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Abstract

This paper describes an efficient and elegant architec-
ture for unifying the meta-data protection of journaling
file systems with the data integrity protection of colli-
sion-resistant cryptographic hashes. Traditiona file sys-
tem journaling protects the ordering of meta-data
operations to maintain consistency in the presence of
crashes. However, journaling does not protect important
system meta-data and application data from modifica-
tion or misrepresentation by faulty or malicious storage
devices. With the introduction of both storage-area net-
working and increasingly complex storage systems into
server architectures, these threats become an important
concern.

This paper presents the protected file system (PFS), a
file system that unifies the meta-data update protection
of journaling with strong data integrity. PFS computes
hashes from file system blocks and uses these hashes to
later verify the correctness of their contents. Hashes are
stored within a system log, apart from the blocks they
describe, but potentially on the same storage system.
The write-ahead logging (WAL) protocol and the file
system buffer cache are used to aggregate hash writes
and allow hash computations and writes to proceed in
the background.

PFS does not require the sharing of secrets between the
operating system and the storage system nor the deploy-
ment of any specia cryptographic firmware or hard-
ware. PFS is an end-to-end solution and will work with
any block-oriented device, from a disk drive to a mono-
lithic RAID system, without modification.

1 Introduction

For a variety of economic and management reasons,
server operating systems are moving towards a looser
coupling with their storage subsystems [6]. There are
two important components to this change. First, the
technology connecting the server operating system to
the underlying storage system is changing. Busses are

being replaced by networking fabrics known as storage
area networks (SAN) that utilize protocols such as Fibre
Channel or Gigabit Ethernet [2]. In the future we may
even see IP networks within the SAN. The IETF IP
Storage working group is designing a protocol for trans-
porting block-level storage commands over |P networks
[20]. This shift from protected busses to networking fab-
rics introduces an increased risk of malicious intrusion.

Storage Service Providers (SSPs) offer storage out-
sourcing services, connecting a client’s application
server to their storage system, which can be partitioned
across severa clients. In these cases, strong protection
guarantees become important because the network
between the server operating system and the storage
system now spans commercial boundaries. The server
and the storage are no longer under a single administra-
tive control. The client will undoubtedly have a data
integrity contract with the SSP, but an alarm should be
raised immediately if the SSP, either intentionally or
unintentionally, delivers bad data.

Second, the complexity of storage isincreasing. Storage
systems have evolved from direct attached hard disks to
large network-attached disk arrays with internal RAIDs.
These systems have complicated firmware, and many
run non-trivial operating systems. This new complexity
introduces software failure modes that are not described
by the traditional fail-stop model of hardware.

Many problematic scenarios can arise in this new envi-
ronment. For example, malicious intruders spoof blocks
to the server, a software bug on the storage corrupts
data, or the storage receives or transmits a different
block than the one requested. The server operating sys-
tem must protect itself against al such failures. Blocks
containing file system meta-data are particularly impor-
tant because they contain operating system state and
will crash the server operating system, and consequently
al applications, if they are corrupted.



This paper introduces the Protected File System (PFS).
PFS is intended for server operating systems and pro-
vides strong integrity at the level of file system blocks.
Block hashes are computed with a collision-resistant
hash function and are subsequently used to verify block
reads from the storage. PFS does not change thefile sys-
tem interface. Applications are free to open, close, read
and write files as they always have. PFS also makes no
changes to the on-disk layout of data and meta-data.
This allows for backward compatability with existing
data and the freedom to use existing utilities. PFS uni-
fies block verification with the existing file system pro-
tection mechanism, the file system journa. This
unification is achieved using a generic system service
known as the write-ahead file system (WAFS) [19]. The
WAFS stores records and provides its clients with log
seguence numbers (LSNS) for their record writes. PFS
uses the WAFS for both journaling and hash logging.
This centralizes recovery in a single component, consol -
idates potentially disparate I/O streams into a single
sequential stream, and avoids code duplication.

PFS uses collision-resistant hashes to protect data integ-
rity. Collision-resistant hashes have the property that it
is computationally infeasible to find two different data
blocks with the same hash value. SHA-1 [4] is one pop-
ular such hash, mapping a data block of any sizeto a 20-
byte hash value. MD-5 [17] is another, mapping to a 16-
byte value.

