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Abstract
This paper presents the design and implementation of a host-based
driver (a “volume manager”) for a 3-tier RAID storage system,
currently with 3 tiers: a small RAID1 tier and larger RAID5 and
compressed RAID5 (cRAID5) tiers. Based on access patterns
(“temperature”), the driver automatically migrates frequently ac-
cessed data to RAID1 while demoting not so frequently accessed
data to RAID5/cRAID5. The prototype system, called “Temper-
ature Sensitive Storage” (TSS), provides reliable persistence se-
mantics for data migration between the tiers using ordered updates
or logging. Mechanisms are separated from policies through an
API so that any desired policy can be implemented in trusted user
processes. We also discuss the problems faced while moving from
the original implementation on the Solaris platform to Linux. Fi-
nally, we present comparison of the performance of our design
with comparable systems using striping or RAID5.

1 Introduction

The need for reliable, efficient, fast and easily manageable
storage has dramatically increased because of the Web as
web servers and database servers need to have these prop-
erties. The management cost nowadays is much higher
than the actual storage cost, often by a factor of 4 to 7.
Consider the case of a caching web proxy that maintains a
large cache in persistent storage. But all the cached data
is not useful; hit rates have been reported only in range of
30%. The performance of the caching proxies and database
servers can be improved if it is possible to have storage on
a device which allows fast retrieval of the frequently ac-
cessed data. At the same time, the storage should be reli-
able, i.e. it should be able to sustain disk failures without
bringing the system down, a necessity for highly available
applications. Further, even if the system crashes, it should
be able to recover from the crash as soon as possible so
that system down time is minimal. Another desirable fea-
ture is the efficient use of available storage, due to the huge
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amount of data that database and web servers may poten-
tially handle.

Disk access patterns display good locality of reference
[RW93], especially in non-scientific environments. For
achieving cost-effective storage systems with terabytes of
data, such locality can be exploited by using a multi-tiered
storage system with different price-performance tiers that
adapts to the access patterns by automatically migrating the
data between the tiers.

This approach has a lot in common with memory caches.
Like caches, we try to improve the performance using a
small faster storage layered on top of a bigger, slower and
relatively cheaper storage. But our problem is different
from caches in that the caches need not provide reliable
persistence semantics in the event of a system failure. Next,
the latencies in our case can be much longer due to the use
of lower speed devices such as disks when compared with
memory caches. Also, in caches, the same data can occupy
space in multiple tiers; in our case, data can be resident in
only one tier. Our approach also has some similarities with
hierarchical storage management (HSM) solutions. How-
ever, HSM is a more general storage system comprising of
secondary (disks) and tertiary storage (tape), while our so-
lution uses only secondary storage.

Our design currently has 3 tiers: declustered RAID1,
RAID5 and compressed RAID5 (cRAID5). Redundant Ar-
rays of Inexpensive Disks (RAID) is a technique to improve
the reliability and performance of secondary storage. Of
the various levels of RAID discussed in [CLG+94], RAID1
and RAID5 have become more popular due to ease of use
and price/performance respectively. Mirroring or RAID1
maintains two copies of the same data and generally pro-
vides best performance and is easier to configure. Rotat-
ing parity scheme or RAID5 costs the least of all the RAID
levels for the reliability and performance it provides. It suf-
fers from poor small update performance and configuring
RAID5 is more involved. Declustered RAID1 differs from
RAID1 in that the data is striped across multiple disks. Two
physical stripes constitute a RAID1 logical stripe with each
stripe unit data being present intwo different disks, thus



ensuring resilience to a single disk failure. cRAID5 is the
same as RAID5 except that the data is compressed before
writing. Parity is computed on the written (compressed)
data; typically, the parity computation has to be done on
the compressed data of more than one stripe. Random read
access into a cRAID5 stripe is handled by decompressing
just the compressed stripe (and not the full stripe as we have
locking at the right granularity). However, writes are more
involved which we discuss later.

1.1 Design Approaches for Multi-tier Stor-
age Systems

A multi-tiered storage system can be implemented at vari-
ous levels:

As an application This is the most flexible approach as
the user application has complete control over data man-
agement. Applications like database servers are good can-
didates. In a file system environment that supports Data
Management API (DMAPI) [DMAPI], an application can
keep track of access patterns of files and implement a multi-
tier storage. HSM implementations using DMAPI already
exist.

Inside the file system Less flexible than the former, but
may provide better performance than the former due to
lower context switch overhead.

As a layered device driver (our approach) The device
driver is layered on top of block storage media (generally
disks). A given I/O request is divided into separate I/O
requests each of which is issued to the device drivers of
the underlying storage media it is configured to use. Our
design currently has 3 tiers: declustered RAID1, RAID5
and compressed RAID5 (cRAID5), with future extensions
for additional tiers like NVRAM. The data is migrated be-
tween the tiers depending on access patterns, so as to keep
frequently accessed (hot) data in RAID1 tier and not so fre-
quently accessed (cold) data in RAID5/cRAID5.

In the controller HP AutoRAID is a two-tier RAID stor-
age array that uses RAID1 and RAID5. It is implemented
at the controller level communicating with the host over
the system bus. SCSI disks are connected to this controller
through the controller’s internal SCSI bus.

1.1.1 Motivation for a Layered Driver Approach

An application based approach would only improve that
particular application while a file system based approach
does not help configurations that use a block device directly
such as a database configured to use raw devices.

There are both benefits and costs in either the controller
(often called hardware RAID) or device driver (software
RAID) approach. We briefly discuss them here (for a more
detailed comparison, see [Veritas]):

Benefits of a Controller Based Approach
Lower I/O bus traffic As the host issues a logical I/O to

the controller, the I/O bus will see much less traffic com-

pared to a software approach. For instance, a mirrored con-
figuration of software RAID will issue two separate I/Os,
one for each copy.

