure 1: VTRR vs. WRR service time error

mum service time error as a function ofN andS. Within
the range of values ofN andSshown, WRR’s error range
reaches as low as−398 tu and as high as 479 tu. With the
time units expressed in 10 ms jiffies as in Linux, a client
under WRR can on average get ahead of its correct CPU
time allocation by 4.79 seconds, or behind by 3.98 sec-
onds, which is a substantial amount of service time er-
ror. In contrast, Figure 1 shows that VTRR has a much
smaller error range than WRR and is much more accu-
rate. Because the error axis is scaled to display the wide
range of WRR’s error values, it is difficult to even distin-
guish the two surfaces for VTRR in Figure 1. VTRR’s
service time error only ranges from−3.8 to 10.6 tu; this
can be seen more clearly in Figure 2.

Figure 2 shows a comparison of the error ranges for
VTRR versus WFQ, one graph showing the error ranges
for VTRR and the other showing the error ranges for
WFQ. As in the case in Figure 2, each graph shows two
surfaces plotted on axes of the same scale, representing
the maximum and minimum service time error as a func-
tion of N andS. The VTRR graph in Figure 2 includes
the same data as the VTRR graph in Figure 1, but the
error axis is scaled more naturally. Within the range of
values ofN and S shown, WFQ’s average error range
reaches as low as−1 tu and as high as 2 tu, as opposed

WFQ Error Range

050100150200250
Number of clients

0
500

1000
1500

2000
Sum of shares

-4

0

4

8

12

Error

VTRR Error Range

050100150200250
Number of clients

0
500

1000
1500

2000
Sum of shares

-4

0

4

8

12

Error

Figure 2: VTRR vs. WFQ service time error

to VTRR’s error range from−3.8 to 10.6 tu. The er-
ror ranges for WFQ are smaller than VTRR, but the dif-
ference between WFQ and VTRR is much smaller than
the difference between VTRR and WRR. With the time
units expressed in 10 ms jiffies as in Linux, a client under
WFQ can on average get ahead of its correct CPU time
allocation by 10 ms, or behind by 20 ms, while a client
under VTRR can get ahead by 38 ms or behind by 106
ms. In both cases, the service time errors are small. In
fact, the service time errors are even below the threshold
of delay noticeable by most human beings for response
time on interactive applications [27]. Note that another
fair queueing algorithm WF2Q was not simulated, but its
error is mathematically bounded [3] between−1 and+1
tu, and so would be very similar to WFQ in practice.

The data produced by our simulations confirm that
VTRR has fairness properties that are much better than
WRR, and nearly as good as WFQ. For the domain of
values simulated, the service time error for VTRR falls
into an average range almost two orders of magnitude
smaller than WRR’s error range. While VTRR’s error
range is not quite as good as WFQ, even the largest error
measured, 10.6 tu, would likely be unnoticeable in most
applications, given the size of time unit used by most
schedulers. Furthermore, we show in Section 5.2 that



0.1

1

10

100

0 50 100 150 200

A
ve

ra
ge

 s
ch

ed
ul

in
g 

co
st

 (
us

)

�

Number of clients

Linux
WFQ [O(N)]
WFQ [O(log N)]
VTRR

Figure 3: Average scheduling overhead

VTRR provides this degree of accuracy at much lower
overhead than WFQ.

5.2 Scheduling Overhead

To evaluate the scheduling overhead of VTRR, we
implemented VTRR in the Linux operating system and
compared the overhead of our prototype VTRR imple-
mentation against the overhead of both the Linux sched-
uler and a WFQ scheduler. We conducted a series of
experiments to quantify how the scheduling overhead
for each scheduler varies as the number of clients in-
creases. For this experiment, each client executed a
simple micro-benchmark which performed a few oper-
ations in a while loop. A control program was used
to fork a specified number of clients. Once all clients
were runnable, we measured the execution time of each
scheduling operation that occurred during a fixed time
duration of 30 seconds. This was done by inserting a
counter and timestamped event identifiers in the Linux
scheduling framework. The measurements required two
timestamps for each scheduling decision, so variations
of 140 ns are possible due to measurement overhead.
We performed these experiments on the standard Linux
scheduler, WFQ, and VTRR for 1 client up to 200
clients.

