
Proper: Privileged Operations in a Virtualised System Environment

Steve Muir, Larry Peterson, Marc Fiuczynski, Justin Cappos, John Hartman
Princeton University and the University of Arizona

{smuir,llp,mef}@cs.princeton.edu, {justin,jhh}@cs.arizona.edu

Abstract

Virtualised systems have experienced a resurgence in
popularity in recent years, particularly in supporting a
large number of independent services on a single host.
This paper describes our work designing and implement-
ing Proper, a service running on the PlanetLab system,
that allows other services to perform privileged opera-
tions in a safe, controlled manner. We describe how
implementing such a system in a traditional UNIX en-
vironment is non-trivial, and discuss the practical use of
Proper.

1 Introduction

Operating systems face a fundamental tension between
providing isolation and sharing among applications—
they support the illusion that each application has the
physical machine to itself, yet also allow those applica-
tions to share objects (files, pipes, etc.) with each other.
General-purpose OSes typically provide a weak form of
isolation (the process abstraction) with relatively unre-
stricted sharing between applications. In contrast, vir-
tual machine monitors (VMMs) strive to provide strong
performance isolation and privacy between virtual ma-
chines (VMs), and provide no more support for sharing
between VMs than the network provides between physi-
cal machines.

The point on the design spectrum supported by any
given system depends on the workload it is designed to
support. General-purpose OSes run multiple applications
on behalf of a single user, making it natural to favor shar-
ing over isolation. Similarly, VMMs are often designed
to allow a single machine to host multiple independent
applications, possibly on behalf of independent organiza-
tions. In such a scenario, the applications have no need
to share information and but require a predictable frac-
tion of the physical machine’s resources—hence, VMMs
heavily favor isolation over sharing.

This paper investigates an alternative design point, mo-
tivated by the need for VMs to interact with each other in
well-defined and controlled ways. All systems provide a
means by which isolated components interact, but we are
particularly interested in the problem of ‘unbundling’ the
management of a set of VMs from the underlying VMM.

To enable multiple management services, it is necessary
to ‘poke holes’ in the isolation barriers between VMs.
These holes allow one VM to see and manipulate objects
such as files and processes in another VM, providing a
natural means for one VM to help manage another.

Toward this end, this paper describes Proper, a new
‘Privileged Operations’ mechanism that VMs can use to
poke the holes that they need. Proper is straightforward to
implement on a UNIX-based VMM such as that used in
PlanetLab, and enables useful management services that
run today on PlanetLab.

2 The PlanetLab Virtualised Environment

Our work is conducted in the context of PlanetLab, a
global network of 500+ PCs used by researchers at over
250 institutions to develop new network services and con-
duct network-based experiments. Each PlanetLab node
runs a modified Linux kernel, which provides a virtu-
alised Linux environment for each user, with 30–40 users
active on each node at any given time. Although Proper
was originally developed as a component of the Planet-
Lab node infrastructure we believe that it is also applica-
ble to other virtualised systems e.g., VMWare, Xen, De-
nali.

PlanetLab provides each user with one or more
slices—a set of resources bound to a virtual Linux en-
vironment and associated with some number of Planet-
Lab nodes. Each node runs a Linux kernel modified with
two packages: Vservers [3] supports multiple Linux VMs
running on a single kernel instance, while CKRM pro-
vides a resource management framework. Each Planet-
Lab slice is instantiated as a combination of a Vserver,
providing namespace isolation, and a CKRM class, pro-
viding performance isolation.

