
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

P R O T O C O L I N D E P E N D E N C E
U S I N G T H E S O C K E T S AP I

Craig Metz

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Protocol Independence Using the Sockets API

Craig Metz

Department of Computer Science

University of Virginia

Charlottesville, VA 22904

cmetz@inner.net

Abstract

The BSD sockets API provides abstractions and
other features that help applications be protocol-
independent. Unfortunately, not all of the API is ab-
stract and generic, and many programs do not use the
APIs in a protocol- independent way. This means that
most network programs, in practice, only work with
one layered set of communications protocols { usually
TCP over IP. This hinders compatibility with older
protocols and deployment of new ones, and is making
IP a victim of its own success.
During the course of next-generation IP devel-

opment, implementors worked to convert protocol-
dependent applications into protocol-independent ap-
plications. Along the way, they de�ned new interfaces
to �x some problems and they found a number of usage
problems that lead to protocol dependencies.
This paper explains many of the problems encoun-

tered, using examples from freely available software,
and how to solve them. It also explains many of the
new protocol-independent interfaces.

1 Introduction

The single most painful lesson learned by implemen-
tors of next generation IP proposals (such as IPv6) was
how deeply most network programs are dependent on
the network protocol that they were originally written
to use. The widespread success of the IP Internet has
put it into the position of being the only network pro-
tocol that matters for most network applications, and
so there is currently little incentive to support any-
thing else.
Even today, this is a problem. There are other net-

work protocols that are in use today { such as Ap-
pletalk, ATM, AX.25, DECnet, Frame Relay, IPX,
and OSI { and few applications actually support them.
This is also a serious problem for the future, as any
research into new network protocols is greatly con-
strained by the lesson of IPv6: that anything not IP

will not be supported by the applications people want
to use, and that anything that is not supported by ex-
isting applications will encounter great di�culty gain-
ing acceptance.

The core of the BSD sockets API, especially the ac-
tual system calls, is not tied to any particular proto-
col. The problems fall in two major categories: sup-
porting APIs that are protocol-dependent, and poor
programming practices that are common. There have
been great advances made in �xing the networking
APIs in the system libraries though the e�orts of the
IETF's IPng working group[1] and the IEEE's POSIX
p1003.1g (networking API) working group. New li-
brary functions, data structures, and pre-processor
symbols together allow addresses and other network
properties to be treated as variable-length abstract ob-
jects whose internal format can be changed without
the application's involvement. But there is still a seri-
ous problem of programmer education, which in turn
requires good documentation of the problems and how
to solve them. To date, this documentation still does
not exist.

In the NRL IPv6 implementation[2], standard net-
working applications from BSD and from the Internet
were taken and modi�ed to support protocol indepen-
dence. For most applications, this was straightforward
once we had done a few applications and knew what to
look for. The end result was not only a conversion to
allow the applications to support almost any protocol,
but also a signi�cant cleanup of the applications' code.

In this paper, I will �rst discuss the problems
that need to be solved to make programs protocol-
independent: what is wrong, why it is wrong, and
how it can be done right. I will then discuss the
new protocol-independent API functions and compare
them with older BSD networking API functions in
light of the problems that need to be solved. I will also
present in more detail some additional functions that
we found necessary to solve certain problems that have
not yet been standardized. Speci�c examples from

freely available networking programs will be used.

2 Protocol Independence Problems

Fundamentally, the problem with protocol indepen-
dence is that software has not been written with the
intent of being protocol-independent. Some common
programs, such as Sendmail, support multiple proto-
cols, but are still only capable of operating with cer-
tain protocols that they know about (and usually only
one protocol really works). A protocol-independent
application hides away knowledge of particular pro-
tocols into run-time abstractions that allow the same
operations to apply regardless of what actual protocols
happen to be in use. In some cases, it is not possible
to make operations completely generic, in which case
protocol-dependent code needs to be carefully guarded
and some reasonable default actions must be available
for other protocols. But most importantly, programs
must be tested with several di�erent protocols to prove
that they can handle them. The jump from supporting
one protocol to two is the biggest hurdle, and clearing
that in a reasonable way makes supporting other pro-
tocols much easier.