Figure 3 shows the average execution time required
by each scheduler to select a client to execute. For this
experiment, the particular implementation details of the
WFQ scheduler affect the overhead, so we include re-
sults from two different implementations of WFQ. In
the first, labeled “WFQ [O(N)]” the run queue is imple-
mented as a simple linked list which must be searched
on every scheduling decision. The second, labeled
“WFQ [O(logN)]” uses a heap-based priority queue
with O(logN) insertion time. Most fair queueing-based
schedulers are implemented in the first fashion, due to
the difficulty of maintaining complex data structures in
the kernel. In our implementation, for example, a sep-

arate, fixed-length array was necessary to maintain the
heap-based priority queue. If the number of clients ever
exceeds the length of the array, a costly array realloca-
tion must be performed. We chose an initial array size
large enough to contain more than 200 clients, so this
additional cost is not reflected in our measurements.

As shown in Figure 3, the increase in scheduling over-
head as the number of clients increases varies a great
deal between different schedulers. VTRR has the small-
est scheduling overhead. It requires less than 800 ns
to select a client to execute and the scheduling over-
head is essentially constant for all numbers of clients.
In contrast, the overhead for Linux and forO(N) WFQ
scheduling grows linearly with the number of clients.
The Linux scheduler imposes 100 times more overhead
than VTRR when scheduling a mix of 200 clients. In
fact, the Linux scheduler still spends almost 10 times
as long scheduling a single micro-benchmark client as
VTRR does scheduling 200 clients. VTRR outperforms
Linux and WFQ even for small numbers of clients be-
cause the VTRR scheduling code is simpler and hence
runs significantly faster. VTRR performs even bet-
ter compared to Linux and WFQ for large numbers of
clients because it has constant time overhead as opposed
to the linear time overhead of the other schedulers.

While O(logN) WFQ has much smaller overhead
than Linux orO(N) WFQ, it still imposes significantly
more overhead than VTRR, particularly with large num-
bers of clients. With 200 clients,O(logN) WFQ has an
overhead more than 6 times that of VTRR. WFQ’s more
complex data structures require more time to maintain,
and the time required to make a scheduling decision is
still dependent on the number of clients, so the over-
head would only continue to grow worse as more clients
are added. VTRR’s scheduling decisions always take
the same amount of time, regardless of the number of
clients.

5.3 Microscopic View of Scheduling

Using our prototype VTRR implementation, we con-
ducted a number of experiments to measure the schedul-
ing behavior of the standard Linux scheduler, WFQ,
and VTRR at fine time resolutions. We discuss the re-
sults of one of the studies in which we ran a 30 second
workload of five micro-benchmarks with different pro-
portional sharing parameters. Using VTRR and WFQ,
we ran the five micro-benchmarks with shares 1, 2, 3,
4, and 5, respectively. To provide similar proportional
sharing behavior using the Linux scheduler, we ran the
five micro-benchmarks with user priorities 19, 17, 15,
13, and 11, respectively. This translates to internal pri-
orities used by the scheduler of 1, 3, 5, 7, and 9, respec-
tively. This then translates into the clients running for 20



ms, 40 ms, 60 ms, 80 ms, and 100 ms time quanta, re-
spectively. The smallest time quantum used is the same
for all three schedulers. At the very least, the mapping
between proportional sharing and user input priorities
is non-intuitive in Linux. The scheduling behavior for
this workload appears similar across all of the sched-
ulers when viewed at a coarse granularity. The relative
resource consumption rates of the micro-benchmarks are
virtually identical to their respective shares at a coarse
granularity.

We can see more interesting behavior when we view
the measurements over a shorter time scale of one sec-
ond. We show the actual scheduling sequences on each
scheduler over this time interval in Figures 4, 5, and 6.
These measurements were made by sampling a client’s
execution from within the client by recording multiple
high resolution timestamps each time that a client was
executed. We can see that the Linux scheduler does
the poorest job of scheduling the clients evenly and pre-
dictably. Both WFQ and VTRR do a much better job of
scheduling the clients proportionally at a fine granular-
ity. In both cases, there is a clear repeating scheduling
pattern every 300 ms.

Linux does not have a perfect repeating pattern be-
cause the order in which it schedules clients changes
depending on exactly when the scheduler function is
called. This is because once Linux selects a client to
execute, it does not preempt the client even if its good-
ness drops below that of other clients. Instead, it runs the
client until its counter drops below zero or an interrupt or
other scheduling event occurs. If a scheduling event oc-
curs, then Linux will again consider the goodness of all
clients, otherwise it does not. Since interrupts can cause
a scheduling event and can occur at arbitrary times, the
resulting order in which clients are scheduled does not
have a repeating pattern. As a result, applications being
scheduled using WFQ and VTRR will receive a more
even level of CPU service than if they are scheduled us-
ing the Linux scheduler.