Separate Hardware A controller approach uses a sepa-
rate on-board processor to process I/O requests, thus not
loading the host processor. In parity based configurations
like RAID5, this can save the host some computing, but
with very fast server processors nowadays, this is a minor
issue. In addition, controllers may have on-board NVRAM
to improve write performance. But all these add to the cost
of the system.

Benefits of Device Driver Approach

Host processors easier to upgrade The problem of in-
creased I/O bus traffic and load on the host processor need
not always be that serious. Host processors are generally
far more faster and are easier to upgrade than the ones used
in controllers.

Controller level redundancy In controller based ap-
proaches, redundancy is provided against disk failures but
providing redundancy for other hardware such as controller
hardware, can increase the cost. In software based config-
urations this can easily be provided by connecting disks
across different controllers. Also, this can lead to better
performance as the load is distributed across multiple con-
trollers.

Flexibility A controller based approach has limitations
on the number of disks that it can manage. Once that limit
is reached, any new disks have to go under another con-
troller and so cannot be accessed by the former. Also,
configuration flexibility is limited. A software approach
can be easily customized for a new access pattern. As we
shall show in the section on implementation, the mecha-
nisms and policies can be cleanly separated in a software
approach.

A device driver approach is much simpler from an in-
frastructural viewpoint and it is increasingly becoming im-
portant commercially as many vendors are now providing
such solutions for managing multiple disks (Veritas VxVM,
IBM & HP LVM, SGI XLV). Hence we have investigated
the device driver approach. Implementing at the controller
level was not considered seriously due to the difficulty of
carrying out modifications at this level, lack of information,
and also the time and cost involved in developing the skills
and the cost of implementation in a university laboratory
environment.

In section 2 we discuss related work. Section 3 explains
the design. Section 4 covers the implementation, with spe-
cific details on the changes for Linux from our initial So-
laris prototype. Performance study for the Solaris platform
is presented in section 5. Section 6 draws conclusions and
spells out further work.



2 Related Work

Loge [ES92] and Mime [CEJ+92] disk controllers use a
level of indirection to adaptively alter the physical location
of data to improve performance. [AS95] present a device
driver implementation of a related idea.

HP AutoRAID [WGSS95] is a firmware implementa-
tion of the idea. It is implemented at the controller level,
communicating with the host over the SCSI bus. It has
a separate on-board processor to do operations such as
parity computation, maintaining various data structures,
tracking access patterns and effecting migrations between
the RAID1 tier and the RAID5 tier. It uses on-board
NVRAM to improve writes and does log-structured up-
dates to RAID5. It maintains logical to physical translation
tables and two other tables for RAID1 and RAID5. The
logical to physical translation makes the migrations of data
between RAID1 and RAID5 transparent to the user.

[MK96] presents orthogonal placement of data to im-
prove the performance of RAID5 in both normal and de-
graded mode.

[HD89] discusses chained declustered RAID1. Declus-
tered RAID1 differs from RAID1 in that the data is striped
across the disks and two physical stripes constitute a
RAID1 logical stripe. Our driver’s RAID1 tier is imple-
mented as a more flexible version of declustered RAID1.
Since our experimental setup consists of a single controller,
we observed poorer performance for declustered RAID1
than RAID1. On a multi-controller configuration, it might
provide better performance than RAID1.

[KL96] explains how compression algorithms can be
used to predict future accesses with high probability by the
use of access patterns and perform prefetching. But there is
a sizable memory requirement for maintaining the required
data structures, and an in-kernel implementation would pin
down most of main memory. We show how it can be imple-
mented in a user process1 that uses the application interface
provided by our driver to keep track of accesses and effect
migrations.

Linux has an implementation for RAID personalities in-
cluding RAID0, RAID1, RAID4, and RAID5 asmd (mul-
tiple disk device driver). It can be called a device driver as
it occupies a major number, but it actually never services
any I/O requests. All the I/O requests are mapped to the
respective underlying device driver even before they reach
the strategy routine ofmd. The implementation is a kind
of hack in the kernel (necessitating changes in the kernel
code only formd), and thus does not follow the framework
of a standard Linux device driver. As explained below, this
has been necessary until 2.1 kernels as it was not possible
to use concurrency amongst multiple devices managed by
a single device driver.

3 Design of the Storage System

3.1 Design Principles

1. Use only commodity hardware that is available in typ-
ical systems.

2. Avoid storage media dependencies such as use of only
SCSI or only IDE disks.

3. Keep the data structures and mechanisms simple.

4. Support reliable persistence semantics.

5. Separate mechanisms and policies with the former in-
side the driver and the latter in user level applications.

Our driver uses the host processor for performing oper-
ations like I/O processing and parity computation. As the
driver runs in kernel mode with forced context switching
turned off, increased load on the host processor can slow
down the system, and result in poorer system response.
This forced us to keep the data structures and mechanisms
simple. We believe this tradeoff to be advantageous overall.

Our design does not assume any special hardware such
as NVRAM or dedicated processor which are generally not
available in typical workstation systems. But if NVRAM
is available, it can be used (a ramdisk type driver is all that
is required). Also we should be able to use the existing
storage media; the driver can work with any devices with
a block device driver. This keeps the design flexible but
makes us unable to use device specific optimizations.

To guarantee reliable persistence semantics, we have in-
vestigated making changes to the state of a stripe using both
ordered updates and using a separate logging device. State
changes occur due to migrations. The second approach is
especially suitable in the presence of cRAID5 in the sys-
tem as many writes become read/modify/write operations.
In addition, it speeds up RAID5 partial writes as well as
mirrored (declustered) writes for RAID1. Our first imple-
mentation on Solaris 2.5.1 used only ordered writes as we
had only 2-tiers in that system. Our next prototype on So-
laris used both while the Linux prototype will also use both.