Section 2 outlines the properties that we sought in a
solution and discusses some candidate architectures.
The goal is to give readers an understanding of the pro-
cess we followed in order to arrive at the PFS architec-
ture. Section 3 discusses related work. Section 4
provides an overview of the PFS architecture, and Sec-
tion 5 discusses some of the more important issues in
detail. Section 6 presents our performance results, and
Section 7 concludes.

2 Desired Properties and Potential Solu-
tions

At the beginning of this project, we set out the following
requirements for our architecture.

» Detect al bad blocks. With avery high degree of
certainty, any unauthorized block modification must
be detected by the file system. This includes both
data and meta-data blocks. With the same degree of
certainty, the file system must detect that the stor-
age returns a block other than the one requested.

* No changesto storage systems. No special crypto-
graphic logic, either hardware or software, should

be necessary. File system block sizes must remain a
power of two so that they can be expressed effi-
ciently interms of storage blocks (e.g., sectors),
which tend to default to apower of two smaller than
traditional file system blocks.

«  Straightforward to implement in both legacy and
modern file systems. The on-disk structure of the
file system must be maintained. The architecture
must interact well with the operating system buffer
cache. The popular file system interface must
remain unchanged.

e Minimal requirements for local non-volatile stor-
age. Centralizing non-volatile state on the storage
has the added benefit that afailed server can be
quickly replaced by another trusted server.

*  High performance. Sacrifice as little performance
aspossible.

A first potential solution would be to compute a hash for
each block and store it along with the block, either
appended to it or in a special header. When the data is
faulted in, the operating system computes the hash and
compares it with the hash value stored alongside the
block. There are several problems with this solution.
First, the storage system block size must be larger than
the file system block size by the size of the hash, which
is 20 bytes under SHA-1 and 16 bytes for MD-5. This
may rule out a large class of storage devices that lack
flexible block sizes. Second, malicious intruders with
knowledge of the hash function can spoof data and gen-
erate a hash, which will be verified successfully, but for
incorrect data. Third, a class of storage failures are not
protected against. For example, the operating system
reguests block X and the storage system returns block Y
along with the hash appended to Y, the operating system
will compute the hash from the value of Y and compare
with the appended one. The two, assuming no other fail-
ure, will be the same, and the operating system will
incorrectly conclude that the block is correct. Simple
self-certifying blocks can solve the third of these con-
cerns. A self-certifying block combines both the hash of
the data and the block number, so if a block other than
the one requested is delivered, that fact will be detected.
Signed self-certifying blocks can solve the second and
third of these concerns, using a private key to generate a
signature so that malicious intruders cannot spoof
blocks with correct hashes. However, neither simple nor
signed self-certifying blocks can solve the first concern.
Under both the simple and signed self-certifying block
potential solutions, the storage block size must be larger
than the file system block size to accommodate the
block number or the hash.



A second potential solution stores the hashes with the
file system pointers. For example, the UFS inode, the
on-disk structure representing afile, contains an array of
pointers to data blocks and, for larger files, pointers to
blocks containing pointers. Data block hashes are stored
alongside the pointers, within the meta-data. This solu-
tion separates the storage of hashes from their data
blocks, overcoming the need to increase the storage sys-
tem block size. Unfortunately, this solution has several
problems of its own. First, new dependencies are intro-
duced between file data and meta-data. Suppose the
block’s hash was written alongside the inode's block
pointer and before the block write. If the system crashed
before the modified block reached storage, the hash and
block would be inconsistent after areboot. The hash and
block would also be inconsistent if the hash was to be
written after the block, but the system crashed before the
hash could be committed. The update of the block and
hash needs to be atomic or at least subject to strict write
ordering constraints. Unfortunately, while it might be
possible to overcome the ordering challenges associated
with this potential solution by applying sophisticated
design, a more serious problem exists.

Storing the hashes with the file system pointers presents
another problem that is more serious. Many pieces of
meta-data are indexed directly and not referenced via
pointers. These include the blocks containing inodes,
cylinder groups, and superblocks. User data, if cor-
rupted, will not crash the system because it is opaque
and passed through to applications. Meta-data, on the
other hand, isinterpreted by the operating system and its
corruption can crash the system. The protection of such
meta-datais critical, because these are the blocks whose
correctness is most important for system stability. If the
inodes are not protected from modification, then a mali-
cious entity could change the hash val ue associated with
ablock pointer to match that of a spoofed block. Again,
a signature scheme could be used to sign meta-data.
These techniques could be feasible under read-only
workloads, but become problematic under workloads
with frequently changing meta-data, due to the introduc-
tion of update dependencies and the need to sign meta-
data