2.1 Hard Coding

The most obvious protocol dependence problem seen
in network programs is to hard-code the use of one
protocol. Figure 1 shows an example from 4.4BSD-
Lite2[3]'s telnet program. There are three major prob-
lems here. First, the protocol family to be used is
hard-coded as AF INET. That basically prevents proto-
cols other than IP from being used. The family needs
to be chosen based on the name resolution informa-
tion, as will be discussed later. Second, the socket
address used is a protocol-dependent address, in this
case sockaddr in. This structure is not big enough to
hold addresses for some protocols, and in any case ma-
nipulating the �elds in the structure itself is a protocol-
dependent activity. Sockaddrs need to be treated as an
opaque bu�er manipulated by protocol-independent
library functions or carefully guarded code. Third,
IP-speci�c socket options are being used without any
guards. That is, if the �rst two problems were �xed,
the IP-speci�c setsockopt calls would still be done
and they should always fail. Depending on the par-
ticular option being set, the socket option call needs
to be replaced with an abstract equivalent or needs
to be surrounded by a guard that skips the call if the
protocol in use is not IP.

This particular bit of code also carries a common
bug: it tries to be slightly protocol-independent and
ends up worse o� for the e�ort. It uses the proto-
col family returned by gethostbyname() and copies

addresses in a variable-length way, but copies that
into a �eld within a sockaddr in and later tries to
connect() to that address using an AF INET socket
while specifying the length of the sockaddr in as
the length of the address information. If the family
was something other than AF INET, the sockaddr in

would probably not be �lled in with something mean-
ingful, and connect() call would probably fail re-
gardless because the protocol family of the target ad-
dress was not the same as that of the socket. As
long as the only addresses that ever get returned by
gethostbyname() are IP addresses, this practice will
actually work. If addresses other than IP addresses
were returned, programs written this way would break.
This creates an interesting problem: interfaces that
might be made protocol independent cannot be, be-
cause legacy programs don't use them correctly and
changing what they return would break software. Us-
ing a new interface designed for protocol independence
(like getaddrinfo()) and using it correctly will solve
this problem.
A variation of this problem is hard coding address-

ing information, such as addresses and ports. Fig-
ure 2 shows an example from Sendmail 8.7.6[4]. There
are three major problems here. First, the code al-
ways treats the address as a sockaddr in without any
guards. As in the example above, this is bad for pro-
tocol independence. Second, the code hard-codes an
address and a port. While this is sometimes useful, it
is usually bad practice and always bad practice when
not combined with a test to check the protocol family.
Third, the code explicitly speci�es TCP as the trans-
port protocol being used. This hard-codes a transport
protocol and implies that only a small number of net-
work protocols are usable (those that TCP has been
made to run over). The second and third problems can
be solved by using protocol-independent name resolu-
tion functions correctly.

2.2 In
exible Storage

Another class of problems comes about when stor-
ing information needed by various protocols. This
was already mentioned in the discussion of Figure 1,
where not only does the use of sockaddr in hard-
code the address format of a particular protocol, but
it also does not provide enough space to store the ad-
dresses of many protocols. The most common place
where this problem comes into play is when used with
getpeername(). Figure 3 shows an example of this
from the 4.4BSD-Lite2's fingerd source; similar code
sequences can be found in almost any server program.
This code example also shows the assumption that the
returned socket will be an IP socket; while originally
a fair assumption, this needs to be �xed in order to be
protocol-independent.

temp = inet_addr(hostp);

if (temp != (unsigned long) -1) {

sin.sin_addr.s_addr = temp;

sin.sin_family = AF_INET;

(void) strcpy(_hostname, hostp);

hostname = _hostname;