The ordered updates guarantee correct operation in the
event of a system failure as the state changes, but there is
a possibility for some physical storage to go unaccounted
during these changes, which can be reclaimed by using a
UNIX fsck-like program that we calldevice-check. Unlike
fsck, it is not essential to run this program every time the
system crashes. Also this program can be run on a live
system. The ordered updates are explained further in the
section on migrations.

We have provided enough hooks to implement polices
outside the kernel. The driver provides an interface for ap-
plications1 to access the data and services of the driver. The

1By the term application or user process in this paper, we mean root
privileged processes, such as fsck. Storage devices are protected resources
and are generally not directly accessible by unprivileged processes.
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device-check program, for instance, that is needed with the
ordered write approach uses this interface.

The multi-tier storage is referred to also as temperature
sensitive storage (TSS) as migrations enable frequently ac-
cessed (“hot” temperature) to reside in RAID1 and less fre-
quently ones in RAID5/cRAID5 (“warm” and “cold”).

3.2 Data Layout

3.2.1 Physical Storage

The physical storage is organized in RAID5 fashion as
shown in the figure 1. The storage consists of a set of
columns. We use the term columns to distinguish them
from disks. A column is a block device which can be a
single disk or can be a pseudo device built from multiple
disks using a layered driver. The smallest column limits the
size of the storage. A column is divided into contiguous re-
gions calledstripe units. A stripe is a formed by grouping
one stripe unit from each column.

The size of the data portion of a stripe is N-1 times the
stripe unit size (N being the number for columns), as one
stripe unit from each stripe is used for parity. We use left-
symmetric parity distribution scheme[LK91]. Thepolarity
of a physical stripe is defined as the column number of its
parity stripe unit. The polarity is used to ensure decluster-
ing for RAID1 stripes. These physical stripes act as back-
ing store for logical stripes that are explained next.

3.2.2 Logical Storage

The logical storage can viewed as a collection of logical
stripes. The logical to physical translation is done by the
driver, so that the user’s view of the data does not change

even as the stripes undergo change of state. A logical stripe
can be in any of the following states:

Invalid No backing store is allocated for this type of log-
ical stripe. Initially all the logical stripes belong to this
type.

RAID1 Two physical stripes of differentpolarity pro-
vide backing store for a declustered RAID1 logical stripe.
Due to the way stripe units are numbered in a stripe, this en-
sures that the mirrors always come from different columns.
The parity stripe units of the physical stripes backing a
RAID1 logical stripe are left unused. This leads to some
of the storage going unused but it keeps the data structures
and the mechanisms simple.

RAID5 A single physical stripe provides backing store
for a RAID5 logical stripe.

cRAID5 The data of this stripe is compressed and stored
in a physical stripe. Since a compressed stripe is smaller
than the uncompressed one, a full physical stripe is not nec-
essary for providing the backing store for the compressed
data. The unused region of the physical stripe can be back-
ing store for some other compressed stripes. Since the com-
pressed data is stored in RAID5 format, we can sustain sin-
gle disk failures. Since the unit of allocation is at sub stripe
level, an allocation bitmap is stored persistently on the disk.

An allocation bitmap is used to maintain the allocation
status of physical stripes. The logical to physical transla-
tion table and the allocation bitmap are persistent structures
stored on private partitions2 which are read into the main
memory at the time of loading the driver which is a load-
able kernel module. When changes to these data structures
need to be persistent, like logical stripe type or allocation
status of a physical stripe, the on-disk copies of those spe-
cific entries are updated.

With out compression, it is sufficient to know if a phys-
ical stripe is acting as backing store for any logical stripe
or not. Introducing compression requires us to be able to
address storage in smaller units than stripes. For the sake
of simplicity, we set the number of individually allocatable
subunits within a stripe to a power of 2 (2

n) before the cre-
ation of device; the granularity of compression is thus set
to stripe size/2n. Once the device is created, this cannot be
changed.

If a logical stripe is backed by a cRAID5 stripe, the
translation table gives the index into the compression ta-
ble where the information of the backing physical stripe is
stored. The latter includes the physical stripe that contains
the backing store for the logical stripe, the actual size af-
ter compression and the offset of the allocation unit in the
physical stripe.

2Redundancy for the information on the private partitions remains part
of future work.



3.3 I/O Processing

A given logical access is divided into separate physical ac-
cesses and issued to the underlying drivers. The given ac-
cess is first broken at the stripe granularity as all stripes
that the access covers need not be of the same type. Each
of these accesses is handled depending on the type of the
stripe.

A read to an invalid type stripe always succeeds. Back-
ing physical stripe(s) are allocated on demand for writes
making the stripe RAID5, and the operation is retried.

A write to a RAID1 stripe should update both the copies,
whereas a read can be satisfied with either of the copies.

Reads and full stripe writes to a RAID5 stripe are han-
dled in normal RAID5 fashion. During partial stripe writes,
an attempt is made to migrate the whole stripe to RAID1
failing which the access is handled in RAID5 fashion.

Read in cRAID5 are handled by reading the stripe units
of the compressed stripe. The data is uncompressed and
the requested portion is copied to the target. Currently, no
migrations are done as this will be left to policy modules
(see below).

For write requests, the compressed data of the stripe is
read, uncompressed and the old data overwritten by the new
data. The data is then compressed and written in a new
stripe or possibly in the original stripe itself. The latter is
the best case when the number of physical blocks allocated
to the new compressed stripe does not change. Otherwise,
we need to find a new stripe that can accommodate this new
compressed stripe and then release the storage in the old
stripe. If compression is not good enough so that we need
close to a full stripe itself for the write, the above read-
modify-write cycle can be dispensed with in some cases if
the write is for a full stripe. However, in all the above cases,
no migrations are done, leaving the decisions to the policy
modules.