The best features of the above-mentioned two solu-
tions—hash protection of all blocks, both data and meta-
data, and the separation of hashes from their corre-
sponding blocks—are both achieved through a tech-
nigue that we have developed called hash logging.
Hashes, along with a unique block identifier, are written
asrecordsinto alog, a separate append-only system file.
The hashes of al blocks, both data and meta-data, are
stored within thislog and are thereby separated from the

blocks they describe. Log records are keyed by mono-
tonically increasing L SNs. When record writes reach the
end of the log, they start anew at the beginning (this
necessitates a log space reclamation mechanism, which
will be described in section 5).

3 Related Work

Fu et a. describe the read-only secure file system
(SFSRO) [5]. SFSRO is most like the second potential
solution described above. File system blocks are named
and requested by their hash value. The traditional disk
address pointers contained in file system index nodes
are replaced by hash values. This scheme depends on
the collision-resistant property of cryptographic hashes.
As SFSRO is designed for read-only workloads it does
not handle frequent updates well. If the contents of the
file system change, a database must be reconstructed on
a trusted server and shipped to the untrusted server,
where it cannot be modified. In contrast, PFS allows for
modification directly on the untrusted storage server.
PFS protects data and meta-data at the level of blocks,
including all the blocks required to implement afile sys-
tem on storage: data blocks, allocation bitmaps, inodes,
and superblocks. SFSRO protects data blocks and
inodes, but not other meta-data.

The Trusted Database (TDB) implements a database
buffer cache on an untrusted store [14]. TDB shares sev-
eral characteristics in common with PFS and SFSRO.
All three use collision-resistant hashes to verify blocks.
TDB uses alog-structured store for both block and hash
writes. PFS and TDB have different philosophies, how-
ever. TDB is amonolithic database system that presents
a new interface and a new on-disk storage format. In
contrast, PFS is an existing file system modified inter-
nally to do hash data protection. Thelogic fits within the
prior file system architecture — the most interesting
characteristic being the unification of hash and meta-
data logging within the file system journal. The popular
and well-documented file system interface remains
unchanged so that applications can benefit from PFS
protection transparently. Also, the on-disk format of the
file system remains unchanged, so that large file system
partitions run under PFS immediately without copy-
overs and utilities that access the raw disk interface con-
tinue to work (e.g., dump, restore, fsck).

Tripwire is a user-level system administration tool that
computes hashes on a per-file basis and storesthese in a
protected database [12]. To verify and check for intru-
sion, Tripwire computes the hashes of specified files and
compares these against the database, raising a flag for
the system administrator if the two differ. Tripwire will



not update a file's hash value when the file is modified
by a trusted party. Tripwire simply identifies changed
files. Figuring out if a file was changed by a malicious
user or a trusted user is a problem left to the system
administrator. PFS protects the system at a lower level
of abstraction; the file system block, protecting file sys-
tem meta-data in addition to the file data. PFS block
updates will never be committed to storage without the
hash being computed and committed beforehand.

For high performance, PFS commits block hashes and
meta-data update (journal) records to the same log. The
idea of shared logging was investigated within the
Quicksilver operating system project [9]. Quicksilver
was a distributed microkernel operating system built at
IBM research in the mid-1980s for System/6000 work-
stations. The salient feature of Quicksilver wasits use of
transactions for recovery, failure notification, and
resource reclamation. As a microkernel, Quicksilver
typically implemented system services in user-level
servers. The log manager server was used primarily by
the transaction manager, but was theoretically available
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Figure 1: Block Write Example. (1) Data is written
by an application. This step will not occur if the block
modification is an internally generated meta-data
update. (2) PFS writes data into block buffer B3
currently resident in the buffer cache. A buffer flag is
set to indicate that the hash must be computed. At this
point, the system is free to return. Steps 3-6 happen
asynchronously within the context of the background
process hashd. (3) PFS applies a hash function to the
data contents of B3. This hash and B3's physical block
number are encapsulated within arecord and written to
the WAFS viathe vnode interface. (4) The WAFS takes
the record and does a buffered write to the head of its
log in B6. (5) It returns the LSN. (6) PFS stores the
LSN in B3's buffer header.

to other subsystems. Later work explored sharing the
log service across multiple resources [3]. The WAFS
used by PFS is aso a service for shared logging, built
into a monolithic kernel architecture. Other work has
explored sharing the WAFS service between the kernel
and user applications [20].