5.4 Application Workloads

To demonstrate VTRR’s efficient proportional sharing
of resources on real applications, we briefly describe two
of our experiments, one running multimedia applications
and the other running virtual machines. We contrast the
performance of VTRR versus the standard Linux sched-
uler and WFQ.

One experiment we performed was to run multiple
MPEG audio encoders with different shares on each of
the three schedulers. The encoder test was implemented
by running five copies of an MPEG audio encoder. The
encoder clients were allotted shares of 1, 2, 3, 4, and 5,
and were instrumented with time stamp event recorders

0

1

2

3

4

5

6

0 200 400 600 800 1000

C
lie

nt
 a

nd
 S

ha
re

�

Execution Time (ms)

Figure 4: Linux scheduling behavior

0

1

2

3

4

5

6

0 200 400 600 800 1000

C
lie

nt
 a

nd
 S

ha
re

�

Execution Time (ms)

Figure 5: WFQ scheduling behavior

0

1

2

3

4

5

6

0 200 400 600 800 1000

C
lie

nt
 a

nd
 S

ha
re

�

Execution Time (ms)

Figure 6: VTRR scheduling behavior



in a manner similar to how we recorded time in our
micro-benchmark programs. Each encoder took its in-
put from the same file, but wrote output to its own file.
MPEG audio is encoded in chunks called frames, so
our instrumented encoder records a timestamp after each
frame is encoded, allowing us to easily observe the effect
of resource share on single-frame encoding time.

Figures 7, 8, and 9 show the number of frames en-
coded over time for the Linux default scheduler, WFQ,
and VTRR. The Linux scheduler clearly does not pro-
vide sharing as fairly as WFQ or VTRR when viewed
over a short time interval. The “staircase” effect indi-
cates that CPU resources are provided in bursts, which,
for a time-critical task like audio streaming, can mean
extra jitter, resulting in delays and dropouts. It can be in-
ferred from the smoother curves of the WFQ and VTRR
graphs that WFQ and VTRR scheduling provide fair re-
source allocation at a much smaller granularity. When
analyzed at a fine resolution, we can detect some dif-
ferences in the proportional sharing behavior of the ap-
plications when running under WFQ versus VTRR, but
the difference is far smaller than the difference com-
pared with Linux, which is clearly visible. VTRR trades
some precision in instantaneous proportional fairness for
much lower scheduling overhead.

Schedulers that explicitly support time constraints can
do a more effective job than just proportional share
schedulers of ensuring that real-time applications can
meet their deadlines [24]. However, these real-time
schedulers typically require modifying an application
in order for the application to make use of scheduler-
supported time constraints. For applications that have
soft timing constraints but can adapt to the availability
of resources, accurate proportional sharing may provide
sufficient benefit in some cases without the cost of hav-
ing to modify the applications.

Another experiment we performed was to run several
VMware virtual machines on top a Linux operating sys-
tem, and then compare the performance of applications
within the virtual machines when the virtual machines
were scheduled using different schedulers. For this ex-
periment, we ran three virtual machines simultaneously
with respective shares of 1, 2, and 3. We then executed a
simple timing benchmark within each virtual machine to
measure the relative performance of the virtual machine.
We were careful to make use of the hardware clock cy-
cle counters in doing these measurements as the standard
operating system timing mechanisms within a virtual
machine are a poor measure of elapsed time. We con-
ducted the experiment using the standard Linux sched-
uler, WFQ, and VTRR. The results were similar to the
previous experiments, with Linux doing the worst job in
terms of evenly distributing CPU cycles, and VTRR and
WFQ scheduling providing more comparable schedul-

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

M
P

E
G

 fr
am

es
 r

en
de

re
d

�

Time (ms)

share 1
share 2
share 3
share 4
share 5

Figure 7: MPEG encoding with Linux

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

M
P

E
G

 fr
am

es
 r

en
de

re
d

�

Time (ms)

share 1
share 2
share 3
share 4
share 5

Figure 8: MPEG encoding with WFQ

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

M
P

E
G

 fr
am

es
 r

en
de

re
d

�

Time (ms)

share 1
share 2
share 3
share 4
share 5

Figure 9: MPEG encoding with VTRR



ing accuracy in proportionally allocating resources.