3.4 Migrations

Migrations result when a logical stripe changes type. A
logical stripe changes from invalid to RAID5 on a write to
it. After the migration is completed, the I/O is retried (this
time in RAID5 fashion). If the request is a partial stripe
write, another migration is triggered to make it RAID1.
Thus a partial write to an invalid type stripe ultimately re-
sults in its migration to RAID1. A full stripe write to an
invalid stripe only makes it a RAID5 stripe. An alterna-
tive strategy is to move the stripe directly from invalid to
RAID1 on an update whether it is full stripe request or
a partial one. We chose the 2-stage approach as we have
no information whether the data will remain hot after this
write. If it remains hot, the policy mechanisms will migrate
it to RAID1. It also keeps the implementation simple and
it is the right strategy for large I/Os.

RAID1 to RAID5 migration usually happens when a
RAID1 stripe is victimized to give one of its physical

stripes to a currently invalid logical stripe to make it RAID5
or to a RAID5 stripe to make it RAID1.

Our strategy for migrations to/from cRAID5 is similar.
First migrate the needed stripe to RAID5 (leaving the other
stripes in cRAID5 with certain parts invalid) and migrate
to RAID1 as needed. RAID5 to cRAID5 migrations typi-
cally take place through policy mechanisms when the data
becomes cold.

We use software LRU to maintain access frequencies of
stripes.

3.5 Application Interface

To keep the system flexible and the implementation simple,
we have tried to offload the policy decisions to user level
applications3. The driver provides interfaces using which
an application (necessarily with root privileges) can access
the driver data such as logical to physical translation table,
stripe access information, physical stripe allocation bitmap
and services such as initiating migrations, punching holes,
etc.

4 Implementation

The first prototype has been implemented as a pseudo de-
vice driver on Sun Solaris 2.5.1 with two tiers of RAID1
and RAID54. The next prototype added the cRAID5 layer.
The current effort is reengineering it for Linux 2.2.55.
Since the Linux device driver interface is very different
from Solaris, and given the rapidly changing internal inter-
faces in the Linux kernel since 2.0, this has required careful
study. We will discuss some of these below (see Sec 4.2.1).

The implementation of TSS has been designed to be
modular to allow each module can be tested and debugged
independently. The implementation not only supports a
unified, integrated TSS device but also supports RAID1,
RAID5, declustered RAID1 devices also. The control and
configuration of the devices is done through ioctl calls.

Each device has adev structure associated with it, which
contains the information about the device including its per-
sonality type, personality specific information, information
of the underlying devices, and the function pointers cor-
responding to the entry points specific to the device per-
sonality. Figure 2 depicts the details ofdev structure and
associated data structures.

When any entry point like read, write or close is called
on a device, it first executes the generic implementation as
exported by the device. The generic code in turn calls the

3This is a common Unix approach, used for example, in fsck, X, to
access kernel data through kmem, proc, etc

4The source of this is available under GNU GPL. Pl. send e-mail for
the exact location.

5The current status of the Linux implementation: Though the prototype
works correctly for the case of 5 “virtual disks” on one physical disk, it
does not yet work properly for the case of 5 physical disks (the useful
case).



personality specific function based on the type of the de-
vice. This design allows us to implement each personality
separately and then integrate them together.

In the initialization module, a global array of pointers,
to device structures is created. In the configuration ioctl,
the generic device structure is created and its personality
is specified, later the personality specific ioctl is used to
configure the actual device parameters.

The I/O queue maintained by the driver is the same for
all the devices controlled by it. When a request is in queue
andrequest fn() is called, it detaches the first request
from the queue and passes this request structure to the per-
sonality specific strategy routine.

The repackaged I/O request is divided into stripe re-
quests and all these are collected under first level stage I/O.
Now the mapping from the logical to physical stripe is per-
formed. For the declustered RAID1 and RAID5, the map-
pings are direct functions of the logical stripe number. For
the integrated TSS device,maptable andcompression table
are used for this operation. Figure 3 gives the details of the
way I/O staging is done at various levels in the data flow
from the pseudo device to the actual device and the various
abstractions involved.

We first take a look at how I/O is handled in Linux.

4.1 I/O handling in Linux

Linux usesrequest structures to pass the I/O requests to
the devices. All the block devices maintain a list ofre-
quest structures. When a buffer is to be read or written, the
kernel callsll rw block() routine and passes it an ar-
ray of pointers to buffer heads.ll rw block() routine
in turn callsmake request() routine for each buffer.
make request() first tries to cluster the buffer with the
existing buffers in any of therequest structures present in
the device queue. Arequest structure consists of a list of
buffers which are adjacent on the disk. This clustering
is performed only for the drivers compiled in the kernel
and not for loadable modules. If clustering is possible, no
newrequest structure is created, otherwise a newrequest is
taken from the global pool of structures and initialized with
the buffer and is passed to theadd request() routine.
This routine applies the elevator algorithm using insertion
sort based on the minor number of the device and the block
number of buffer. If the device queue is empty, the ker-
nel calls the strategy routine i.e. therequest fn() of
the driver; otherwise, it is the responsibility of the driver
to reinvoke it from the interrupt context (see Figure 4).
Another requirement forrequest fn() is that it cannot
block as it needs to be called from the interrupt context.

To allow the accumulation of requests in the device
queue, a plug is used. When the request comes in and the
device queue is empty, the plug is put at the head of the
device queue, and a task comprising of the unplug function
is registered in the disk task queue. Thus the requests keep
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on accumulating for some time and then the task queue ex-
ecutes the unplug routine which removes the plug and calls
the request fn() to service the requests.

4.2 Problems for a Linux Implementation

4.2.1 Linux Device Driver Issues

As an example, the 2.0.x versions of Linux cannot use the
concurrency provided by multiple disks if its device driver
framework is strictly followed. Though concurrency exists
at the hardware device level, if the same driver is used for
all of them, the I/O requests for different devices will be
serviced sequentially. A driver can have only one queue of
device requests and hence all the requests for the devices
controlled by the driver will be in the same queue. The
processing of a new request is initiated only when the pre-
vious I/O is finished and in interrupt context. This problem
has been eliminated in 2.2.x versions by allowing drivers to
register a function which returns the pointer to the head of
the queue in which the new request is to be inserted. Now
a driver can maintain separate queues for each hardware
device.