4 PFS Architecture Overview

4.1 Block Modification and Writes

When buffered file system blocks are modified, either
through direct user write system calls or internaly gen-
erated meta-data updates, PFS flags the buffers to indi-
cate that their hashes must be computed and logged
before they may be written to the storage system. A
background system thread known as hashd wakes peri-
odically and cycles through the dirty buffers, identifying
those buffers for which a hash must be computed. Once
such a buffer is identified, hashd applies the hash func-
tion to the buffer’s data block, yielding a hash value that
is packed into a record along with the block identifier
and written to the log. The log write returns an LSN.
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Figure 2: Dirty Block Flush Example. (1) Thisisthe
write-ahead comparison. The LSN stored in buffer B3
is compared to the WAFS highest stable LSN. If the
buffer’s LSN is less than or equal to the highest stable
L SN, then the log record describing B3 must be stable.
Itis safe to write B3 without forcing the log (go to Step
3). (2) The hash record describing B3 needs to be
committed. Flush the log up to the LSN stored in B3's
buffer. The record happens to be stored within B6, so
B6 iswritten. (3) Write block B3.



ThisLSN is stored in the block’s buffer. These steps are
shown in Figure 1. Steps 1 and 2 of that figure occur
synchronously with the system call. Steps 3 through 6
take place in the background in the context of hashd.
None of these steps require communication with the
storage system.

To ensure the integrity of the data, PFS uses the well-
known write-ahead logging protocol (WAL) [7]. Before
PFS finally decides to write a buffer, it must ensure that
the corresponding hash record has reached stable stor-
age. If the block were written otherwise and the system
crashed, a subsequent comparison of the old hash
against the new data would erroneously conclude that
the data was bad. Therefore, hashes must reach stable
storage before their corresponding blocks. LSNs are
used to enforce this dependency.

Before a block is written to disk, the LSN stored within
its buffer header is compared with the stable LSN of the
log. If it is greater than the stable LSN, then in order for
this write to proceed, the log must first be flushed up to
the buffer’'s LSN. Thisis shown in Figure 2.

Using an asynchronous thread to compute and log the
hashes has several important advantages. First, it
removes the hash computation from the system-cal
path, reducing the likelihood of needless hash recompu-
tations. Second, it increases the likelihood that a hash
will be stable by the time its corresponding dirty block
reaches the device driver. If the hash were not stable by
this time, two I/Os would be necessary. A synchronous
write of the block’s hash to the log followed by the data
block write. Third, using an asynchronous thread allows
hash records to be batched together. Aslong as WAL is
followed, integrity will be protected and the hash record
can be written asynchronously.

4.2 Reading a Block

The block map is the PFS data structure used to verify
block reads. It contains the committed hash for every
block, indexed by file system block number. The block
map resides in kernel virtual memory and need not be
entirely resident in physical memory. The portion of the
map present in memory is a function of file system
locality. Using paging to cache the recently accessed
pages of the block map requires a trusted swap device.
The block map isavolatile data structure. When the sys-
tem crashes, it is reconstructed from the hash log
records contained within the WAFS.

On a read, if PFS does not find a block in the buffer
cache, it issues a read request to the storage system.

Upon receiving the block from storage, PFS computes
the hash and compares this value with the value in the
block map. If the block fails this verification step, it is
expelled and the associated system call fails.

4.3 Journaling and Hash L ogging

File systems that do not employ techniques such asjour-
naling or soft updates do not perform well under meta-
dataintensive workloads [19]. Thisis because they must
perform synchronous writes to order meta-data updates.
Journaling solves this problem by allowing the file sys-
tem to buffer meta-data updates, using alog and WAL to
enforce dependencies, much as hash logging does. Jour-
naling can be thought of as protecting the operating sys-
tem from itself or, at afiner level of detail, protecting the
file system from the buffer cache, which is responsible
for committing delayed writes, but has no knowledge of
crucia file-system-specific update dependencies. Hash
logging benefits from the delayed meta-data updates of
journaling. If Step 2 of Figure 1 were a synchronous
meta-data update, then all of the following steps within
Figure 1 and the two writes of Figure 2 would have to be
performed synchronously. By alowing meta-data
updates to be cached delayed-write, journaling gives the
system the freedom to perform hash computation in the
background and to batch hash record writes.