6 Conclusions and Future Work

We have designed, implemented, and evaluated
Virtual-Time Round-Robin scheduling in the Linux op-
erating system. Our experiences with VTRR show that it
is simple to implement and easy to integrate into existing
commercial operating systems. We have measured the
performance of our Linux implementation and demon-
strated that VTRR combines the benefits of accurate
proportional share resource management with very low
overhead. Our results show that VTRR scheduling over-
head is constant, even for large numbers of clients. De-
spite the popularity of the Linux operating system, our
results also show that the standard Linux scheduler suf-
fers fromO(N) scheduling overhead and performs much
worse than VTRR, especially for larger workloads.

VTRR’s ability to provide low overhead proportional
share resource allocation make it a particularly promis-
ing solution for managing resources in large-scale server
systems. Since these systems are typically multiproces-
sor machines, we are continuing our evaluation of VTRR
in a multiprocessor context to demonstrate its effective-
ness in supporting large numbers of users and applica-
tions in these systems.

7 Acknowledgments

We thank the anonymous referees for their helpful
comments on earlier drafts of this paper. This work
was supported in part by NSF grant EIA-0071954 and
an NSF CAREER Award.

References

[1] G. Banga, P. Druschel, and J. Mogul, “Resource Containers: A
New Facility for Resource Management in Server Systems,” in
Proceedings of the 3rd Symposium on Operating Systans Design
and Implementation, USENIX, Berkeley, CA, Feb. 22–25 1999,
pp. 45–58.

[2] M. Beck, H. Bohme, M. Dziadzka, and U. Kunitz,Linux Kernel
Internals. Reading, MA: Addison-Wesley, 2nd ed., 1998.

[3] J. Bennett and H. Zhang, “WF2Q: Worst-case Fair Weighted Fair
Queueing,” inProceedings of INFOCOM ’96, San Francisco,
CA, Mar. 1996.

[4] G. Bollella and K. Jeffay, “Support for Real-Time Computing
Within General Purpose Operating Systems: Supporting Co-
resident Operating Systems,” inProceedings of the Real-Time
Technology and Applications Symposium, IEEE Computer So-
ciety Press, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1995, pp. 4–14.

[5] R. Bryant and B. Hartner, “Java Technology, Threads, and
Scheduling in Linux,” IBM developerWorks Library Paper, IBM
Linux Technology Center, Jan. 2000.

[6] G. Coulson, A. Campbell, P. Robin, G. Blair, M. Papathomas,
and D. Hutchinson, “Design of a QoS Controlled ATM Based
Communication System in Chorus,” inIEEE Journal of Selected
Areas in Communications (JSAC), 13(4), May 1995, pp. 686–
699.

[7] H. Custer,Inside Windows NT. Redmond, WA, USA: Microsoft
Press, 1993.

[8] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simula-
tion of a Fair Queueing Algorithm,” inProceedings of ACM SIG-
COMM ’89, Austin, TX, Sept. 1989, pp. 1–12.

[9] K. Duda and D. Cheriton, “Borrowed-Virtual-Time (BVT)
Scheduling: Supporting Latency-Sensitive Threads in a General-
Purpose Scheduler,” inProceedings of the 17th Symposium on
Operating Systems Principles, ACM Press, New York, Dec.
1999, pp. 261–276.

[10] R. Essick, “An Event-Based Fair Share Scheduler,” inProceed-
ings of the Winter 1990 USENIX Conference, USENIX, Berke-
ley, CA, USA, Jan. 1990, pp. 147–162.

[11] S. Evans, K. Clarke, D. Singleton, and B. Smaalders, “Opti-
mizing Unix Resource Scheduling for User Interaction,” in1993
Summer Usenix, USENIX, June 1993, pp. 205–218.

[12] E. Gafni and D. Bertsekas, “Dynamic Control of Session Input
Rates in Communication Networks,” inIEEE Transactions on
Automatic Control, 29(10), 1984, pp. 1009–1016.

[13] D. Golub, “Operating System Support for Coexistence of Real-
Time and Conventional Scheduling,” Tech. Rep. CMU-CS-94-
212, School of Computer Science, Carnegie Mellon University,
Nov. 1994.

[14] P. Goyal, X. Guo, and H. Vin, “A Hierarchical CPU Scheduler
for Multimedia Operating System,” inProceedings of the Second
Symposium on Operating Systems Design and Implementation,
USENIX, Berkeley, CA, Oct. 1996, pp. 107–121.