Namespace isolation is the property of a virtualised
system where each VM executes in its own namespace,
and is required so that each VM can configure its own
namespace without interference with or by other VMs
e.g., a VM should be able to install packages in its own
filesystem without concern as to whether another VM re-
quires a different version. Performance isolation between
two VMs allows each VM to consume and manage re-
sources e.g., CPU, physical memory, network bandwidth,

2005 USENIX Annual Technical Conference USENIX Association 367



Operation Description
open file(name, options) Open a restricted file
set file flags(name, flags) Change file flags
get file flags(name, flags) Get file flags
mount dir(source, target, options) Mount one directory onto another
unmount(source) Unmount a previously-mounted directory
exec(context, cmd, args) Execute a command in the context (slice) given
wait(childid) Wait for an executed command to terminate
create socket(type, address) Create a restricted socket
bind socket(socket, address) Bind a restricted socket

Table 1: Operations supported by Proper 0.3

without affecting other VMs.
Although namespace isolation is essential in order to

support multiple VMs on a single physical system, it
presents a barrier to cooperation between those VMs.
Furthermore, it also prevents VMs from getting full vis-
ibility into the details of the host system, thus limiting
monitoring and system management. Hence the need to
provide a means for selected VMs to break their name-
space isolation in carefully controlled ways.

3 Architecture and Implementation
Proper provides unprivileged slices with access to privi-
leged operations in a controlled manner. Here we present
the client-visible architecture of Proper, which we believe
to be equally applicable to any virtualised system, such as
Xen [1], Denali [8], etc., not just the PlanetLab environ-
ment.

3.1 The Proper Client API

Proper enables two different types of ‘VM escapes’:
inter-VM communication, and access to resources out-
side the VM e.g., VMM internals, such as VM configu-
ration. While access to VMM internals requires cooper-
ation by the VMM, certain types of inter-VM communi-
cation may be possible without a service like Proper. For
example, most VMMs permit filesystems between VMs
using NFS or SMB. However, the VMM may be able to
support direct filesystem sharing in more flexible and/or
higher-performing ways, so Proper provides a high-level
filesystem-sharing operation using a VMM-specific im-
plementation.

The operations supported by Proper are chosen accord-
ing to the following principles:

1. Client interactions with Proper should be
minimised—once an initial request has been
completed subsequent operations should only
require interactions with the host VM.

2. Proper operations should be compatible with equiv-
alent intra-VM operations—opening a file through
Proper should yield a standard file descriptor.

3. The API should be as general and flexible as
possible—there should be a single open operation
rather than separate operations to read and write
files, pipes and devices.

It is important to minimise the overhead due to com-
munication between the client application and the Proper
service—a single request grants access to a restricted ob-
ject, and subsequent requests use the host VM’s standard
data operations. For example, when opening a file it is
acceptable to require the initial ‘open’ request be sent to
Proper, but forcing every read/write request to also use
Proper would impose a performance penalty. We discuss
such effects later in Section 4.2.

Table 1 shows the current Proper API, with each group
of operations briefly discussed in the following section.
The API is primarily driven by the requirements of Plan-
etLab users, and is thus not exhaustive, but gives a good
idea of the type of operations we envision being sup-
ported.

3.2 Implementing Proper

As well as describing our implementation of Proper, we
present a strawman implementation of each operation
group that illustrates how one might implement Proper
on another virtualised system. We assume that Proper
exists as a component of the VMM ‘root’ context that re-
ceives requests from clients running in a VM; alternatives
are possible, such as modifying the OS inside each VM to
be ‘Proper-aware’, but we believe that such modifications
are unnecessary.

3.2.1 File Operations

The open file operation allows an application to ac-
cess a file outside its own VM, while the get and
set file flags operations support manipulation of
restricted file flags i.e., flags that may be used by the
VMM to support copy-on-write sharing of files between
VMs, and hence must not be modifiable within the VM.

Opening a file can be supported in UNIX-like VMs
by exploiting the similarities between file descriptors and
network sockets: Proper opens the restricted file and

2005 USENIX Annual Technical Conference USENIX Association368



passes the data to the client using a network socket. Un-
fortunately, while the client can readily use a socket in
place of a file descriptor for reading and writing data,
other operations may reveal that the ‘file’ is in fact a
socket. In PlanetLab we exploit the fact that each VM
runs atop the same kernel as Proper to achieve our trans-
parency goal: Proper passes the opened file descriptor,
which is indistinguishable from that obtained if the client
opened the file directly, to the client using a UNIX do-
main socket.