Rather than have two logs in the system, each serving its
own LSNs to enforce WAL, it makes sense to unify the
two logs into one single system WAL service. PFS uses
the write-ahead file system (WAFS) [19] for this pur-
pose, employing it for both meta-data and hash logging.
The WAFS resides on a separate partition from PFS.
This alows the WAFS to be |located on a different stor-
age system from PFS, potentially removing disk head
contention. On systems with NVRAM, the WAFS could
be placed there.

The WAFS is not confined to trusted local storage.
Therefore, it must be protected from the same classes of
faults and attacks as PFS. If an adversary were able to
spoof WAFS blocks, then PFS would no longer be able
to protect its own blocks. During a server crash, an
adversary could read the log records, which are stored in
the clear on the storage, find the most recent record
describing a PFS block, modify the corresponding PFS
block, compute the new hash and insert it in the WAFS
block in place of the old value. From this example, it is
clear that the protection of WAFS blocks is paramount
to the protection of PFS blocks.

WAFS does not rely on an external mechanism for its
protection, instead storing an authentication tag in the



header of every WAFS block. The authentication tag is
generated by a message authentication code (MAC).
Unlike hash functions, MACs are parameterized by a
secret key. Recent work has shown that MACs can be
constructed from hash functions with a degree of secu-
rity that is provably strong [1]. The benefit of this
approach is performance, which is essentially that of the
underlying hash function.

Unlike PFS, the WAFS is able to include the tag within
the file system block because its units of read/write
access are variable length records. Any notion of file
system blocks is withheld from its clients, which read
and write records, not blocks. The WAFS header also
includes an LSN. Thisis protected by the authentication
tag and used to verify that the correct block was
returned. Since the server is the only system that
requires verification of WAFS blocks, public key tech-
nology need not be used.

The authentication tag is computed when the WAFS
block is written to storage. Since WAFS blocks are nei-
ther read nor rewritten during normal operation, the

authentication tag will only need to be recomputed for
partial block writes that are forced to storage.

The secret key used for HMAC computation must be
secure and protected on a trusted device. It could be
located on the server’s trusted disk and managed as a
dynamically loadable kernel module. More advanced
technology such as smart cards could be used.

Figure 3 shows the journal and hash log multiplexed on
the WAFS.

5 PFS Architecture Details

5.1 Asynchronousl|/Os

After the server sends the write request to the storage
and before it receives the 1/O completion notification,
the block may be either in the new or old state. If the
server crashes before receiving notification, then it must
have both hashes stable for comparison in the next ses-
sion. If the write did not make it to the storage system,
the block is still correct so the old hash must be avail-
able for comparison. The block map contains the com-
mitted hash of every block. Hashes are only entered into

Hash Log § m @

WAFS black héaders

WAFS Log

. WAFS record headers

Journal

Figure 3: Multiplexing the WAFS. This figure shows two physical WAFS blocks containing four hash log
records (diagonal-striped blocks) and 3 journal records (grey blocks). PFS uses the WAFS for its hash
logging and journaling. The journaling and hash logging components write records during normal
operation. Each component sees a distinct logical log, but the records are physicaly interleaved. Records
areread only during recovery. WAFS does not export a block abstraction and hides the WAFS block header
from its clients. The header contains an LSN needed during recovery and an authentication tag to verify
WAFS block reads. The WAFS prepends a record header to every record write. This contains a client
identifier used by the cursor read routines to ensure that the block map recovery code does not retrieve

journal records and vice versa.



the block map once the I/O completion interrupt has
been received. The async map is a small hash table con-
taining all hashes describing block updates sent to stor-
age, but for which PFS has not received I/O completion
notification. Upon receiving this notification, the hash is
removed from the async map and inserted into the block
map, overwriting the previous value.

5.2 Checkpointing

For a 16GB partition with 8KB file system blocks, the
block map will have 2M entries. If the hashes are MD-5,
the block map will be 32MB. Clearly, it isundesirable to
checkpoint the entire block map at once. The block 1/0
interrupt code accesses both the block map and the
async map, so access to these data structures must be
exclusively locked during the checkpoint. Locking out
block interrupts in order to checkpoint tens of mega-
bytes of datawould undoubtedly result in dropped inter-
rupts. In addition, system call latencies would be
severely skewed and unpredictable. We solve this prob-
lem with partial checkpoints. The block map is broken
up into distinct chunks approximately the size of the
data portion of WAFS file system blocks. Each chunk is
checkpointed independently and the chunks are selected
in around-robin fashion.