We face the following situations in implementing a lay-
ered device driver in Linux:

Blocking in Interrupt Context For interrupt driven
block drivers, the strategy routine (request fn) can be
called from interrupt context but it cannot block. On So-
laris, this is possible as it has interrupt threads. For a lay-
ered implementation, one needs to call the ll rw block
routine from the request fn, so that it can put the
buffers in the request queue of the underlying device.

But ll rw block routine in Linux can block as it has a
global array of request structures, and if all the slots in the
array are filled then the function has to block. One solution
could be to modify the ll rw block code so that if we
cannot find a request structure, we return immediately and
queue a task in schedule queue, to be executed later.

A better solution would be to make sure that we never
need to call strategy routine in the interrupt context. This
can be done by consuming all the requests queued to the
device queue in a single invocation of the request fn.
This is so as the kernel calls the request fn from pro-
cess context only if the device queue is empty.

The solution to this problem is to design the
request fn() in such a way that it keeps on executing
till all the requests in the device queue are exhausted. Thus
it will always execute from the process context. One draw-
back of this scheme is that one process may have to delayed
or blocked for I/O requested by some other process, but this
is acceptable as the situation will occur only when all the
request structures are exhausted which is likely to be infre-
quent. The pseudocode for request fn() is as below:

tss_strategy() {
while (1) {

if (no request in queue) return
remove first request from queue
get tss dev corresp to minor#
in request

call personality specific strategy
if (error in delegating I/O)
call end_request with buffers
not uptodate

}
}

Fixed Size Buffer The buffer size for a device is fixed,
unlike Solaris where we can have variable sized buffers.
For example, to implement RAID5 efficiently, we need to
distinguish between the full stripe write and partial stripe
write as the latter involves a read-modify-write cycle. In
Solaris, this is easier as one buffer can span across stripes.
In Linux, each logical buffer is already split into smaller
fixed sized buffers, so one has to rediscover the logical
buffer to distinguish between the two cases and do the pro-
cessing accordingly.

In addition, reporting of errors when they occur has to be
at buffer granularity. We can keep track of errors only at the
individual buffer and therefore cannot do error reporting at
the stripe level.

end request If we need to use multiple queues, then the
current end request does not work. We need a new im-
plementation.

4.2.2 Lack of other support in Linux kernel

In addition to the above problems arising due to lack of in-
frastructure in the Linux kernel for layered device drivers,
we have the following additional problems, due to lack of
other required support in the Linux kernel. Firstly, there is
a cache consistency problem that occurs in case of RAID5
writes. RAID5 writes are of two types. The full stripe
writes completely bypass the buffer cache as I/O is done
by creating only the buffer header structures with the data
pointers appropriately set, and later releasing them. The
partial stripe writes go through buffer cache as they involve
a read-modify-write cycle. Thus the cache can become in-
consistent. To eliminate this problem, buffers for the stripe
undergoing a full stripe write need to be invalidated.

Second, Linux does not have an implementation for con-
dition variables to allow atomic grabbing of a lock with
condition checking. ilock had to be implemented to check
for any overlap among the various I/Os being issued con-
currently.

When a request comes in, the region that needs to be
locked is calculated in terms of starting and ending sector.
First, a region structure is created with this information, the
global lock that protects the list is then acquired followed
by disabling of the interrupts. This whole exercise ensures
that any addition or deletion to or from the list is atomic.
Now each region structure in the list is compared for any



overlap with the new structure. If no overlap is found, a
lock structure is allocated and initialized. The mutex lock
in the lock structure is acquired and the reference count is
set to 1. Now the list lock is released followed by reen-
abling of the interrupts.

If an overlap occurs, then the reference count of the as-
sociated lock structure is atomically incremented, the list
lock is then dropped. Now the process does a down on the
mutex of the lock structure corresponding to the overlap-
ping region. Linux reenables the interrupts when the pro-
cess tries to sleep. By exploiting this feature, we can do
checking of overlap and wait in an atomic fashion.

When the process wakes up, it atomically decrements
the reference count of the lock structure on which it was
waiting. If it is zero, it frees the lock structure. Now it
starts all over again to check for overlaps. Following is the
pseudo code:

create region struct for request
rep: grab the list lock

disable the interrupts
check for overlap
if(overlap occurs) {
release the list lock
wait on mutex & enable interrupts
atomically decrement the refcnt
if zero, free lock structure
goto rep

} else {
create a lock struct
set its refcnt=1 & lock its mutex
insert region struct in list
release the list lock
enable interrupts

}

When an I/O is done, the associated lock structure’s ref-
erence count is decremented in the interrupt context and
tested for zero. If it is zero, the associated lock structure is
freed. The region structure associated with the done I/O is
also removed from the list and freed. The pseudo code is
given below:

decr refcnt of associated lock struct
if (lock refcnt is zero)
free the lock structure

else wake up those sleeping on mutex
free the region structure in list

4.2.3 Other problems not unique to Linux

One important problem is that there is no API between
users of a device and its driver. The size of the TSS de-
vice is not fixed but varies dynamically as the organization
of data changes among different storage personalities. If
there exists a file system that can talk to underlying de-
vice through an appropriate interface and can dynamically

ll_rw_block

make_request

add_request

    read/write

request_fn

process context

interrupt context

Figure 4: I/O flow in Linux
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change the file system size, this feature of dynamic growth
or shrinking feature of TSS can be exploited. None of the
file systems available on Linux platform have such a fa-
cility (and most other FS on most OSes too!), so we still
need to export a fixed size of the device (required at time
of mount). During device configuration, the user needs to
specify the fraction of device that can be under RAID1 and
fraction that will be compressed. Using this information
the device size is calculated and exported. Ambiguity still
exists as the amount of compression achieved cannot be
predicted in advance.