3.2.2 Directory Operations

A common requirement in virtualised systems is that two
VMs share parts of their filesystem e.g., when one wishes
to manage the other’s filesystem. As stated earlier, shar-
ing can often be accomplished directly between two VMs
using a protocol such as NFS, but the VMM may also
support a direct sharing mechanism. For example, in
PlanetLab all VMs exist as disjoint subtrees of a single
filesystem, so one can take advantage of Linux’s ‘bind-
mount’ facility to graft (bind) one subtree onto another.
This feature is used by the Stork configuration manager
(see Section 4.1) to manage client VMs.

3.2.3 Process Execution

A client application may wish to create processes outside
of its own VM: to perform some privileged task in the
‘root’ context e.g., create a new VM, or to act as, say, a re-
mote access service for another VM by creating processes
in that VM in response to authenticated network requests.
Both cases may require that long-running processes are
created e.g., a remote login shell, so the exec operation
is actually performed asynchronously, and client use a
wait operation to wait until the process terminates. The
client passes file descriptors for use as standard I/O so
Proper need not be involved in data passing between the
child process and the client; alternatively, sockets could
be used as in the generic open file implementation
described above.

3.2.4 Network Socket Manipulation

The final class of operations supported by Proper allow
clients within a VM to request privileged access to the
VMM’s network traffic. For example, a VMM may mul-
tiplex a single network interface onto multiple per-VM
interfaces, with each VM only being able to ‘see’ its own
traffic. A traffic monitoring or auditing program, running
in an unprivileged VM, wishes to receive a copy of every
packet sent or received on the physical interface, so uses
Proper to create a privileged ‘raw’ socket—Proper veri-
fies that the auditing service is authorised to do so before
configuring the network subsystem to dispatch copies of
every packet to the raw socket.

Similarly, an application may wish to bind to a specific
network port in order to receive all packets sent to that

port on this machine—since port space is often shared
by all VMs using a physical network interface this re-
quires coordination with the VMM. In PlanetLab we al-
low slices to bind ports above 1024 in a first-come, first-
served fashion, but require use of Proper to bind restricted
ports below 1024, thus ensuring that only the specific
slice authorised to bind a particular port can do so.

4 Experiences Using Proper on PlanetLab

Proper has been deployed and in-use on PlanetLab for
about 6 months, supporting a number of services. These
include both core infrastructure e.g., network traffic au-
diting, and user services. Most importantly, Proper has
enabled elimination of ‘privileged’ slices that were used
in the previous version of the PlanetLab system to per-
form many of those functions.

4.1 An Example Service: Stork

Stork is a PlanetLab service that provides package man-
agement functionality to other services. It allows users to
associate a set of packages with their slice and takes care
of downloading and installing the software into the slices
and keeping it up-to-date. Stork allows package contents
to be shared between slices, reducing the software foot-
print on a PlanetLab node.

Stork is responsible for downloading packages from
a package repository, maintaining a per-node package
cache, and installing packages in client slices. When a
package is installed in a client slice the contents must be
transferred from Stork to the client. One way to do this
is over a socket, but this is inefficient and prevents shar-
ing of files between slices (see below). Instead, Stork
mounts the appropriate package directory read-only into
the client’s filesystem using mount dir. This gives the
client access to the files in the package directory without
being able to modify the directory structure.

Of course, many slices may install the same packages,
making it desirable to share the package contents between
the slices. However, modifications made by one slice
should not be visible to any other. Ideally, each slice
should have a copy-on-write version of each file; unfor-
tunately, this functionality is not available in PlanetLab.
Instead, Stork relies on sharing files read-only between
slices. Files that may be modified are not shared; typi-
cally these are a few configuration files for each package.
Most files are shared, dramatically reducing the amount
of disk space required to install packages in slices.

Stork makes shared files read-only using the Proper
set file flags operation to set the NOCHANGE
flag on the files when it unpacks them. When unpacking
a package the Stork client creates hard links to the read-
only files to put the files in the proper locations inside
the client filesystem; writable files are copied instead of
linked. The installation scripts are then run in the client

2005 USENIX Annual Technical Conference USENIX Association 369



Figure 1: Overhead of Proper for various tasks

slice, and the package directory is unmounted. At this
point the client slice has either hard links to or copies
of the files in Stork’s file system. The client is prevented
from modifying shared (linked) files by the NOCHANGE
flag, but can remove (unlink) the file to perform a private
replacement.