A chunk checkpoint is not complete until a small record
known as the async record has been committed to the
log following the chunk. The async record contains the
contents of the async map for the file system blocks
described by the chunk. These are the block 1/Os in
progress at the time of the checkpoint. Since there can
be only one outstanding 1/0 on any particular block, the
current state of the block is either described by the hash
in the chunk or the hash in the async record. Once a
chunk checkpoint completes, the log is free to reclaim
earlier records for blocks described by the chunk.

For a given block, many hash records may be written
after the chunk checkpoint. PFS must attempt to bound
the number of potentially valid hashes, or candidate
hashes, for a given block. Having many candidate
hashes to test would slow down recovery and adversely
affect security. One way to bound the number of candi-
date hashes per block would be to insert code in the I/O
completion interrupt handler to write a special record to
the hash log. This record would contain the hash value
and block number like other records, but its type field
would identify it as an I/O completion record. During
recovery, on a read of such a record, the recovery code
would deprecate all earlier hash values associated with
the block. This solution would place afairly tight bound
on the number of candidate hashes per block, dependent

on the flush rate of the buffer cache and the hash compu-
tation rate of hashd. The bound would be inversely pro-
portiona to the flush rate of the buffer cache and
directly proportional to the buffer processing rate of
hashd. Unfortunately, there is a fundamental architec-
tural problem. Locks (e.g., the WAFS vnode lock)
would have to be acquired during interrupt processing,
which runs at a higher priority level than the top half of
the kernel. This would introduce the potential for dead-
lock.

Our solution places the bounding responsibility within
hashd. In order to bound the number of candidate
hashes, every PFS buffer contains two LSNs. Thefirstis
the LSN immediately following the buffer’s most
recently written log record. The hash stored in the
record preceding this LSN might not describe a commit-
ted PFS block. This LSN is known as the buffer-end.
The second is the LSN immediately following the most
recent hash describing a stable version of this buffer.
Thisis known as the buffer-begin. For a given buffer, all
of the hashes between buffer-begin and buffer-end have
not had their corresponding data committed to disk. As
hashd computes and logs hash records, buffers’ buffer-
end LSNs will move forward. When the PFS block is
written to disk, the 1/O completion interrupt will copy
buffer-end into buffer-begin, moving it forward. At this
point, the most recent hash in the log must be stable, due
to the protection of the WAL protocol, and it must
describe this particular write because the buffer is
locked during physical 1/O. This process is shown in
Figure 4.

When hashd executes, it scans the buffer-begin values of
al the PFS buffers, selecting the minimum from the
buffers for which buffer-begin differs from buffer-end.
This LSN is written to the log in a specia record. This
LSN has the property that if there are no hash records
describing a particular block after this LSN, then the
most recent hash record preceding the LSN describes
this block. In Section 5.3 we will describe how this
L SN, known aslogged, is used in recovery.

The WAFS is afinite circular log and is responsible for
managing this space. When the WAFS reaches a mini-
mum free space threshold, it synchronously checkpoints
its clients. The journa follows the methodology
described in Seltzer et al. [19] and is beyond the scope
of this paper. WAFS checkpoints the hash log by calling
a PFS handler and providing a minumum acceptable
LSN. The handler compares this against the LSN of the
oldest live checkpoint chunk. If it is less, then PFS sim-
ply returns the LSN of the oldest checkpoint without
any 1/0. Otherwise, PFS checkpoints enough chunks for
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Figure 4: Updating the buffer-begin L SN. On reception
of ablock I/O completion interrupt, the buffer-end LSN is
copied into the buffer-begin LSN. These two LSNs are
used by hashd to compute the global logged LSN. If the
buffer-begin and buffer-end LSNs are equal, the block
contained within the buffer does not have any logged
hashes that must be tested and resolved during recovery.

the oldest live LSN to move beyond the minimum
acceptable LSN. This illustrates the fact that the WAFS
space reclamation checkpoint must occur with enough
free space to accomodate possible hash log checkpoaints.
Journal checkpointing will also require free space. Inter-
estingly, the minimum free space is easier to bound for
hash logging than for journaling. Heuristic bounds for
journaling use the maximum number of open file
descriptors and the maximum number of journal entries
per system call [19]. The upper bound for hash logging
is simply the size of the block map plus a small amount
of space for an async record.