4.3 Changes to Kernel

Even though the device driver framework of the Linux has
been strictly followed, there are a few changes that are still
needed to the kernel:

Enable Clustering for TSS device Linux does clus-
tering only for drivers compiled into the kernel and not
for loadable modules. TSS relies on clustering to gain
performance, otherwise all the stripe I/Os will be partial
ones. So we need to enable clustering for the TSS driver in
make request() code.

Limiting the number of requests For each request
structure that gets queued to the TSS device queue, there
will be requests queued in the underlying device queue. So
if all the request slots are consumed by the TSS device, it
will lead to deadlock, as processing these requests require
a free request structure . To avoid such deadlock, the num-
ber of request structures that can be captured by the TSS
device is set to half of the total possible request structures
in the system.

Removal of Plugging Plugging of the device queue is
done in Linux to allow for the accumulation of the re-
quests in the queue. For a pseudo device this accumulation
doesn’ t make sense as this will be done again at the under-
lying device level. Thus ll rw block() code needs to
be changed to bypass plugging for the TSS device.

4.4 Data Structures

Maptable The maptable is a data structure used for log-
ical to physical translation, and maintaining access infor-
mation. This is read into the main memory at driver load-
ing time. Whenever an entry changes its type, it is flushed
to stable storage but access information updates do not re-
sult in flushing. The entries of this data structure are 64bit
long, containing fields for the type of the stripe, the physi-
cal stripes backing the stripe, the access information and an
advisory bit to note if there is an access currently active on
the stripe (see figure 8). The size of the maptable is equal
to the number of logical stripes in the configuration.

Allocation Bitmap This is used to maintain the alloca-
tion status of physical stripes. Since the unit of allocation
is smaller than the size of the stripe with cRAID5, we have
a bit for each allocation unit of storage.

Policy Daemon

File system

Read/Write

Strategy

Accesslog

IO Interlock

Maptable

Bitmap

Compmap

Victimlist

Migration

I/O Processing

Underlying Device Drivers

Ioctl

Applications

Compression

Strategy entry point

User/Kernel
Boundary

Figure 7: Implementation Model
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Compression Table This table stores the metadata of
each of the compressed stripe. For each compressed stripe,
we need to know the stripe number which provides the
backing store for the compressed data. Also, since the al-
location of backstore is not done in units of bytes but in
some units of sectors, we need to store the exact number
of bytes which the compressed stripe occupies. This is re-
quired for the decompression algorithm. Also since the al-
location is done in units smaller than the stripe size, we
need to know which units are occupied by this compressed
data. But since the allocation is contiguous, we need to
store the offset of the first unit within the stripe. We can
always calculate the number of units, from the size of the
compressed stripe. Thus the structure of the compressed
table entry is as shown in the figure 9.

Access Log When enabled, all the accesses to the device
driver are logged in an in-memory access log which is a
circular array of access entries. Each entry consists of two
fields; the starting sector number and the size of the access
in number of sectors. This can be enabled on a per instance
basis. This access log can be accessed from an application
to keep track of the accesses to the driver.

4.5 I/O Handling

On an access, the region spanned by it is locked. This is
required as the type of the stripe should not change when
an access is in progress. The access is then subdivided into
separate subaccesses at the stripe granularity. These are
then grouped under a StageIO and issued to the underly-
ing storage drivers. The StageIO maintains a count of the
number sub I/Os. In UNIX, whenever a block I/O request
completes, biodone() is called for the request in the in-
terrupt context which results in a call to the routine pointed
to by the b iodone field of the I/O request data structure
(struct buf). The count is decremented in this calling
routine and when count becomes zero, the parent I/O is sig-
nalled as complete by calling biodone() on it.

In Linux, as discussed above in Section 4.2.1, we have
to come up with a few workarounds for a similar effect.

I/O Interlocking is not critical for non redundant stor-
age but for redundant storage schemes like RAID it is es-
sential for correct operation. For RAID1, we need to inter-
lock the I/O region as two concurrent updates can leave the
two copies (the data and the mirror) out of sync.

For RAID5/cRAID5, the updates need not be overlap-
ping either to result in wrong operation. If two update ac-
cesses come to the same stripe, they need to be serialized as
both will be updating the parity (in addition to the data). In
addition, in cRAID5, the interlock has to be set at the log-
ical stripe level so that atomicity of the write is maintained
in case of simultaneous accesses to the compressed stripe.

In addition, we need to make sure that the type of a log-
ical stripe does not change when an I/O is in progress on
it.

4.6 Further Details of Linux I/O Processing

Processing of the stripe level I/O now depends on the type
of the stripe, as explained below.

4.6.1 Declustered RAID1 I/O Handling

For a write request, corresponding to each buffer in the
stripe, two buffer heads are created. For a read request
only one buffer head per buffer is needed. These buffers
are grouped under a second level stage I/O and are issued
to the underlying devices to which the logical buffer maps.

4.6.2 RAID5 I/O Handling

I/O handling depends on whether it is a partial stripe I/O or
full stripe I/O, so we discuss them separately.

Full stripe I/O Parity is computed from the data, and
then data and parity both are written by breaking the
stripe I/O into second level stage I/Os corresponding to
each buffer in the stripe. We also need to invalidate the
cache buffers corresponding the stripe undergoing I/O be-
fore writing the data to disk (see section 4.2.2).

Partial stripe I/O Partial stripe writes are a bit more in-
volved than full stripe writes. To improve performance, a
partial stripe write is handled in two ways:

1: Read-Modify-Write: This type of I/O handling is used
when the size of update is less than half the stripe length.
The buffers in stripe units that are going to be overwritten
are read, then the parity is computed by xoring the old data,
old parity and new data. The new parity and data are writ-
ten to the disk by creating second level stage I/Os for each
of the buffer involved.