4.2 Evaluation of Proper Overhead

One possible concern with our implementation of Proper
is that invoking privileged operations using RPC may im-
pose significant overhead. To address this we measured
the overhead for a couple of operations, open file
and exec, for both trivial base cases and more realistic
tasks—reading a large file and running a complex pro-
gram respectively.

Figure 1 shows these results (measured on an idle
3GHz Pentium 4 with 1.25GB RAM): while the base
case overhead, shown in the left half, is about 12–22ms,
this is negligible for the non-trivial tasks, as shown on
the right side of the graph. This overhead consists of
two components: a client-side RPC overhead, typically
7.5ms, which is operation-independent; and an operation-
dependent server-side latency of an additional 5–15ms.

5 Related Work
Much existing work on virtualisation techniques has
some degree of relevance to Proper. Systems such as
VMWare [7], Xen [1], Denali [8], Zap [4] and Solaris
Zones [6] all provide users with virtualised environments,
and often utilise a system-specific method for providing
direct access from the VM to the VMM. For example,
VMWare allows users to install extensions to popular
‘guest’ OSes, such as Windows, that permit direct access
to host files in a similar manner to the bind mounts facil-
itated by Proper, while Xen allows multiple VMs to ac-
cess physical devices through a special ‘privileged’ VM
that runs unmodified Linux drives.

Zap and Zones are perhaps closest to PlanetLab since

the environment they support is essentially the same as
that provided by Vservers i.e. a thin layer on top of a
UNIX-like kernel. Since each addresses a slightly dif-
ferent problem from PlanetLab it should be illustrative to
consider what facilities a service like Proper should pro-
vide in those systems.

Another area of related work is in the security com-
munity, where researchers have investigated schemes for
system call interposition e.g., Ostia [2], Systrace [5] in
order to allow administrators to restrict the ability of
unmodified applications to execute certain system calls.
These systems adopt many of the same implementation
solutions as our PlanetLab implementation of Proper and
could thus be leveraged to provide an framework for in-
tegrating Proper with unmodified clients.

6 Conclusions
As part of the PlanetLab project we found that it was nec-
essary to give unprivileged clients running inside a virtual
machine access to certain privileged operations. This was
accomplished with Proper, a user-level service running in
the privileged root VM that performs operations on be-
half of those unprivileged clients.

The key insight from this work is that supporting com-
munication between VMs requires a degree of support
from the underlying virtual machine monitor: virtualisa-
tion at the system call level readily supports certain forms
of inter-VM communication, whereas more thoroughly
virtualised systems are likely to require some modifica-
tion to support the required forms of sharing and commu-
nication.

References
[1] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO,

A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and the Art of
Virtualization. In Proc. 19th SOSP (Lake George, NY, Oct 2003).

[2] GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia: A Delegating
Architecture for Secure System Call Interposition. In Proc. 2004 Symposium
on Network and Distributed System Security (2004).

[3] LINUX VSERVERS PROJECT.
http://linux-vserver.org/.

[4] OSMAN, S., SUBHRAVETI, D., SU, G., AND NIEH, J. The Design and
Implementation of Zap: A System for Migrating Computing Environments.
In Proc. 5th OSDI (Boston, MA, Dec 2002), pp. 361–376.

[5] PROVOS, N. Improving Host Security with System Call Policies. In Proc.
12th USENIX Security Symposium (Washington, DC, Aug 2003), pp. 257–
272.

[6] TUCKER, A., AND COMAY, D. Solaris Zones: Operating System Support
for Server Consolidation. In 3rd Virtual Machine Research and Technology
Symposium Works-in-Progress (San Jose, CA, May 2004).

[7] VMWare.
http://www.vmware.com/.

[8] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale and Performance
in the Denali Isolation Kernel. In Proc. 5th OSDI (Boston, MA, December
2002), pp. 195–209.

2005 USENIX Annual Technical Conference USENIX Association370