5.3 Recovery

The WAFS itself must be recovered before any PFS
recovery can begin. The most recent checkpoint is
found, and the log is then read sequentially until the end
of the log is detected. The LSNs stored in the WAFS
block headers are monotonically increasing, allowing
the recovery code to find the most recent block. The
authentication tag protects against incomplete writes.

PFS recovery has two phases. hash recovery and journal
recovery. The hash recovery restores the block map to a
consistent state. The journa recovery follows and
restores the meta-data integrity. The journa recovery

process is unmodified from the origina implementation
described by Seltzer et a [19].

The hash recovery code reconstructs the block map and
verifies the contents of any blocks for which multiple
hash values are potentially valid. The hash recovery
code receives a log cursor handle from the WAFS that
allowsiit to iterate through the log without receiving the
journal records. The hash recovery code finds the oldest
valid chunk checkpoint and rolls forward searching for
the most recent record containing a logged LSN (see
section 5.2 for a description of this special LSN). Once
thisisfound, hash recovery returnsto the start of the log
for asecond pass. Block map recovery requireslittle 1/O
up to the logged LSN. This is because every hash value
either describes a committed block or is deprecated by a
later record that does. Therefore, the hash values can be
inserted directly into the block map with no I/O. Once
recovery passes the logged L SN, every hash value must
be checked for validity. The recovery code maintains a
linked list of candidate hashes for every block. On
reaching the log end, the hashes are resolved. Every
block with multiple valid hashes is read in, the hash
function is computed, and the resulting value is com-
pared against al the potentially valid hashes. If it does
not match any, recovery fails. Otherwise, the matching
hash isinserted into the block map and all the others dis-
carded. This illustrates the importance of bounding the
number of candidate hashes per block as described in
Section 5.2.

6 Performance Analysis

PFS and WAFS have been implemented in the
FreeBSD-4.1 operating system. PFS is a set of changes
to the Logging Fast File System (LFFS) [19], ajournal-
ing version of FFS [15]. PFS maintains the on-disk
structure of FFS, and it uses the WAFS for both its jour-
naling and hash logging as described in this paper.

For these experiments, PFS computes hashes using the
MD-5 algorithm and WAFS computes its block authen-
tication tags using the IETF RFC 2104 implementation
of HMAC using MD-5 [13]. The HMAC secret key is
stored within the kernel binary.

Our test system consists of a single 500Mhz Xeon Pen-
tium 11 CPU with 512MB RAM and three 9GB 10,000
RPM Seagate Cheetah (ST39102LW) disks. The disks
are connected to the host operating system via a single
shared Adaptec AHA-2940UW Ultra SCSI card. The
first disk contains the operating system and swap space,
the second contains a 256MB WAFS partition, and the
third contains an 8.5GB test partition.



We ran two macrobenchmarks and a microbenchmark
suite. We compare PFS against LFFS. In our experi-
ments, both PFS and L FFS do asynchronous journaling.
This means that journal records are not committed to
disk before the system call returns. WAL still maintains
the ordering of updates so that the file system will be
recoverable to a consistent state. Howevey, it is possible
that a create will return, the system will crash, and the
file will not exist after recovery, violating the durability
semantics that FFS has traditionally offered. We believe
that these semantics grew out of convenience, rather
than application demand. Originally, FFS used synchro-
nous updates to order meta-data operations and ensure
recoverability and consistency. Since the updates had to
happen anyway, the semantics of durability came at no
additional cost. Soft updates [8][16] and asynchronous
journaling abandon these semantics. The difference
between the performance of synchronous journaling and
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Figure 7: Throughput (MB/s) of reads.

either asynchronous journaling or soft updates, which-
ever is better, is the cost of FFS system call durability.
Seltzer et al. determined that the cost of durability far
exceeds the cost of integrity [19]. The goal of our
benchmarking experiments is to quantify the cost of the
block-level integrity protection of PFS.

6.1 Microbenchmarks

The microbenchmarks are similar to those used in recent
file system performance studies [18][19]. For file sizes
ranging from 16KB to 1MB they create, write, read,
then delete adirectory hierarchy of files. The file system
is unmounted between each operation phase, to ensure
that each phase begins with a cold cache. This is useful
for isolating the cost of individual operations, but is
somewhat artificial. Much of the design of modern file
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Figure 8: Throughput (thousands of files/s) of deletes.

Figures 5-8: Cold cache microbenchmarks. Figures 5 through 7 show the throughput of both PFS
and LFFS expressed in MB per second. Figure 8 shows delete throughput expressed in thousands of
files per second. The create and delete benchmarks are meta-data intensive. Note that the scale of the
y-axis varies. Each test was run 5 times and standard deviations were small.



systems is predicated on a large cache with a high hit
rate.