2: Reconstruction-Writes: This type of I/O handling is
used when the size of update is more than half the stripe
length. Stripe units that are not going to be written are read
in from the disk. The parity is computed by xoring the data
read and data to be written. The new parity and data are
written in similar way to Read-Modify-Write I/O.

4.7 Implementation of Migration

Here we discuss only the ordered write strategy for mi-
grations between RAID1 and RAID5 for ensuring reliable
persistence semantics6. We are currently investigating poli-
cies for migrations to/from cRAID5, mostly in a prefetch-
ing/caching framework[CFKL95, KTPB96].

In ordered write strategy, the updates are performed in a
well defined order. We now explain this ordering of events
and show how it does not result in wrong operation in the
event of a crash.

Invalid to RAID5

6We omit discussion of the logging approach as it has been currently
implemented on Solaris only.



1: The allocation bitmap is checked for a free physical
stripe. If a free physical stripe is found, it is marked allo-
cated and the entry of the bitmap is flushed to stable stor-
age. The physical stripe is returned to the caller.

2: If no free physical stripes are left, a RAID1 stripe is
victimized migrating it from RAID1 to RAID5 (this con-
version itself involves multiple steps which are explained
next), and one physical stripe is returned to the caller.

3: The maptable entry of the stripe is marked RAID5 and
flushed to stable storage. The access is retried.

If the system fails between steps 1 and 3 or between 2
and 3, some storage may go unaccounted but does not result
in any incorrect operation. This storage can be recovered
online using the device-check program (see the section on
application interface).

RAID1 to RAID5
1: An interlock is set on the stripe so that no one can

access this stripe.
2: Full stripe data is read in, the parity is computed and

the parity stripe unit of the physical stripe to be retained is
updated.

3: The maptable entry of the stripe is marked RAID5
and flushed to stable storage. The physical stripe currently
unused is returned to the caller.

Steps 1 and 2 do not change the structural state infor-
mation of the system in any persistent way. If the system
fails just after completing step 3 (marked RAID5, metadata
flushed), one physical stripe goes unaccounted but cannot
result in incorrect operation. The lost stripe can be recov-
ered by running device-check.

RAID5 to RAID1
In the current implementation, a partial stripe write ac-

cess to a RAID5 stripe triggers this migration. A more
general scheme might wait till the stripe is accessed fre-
quently enough and then attempt migration. To make tran-
sition from RAID5 to RAID1, a stripe requires a physical
stripe whose polarity is different from the physical stripe
currently used.

1: The allocation bitmap is searched for a free physical
stripe whose polarity differs from the currently used phys-
ical stripe.

2: If the required physical stripe cannot be found in the
free list, a RAID1 stripe is identified and victimized, mi-
grating it to RAID5.

3: The full stripe data is read in and the physical stripe
obtained from the victimization is updated with this data.

4: The maptable entry of the stripe is marked RAID1 and
flushed to stable storage.

Steps 1 and 2 change the structural state information, but
only one of them do it as step 2 is attempted only when step
1 fails. Step 3 does not change the structural information in
any persistent way. If the system crashes before step 4, one
physical stripe goes unaccounted which can be recovered
by using device-check.

4.8 Optimizations to Enhance Performance

4.8.1 Victim list Management

The best candidate for victimization is a RAID1 stripe that
has not been accessed for the longest time. But we found
searching through the entire maptable for finding such a
perfect victim to be extremely time consuming loading the
host CPU. The problem is even more serious for a ker-
nel module as kernel threads are not preempted when they
run out of their time slice (even in Solaris 2.5.1, a kernel
thread is preempted only if a higher priority thread be-
comes runnable), affecting all other processes and drasti-
cally reducing the system response. To reduce the amount
of searching, we implemented victim lists.

A victim list is a list of RAID1 stripes that are sorted in
the increasing order of access frequency. This list is con-
sulted to find a victim but only as a hint. The stripe is again
checked to see if it still remains a RAID1 stripe, or if it had
any accesses after the (re)construction of the list, or if there
is an access currently active against it. If any of these con-
ditions is true, the entry is dropped and the next entry in the
list is checked.

When the list is exhausted, it is reconstructed by search-
ing through the maptable populating the list with RAID1
stripes that do not have their access bit set, and do not have
any accesses active against them.

In the current implementation, victim list reconstruction
is done by a kernel thread. This thread sleeps waiting for
requests and, on being woken up with a request, does the
reconstruction and sleeps again till the next request. The
size of the list is fixed at 4096. A victim can be sought
in either blocking and non-blocking mode. In the blocking
mode, on failing to find a victim, the calling thread is sus-
pended till the reconstruction of the victim list is done. This
mode is used for invalid-RAID5 migrations which can not
continue till a victim is obtained. In non-blocking mode, if
no victim can be found, the victim list reconstruction thread
is signalled with a request and the call immediately returns
failure. This mode is used by RAID5-RAID1 migrations.

4.9 Interface to Applications

We have implemented an interface for use by privileged ap-
plications to access the data and services of the driver. The
motivation for introducing this interface was to implement
only mechanisms inside the kernel and offload policy deci-
sions to user level applications. These are implemented as
ioctl()s.

Get Maptable Address Using this ioctl(), an appli-
cation can get the kernel virtual address of the maptable and
the number of entries in it. The application can then per-
form an open() on /dev/kmem and mmap() the region
into its address space. As the access frequency informa-
tion is also kept in the maptable entries, the application can
keep track of how often a stripe has been accessed without



making any further calls to the kernel.

Get Bitmap And Maptable Using this ioctl(), an
application can read copies of the allocation bitmap and
the maptable frozen at some point in time. The driver locks
the entire maptable (by setting an interlock that spans the
entire device), and then the maptable and the bitmap are
copied into the user buffer and the lock on the maptable is
released. Using this information, an application can com-
pare the allocation bitmap against the maptable to find if
any of the physical stripes have gone unaccounted which
can happen when the system fails when a migration is in
progress. The application (eg. device-check) can then fix
this by using another ioctl(). Since the temperature in-
formation is also available in the maptable, the application
can know the temperature without making further calls to
the kernel.