[15] E. Hahne and R. Gallager, “Round Robin Scheduling for Fair
Flow Control in Data Communication Networks,” Tech. Rep.
LIDS-TH-1631, Laboratory for Information and Decision Sys-
tems, Massachusetts Institute of Technology, Dec. 1986.

[16] G. Henry, “The Fair Share Scheduler,”AT&T Bell Laboratories
Technical Journal, 63(8), Oct. 1984, pp. 1845–1857.

[17] M. Jones, D. Roşu, and M. Roşu, “CPU Reservations and Time
Constraints: Efficient, Predictable Scheduling of Independent
Activities,” in Proceedings of the 16th Symposium on Operating
Systems Principles, ACM Press, New York, Oct. 1997, pp. 198–
211.

[18] J. Kay and P. Lauder, “A Fair Share Scheduler,”Communications
of the ACM, 31(1), Jan. 1988, pp. 44–55.

[19] L. Kleinrock, Queueing Systems, Volume II: Computer Applica-
tions. New York: John Wiley & Sons, 1976.

[20] I. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Schedul-
ing Algorithm: Exact Characterization and Average Case Behav-
ior,” in Proceedings of the Real-Time Systems Symposium - 1989,
IEEE Computer Society Press, Santa Monica, California, USA,
Dec. 1989, pp. 166–171.

[21] C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,”Journal of the
ACM, 20(1), Jan. 1973, pp. 46–61.

[22] C. Locke,Best-Effort Decision Making for Real-Time Schedul-
ing. PhD thesis, Department of Computer Science, Carnegie-
Mellon University, May 1986.



[23] C. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Re-
serves: Operating System Support for Multimedia Applications,”
in Proceedings of the International Conference on Multimedia
Computing and Systems, IEEE Computer Society Press, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994,
pp. 90–99.

[24] J. Nieh and M. Lam, “The Design, Implementation and Evalua-
tion of SMART: A Scheduler for Multimedia Applications,” in
Proceedings of the 16th Symposium on Operating Systems Prin-
ciples, 31(5), ACM Press, New York, Oct. 5–8 1997, pp. 184–
197.

[25] A. Parekh and R. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,”IEEE/ACM Transactions on Networking,
1(3), June 1993, pp. 344–357.

[26] K. Ramakrishnan, D. Chiu, and R. Jain, “Congestion Avoid-
ance in Computer Networks with a Connectionless Network
Layer, Part IV: A Selective Binary Feedback Scheme for Gen-
eral Topologies,” Tech. Rep. DEC-TR-510, DEC, Nov. 1987.

[27] B. Shneiderman,Designing the User Interface: Strategies for
Effective Human-Computer Interaction. Reading, MA: Addison-
Wesley, 2nd ed., 1992.

[28] M. Shreedhar and G. Varghese, “Efficient Fair Queueing Using
Deficit Round-Robin,” inProceedings of ACM SIGCOMM ’95,
4(3), Sept. 1995, pp. 231–242.

[29] A. Silberschatz and P. Galvin,Operating System Concepts.
Reading, MA, USA: Addison-Wesley, 5th ed., 1998.

[30] I. Stoica, H. Abdel-Wahab, and K. Jeffay, “On the Duality be-
tween Resource Reservation and Proportional Share Resource
Allocation,” in Multimedia Computing and Networking Proceed-
ings, SPIE Proceedings Series, 3020, Feb. 1997, pp. 207–214.

[31] “UNIX System V Release 4 Internals Student Guide, Vol. I, Unit
2.4.2.” AT&T, 1990.

[32] R. Tijdeman, “The Chairman Assignment Problem,”Discrete
Mathematics, 32, 1980, pp. 323–330.

[33] C. Waldspurger, Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management. PhD thesis, De-
partment of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Sept. 1995.

[34] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for
Packet Switched Networks,” inACM Transactions on Computer
Systems, 9(2), May 1991, pp. 101–125.


	Introduction
	Background
	Proportional Fairness
	Round-Robin
	Fair-Share
	Fair Queueing
	Lottery
	Other Related Work

	VTRR Scheduling
	Basic VTRR Algorithm
	VTRR Dynamic Considerations
	Complexity

	Implementation
	Measurements and Results
	Simulation Studies
	Scheduling Overhead
	Microscopic View of Scheduling
	Application Workloads

	Conclusions and Future Work
	Acknowledgments