The hierarchy contains either 128MB of data or 512
files, whichever results in more data. No more than 50
files are allocated per directory to limit pathname
lookup times.

The results of the microbenchmarks are shown in Fig-
ures 5 through 8. The performance of PFS and LFFS are
similar on the create and delete tests. This shows how
hash logging benefits from journaling. Journaling allows
meta-data updates to be cached and updates combined.
The performance of hash logging depends on the ability
of the operating system to cache writes. This gives
hashd time to generate hash log records and group these
records together into full block writes, amortizing the
cost of block writes.

On the read and write tests, LFFS outperforms PFS
because PFS must compute hashes when blocks are
written to and read from disk.

The largest disparity is on the read benchmark. This test
has no data locality, but some meta-data locality due to
the repeated lookup of directory components. For
medium-sized files between 32KB and 96KB LFFS
throughput is nearly double that of PFS. At 96KB, the
read throughput collapses as the two systems must read
the indirect block. For larger files these layout issues,
which areindependent of the hashing mechanism, play a
more significant role and PFS performance improves
relative to LFFS. The performance disparity is narrower
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Figure 9: Throughput of PostMark macrobench-
mark. Expressed in transactions per second.

on the write test. Here, the buffer cache is able to absorb
many of the writes.

6.2 Macrobenchmarks

The microbenchmarks are useful for isolating the opera-
tions for which PFS and LFFS performance differs.
However, it is difficult to use their results to predict
application performance. The goal of our macrobench-
mark experiments is to quantify the cost of block-level
protection for realistic workloads.

FFS mounted asynchronously (FFS-async) does not
make any attempt to ensure file system recoverability or
protection. It is useful as an upper bound on perfor-
mance because it shares layout format and algorithms
with PFSand LFFS.

6.2.1 POSTMARK Benchmark

The PostMark benchmark was designed to model a
combination of electronic mail, netnews, and e-com-
merce transactions, the type of load typically seen by
Internet Service Providers (ISP) [11]. PostMark is meta-
data intensive with many small files and high memory
pressure. File sizes vary uniformly from 512 bytes to
16K B. Figure 9 shows the performance of the three sys-
tems. The throughput of PFS is 7.9% lower than LFFS
and 9.1% slower than FFS-async. Although PFS per-
forms well on meta-data operations, due to the fact that
it isjournaled and meta-data updates are cached, it does
not perform comparatively well on small reads and
writes.
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Figure 10: Time (s) taken for SSH-Build to com-
plete. Unlike figures 5 to 9, here lower values
indicate higher performance.




6.2.2 SSH-BUILD Benchmark

The SSH-Build benchmark unpacks, configures, and
builds the secure shell (SSH) program, a medium sized
software package [21]. It consists of three phases. The
first, unpack, decompresses a tar archive and pulls the
source files out of the archive. This phase is relatively
short and characterized by meta-data operations. The
second, config, runs small scripts and programs and gen-
erates small files. The third, build, compiles the source
tree, reading and parsing the source files and generating
object files, that are subsequently linked into the execut-
able. Figure 10 shows the performance of the three sys-
tems across the three stages. The performance of the
three systems on the first two phases is not statistically
distinguishable. PFS takes 3.5% longer to complete the
build phase. Being less meta-data intensive with larger
files than the two earlier phases, this reconciles with our
observations from the microbenchmarks.

7 Conclusions

We have presented an evolutionary file system architec-
ture for strong block-level integrity. Our architecture
changes neither the file system interface nor its on-disk
layout and requires no special support from storage sys-
tems. This has been accomplished by modifying the file
system to log collision-resistant hashes to a general
operating system logging service. This serviceis shared
with the file system journal. For efficiency, a back-
ground thread computes and logs hashes, removing the
hash computation from the system call path and the log
commit from the data 1/O path.

We measured the performance of PFS using micro and
macrobenchmarks. PFS performanceis similar to that of
the LFFS journaling file system under the meta-data
intensive create and delete tests. Under the read and
write tests, PFS incurs hashing costs as data is transmit-
ted to and from storage. On the macrobenchmarks, the
overhead of block-level integrity is only 3.5% on SSH-
Build and 7.9% on PostMark. We believe thisis a small
priceto pay for strong protection.
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