Get Compressed Table Address Using this ioctl, the
user application can access the compressed table and hence
can get information about every compressed stripe, such
as compressed length and physical stripe backing for this
stripe.

Get Access log Using this ioctl(), an application can
get the kernel virtual address of the access log and the num-
ber of entries in it. The application can then call open()
on /dev/kmem and mmap() the region into its address
space and keep track of the accesses without making any
more calls to the kernel.

Migrate Given a RAID1 stripe and a RAID5 stripe, this
ioctl() migrates the RAID1 stripe to RAID5 and vice
versa. This ioctl() along with the former can be used by
an application to keep track of access patterns and perform
prefetching. The application can maintain its data struc-
tures in user space which do not pin memory down. To
reduce the system call overhead, multiple requests can be
grouped together and passed as a list. The request is failed
if any of the stripes has already changed the type.

Age The maptable can be aged using this ioctl().
This way we implement software LRU for maintaining the
access frequencies of stripes. The accessed bit is ORed
with the temp field after it is shifted to right by one bit.
The accessed bit is then cleared. Aging is also performed
from within the driver during victim list reconstruction if
sufficient RAID1 stripes are not found to fill the list.

Sync Meta Data This results in all meta data structures
being updated to stable storage.

Punch Hole A given RAID5, cRAID5 or RAID1 stripe
is marked an invalid stripe and the backing physical stripes
are released.

Migrations from/to cRAID5 These ioctls try to migrate
RAID1/RAID5 to/from cRAID5.

cRAID5 Move This ioctl allows us to move the cRAID5
stripe from one physical stripe to another physical stripe
as backing store. This ioctl can be used by an user level
application to take policy decisions for compaction.

Make Quantum Fireball 1280S
Formatted Size 1,281,982,464B
Drive Config Disks 2

Heads 4
Tracks per surface 4,142
Sectors per track 95-177
Bytes per sector 512

Perf Specs Average seek(ms) <11
Rotational speed(RPM) 5,400
Avg. rotational latency(ms) 5.56
Internal Data Rate(MB/sec) 5.8-10.4
Cache buffer size(KB) 128

Table 1: The specifications of disks used
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Figure 10: Total Delay vs. Number of Accesses for /usr1
disk

5 Experimental Results

We present experimental results on the Solaris platform
with 2 layers (RAID1 and RAID5). We expect to provide
results for Linux with 3 layers (RAID1, RAID5, cRAID5)
by end of this year.

Setup The Experimental setup consists of a Sun
SPARC5 workstation, with 32MB RAM. Five 1.2GB disks
are connected to the machine over a 10Mbps SCSI bus. The
specifications of the disks is given in Table 1.

Results and Analysis We have used HP disk traces
[RW93] to evaluate the performance of our driver in com-
parison to RAID5 and RAID0. The trace that we used has
been generated on a departmental server (snake) with ac-
cesses for two filesystems /usr1 and /usr2.

Both the integrated driver and RAID5 use 5 disks.
RAID0 configuration uses only 4 disks, as it does not main-
tain any parity. The integrated driver is configured with 25
percent of the physical storage under RAID1. The stripe
length for all configurations is 64 sectors.

Before applying the traces to our driver, we mounted a
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Disk# Average Access times (ms)
RAID0 int0 int30 int60 int90 RAID5

/usr1 7.70 9.25 10.32 12.87 12.73 24.37
/usr2 8.67 9.36 11.42 13.77 14.81 21.87

Table 2: The average device access times

filesystem on it and populated it to various degrees. The
first 50000 accesses were used as warmup, as the way we
laid out the filesystem and populated it need not reflect the
use of the traced system. The results given are for the re-
maining accesses. In all the figures and tables, the inte-
grated driver is denoted by INTx where x is the degree (per-
centage) to which the device was populated.

Figure 10 and figure 11 show the total delay against the
number of accesses for the two traces. The integrated driver
performed 30-50 percent better than RAID5 even when
populated to 90 percent.

Table 2 shows the average access times for the integrated
device populated to various degrees along with RAID0 and
RAID5. The fresh device (just ran mkfs) performed far bet-
ter than the one that was populated. This was expected as
initially all the stripes are of invalid type and writes result in
the allocation of physical stripes that are contiguous which
results in less seeking.

The traces exhibit high degree of locality. Figure 12 and
figure 13 show the number of migrations against the num-
ber of accesses for the traces on an integrated device pop-
ulated to 90 percent. The number of migrations remained
very small compared to the number of accesses (<1%). De-
spite such high hit rates (>99%), the integrated driver ac-
cess times increased with population, probably due to the
following reasons:

Suboptimal data placement The present implementation
has a very simple data placement policy. We simply select
the next RAID1 stripe on the victim list and steal one of its
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physical stripes when a RAID5 stripe or an invalid stripe
needs to be migrated. A better policy should take seek dis-
tances into consideration.

High migration cost The current implementation does
not maintain a pool of free physical stripes. Once the en-
tire physical space is used up, any more migrations need
to demote existing RAID1 stripes which involves updating
parity, and writing metadata synchronously. This severe
penalty on migrations can be reduced by making sure that
there exist enough free physical stripes at all times.

6 Conclusions and Future Work

We have designed and implemented a two-tier RAID stor-
age system using RAID1 and RAID5. We will be finish-
ing the implementation of a 3-tier system (RAID1, RAID5,
cRAID5) on Linux by end of this year. We also intend
to present a evaluation of the Linux prototype at the same
time.

Adding an NVRAM layer to improve write performance
needs to be investigated. Prefetching and replacement of
stripes across tiers is another area[CFKL95, KTPB96].
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