} else {

host = gethostbyname(hostp);

if (host) {

sin.sin_family = host->h_addrtype;

#if defined(h_addr) /* In 4.3, this is a #define */

memmove((caddr_t)&sin.sin_addr,

host->h_addr_list[0], host->h_length);

...

net = socket(AF_INET, SOCK_STREAM, 0);

setuid(getuid());

if (net < 0) {

perror("telnet: socket");

return 0;

}

#if defined(IP_OPTIONS) && defined(IPPROTO_IP)

if (srp && setsockopt(net, IPPROTO_IP, IP_OPTIONS, (char *)srp, srlen) <

0)

perror("setsockopt (IP_OPTIONS)");

#endif

...

if (connect(net, (struct sockaddr *)&sin, sizeof (sin)) < 0) {

Figure 1: Hard-Coding the Network Protocol (4.4BSD Telnet)

if (DaemonAddr.sin.sin_family == 0)

DaemonAddr.sin.sin_family = AF_INET;

if (DaemonAddr.sin.sin_addr.s_addr == 0)

DaemonAddr.sin.sin_addr.s_addr = INADDR_ANY;

if (DaemonAddr.sin.sin_port == 0)

{

register struct servent *sp;

sp = getservbyname("smtp", "tcp");

if (sp == NULL)

{

syserr("554 service \"smtp\" unknown");

DaemonAddr.sin.sin_port = htons(25);

}

else

DaemonAddr.sin.sin_port = sp->s_port;

}

Figure 2: Hard Coding Addresses and Ports (Sendmail 8.7.6)

struct sockaddr_in sin;

...

if (logging) {

sval = sizeof(sin);

if (getpeername(0, (struct sockaddr *)&sin, &sval) < 0)

err("getpeername: %s", strerror(errno));

if (hp = gethostbyaddr((char *)&sin.sin_addr.s_addr,

sizeof(sin.sin_addr.s_addr), AF_INET))

lp = hp->h_name;

else

lp = inet_ntoa(sin.sin_addr);

syslog(LOG_NOTICE, "query from %s", lp);

}

Figure 3: Use of a sockaddr in to Store Arbitrary Addresses (4.4BSD �ngerd)

A similar problem is also seen frequently in servers:
the use of a generic sockaddr to store address infor-
mation. Like the IP protocol speci�c structure, it is
not big enough to hold addresses for many protocols
(on most systems, the two structures are actually the
same size). When the size of the address to be stored is
known, a bu�er of that size can be allocated. When it
is not, a maximal-length bu�er can be allocated using
a sockaddr storage, which will be discussed later.
A particularly bad special case of this problem

comes about in some IP-only programs. Because IP
addresses happen to be 32 bit unsigned integers and
many modern systems have that as a native data type,
some programs simply use integers to store IP ad-
dresses. Figure 4 shows an example from vat 4.0b2[5],
which uses u int32 ts internally to store network ad-
dresses (this is a bit less bad than using more generic
integer types, but still hopelessly IP- dependent). Due
to a particularly common example of this in earlier
versions of BSD, this is sometimes referred to as the
\all the world's a u long" problem, and has a lot in
common with the old \all the world's a VAX" prob-
lem. Optimizing assumptions are being made about
the size and form of an address that happen to work
on most currently interesting systems and protocols.
But they're still poor assumptions that break porta-
bility, both in terms of supporting di�erent systems
and supporting di�erent protocols. 4.4BSD-Lite2 has
�xed this problem in many places by using in addr in-
stead, which is still protocol-dependent but at least is
the correct type. In general, raw addresses should not
be stored { socket addresses should be used instead.
Also, some protocols have variable-length addresses.

Most existing programs treat addresses as �xed-length
objects and do not store the real length as provided by
run-time functions. Programs must store the length
of addresses along with the addresses themselves { as
with the address type, this can be necessary informa-
tion for interpreting the address. This also means that

the sizes of bu�ers used to hold addresses should not
be arbitrarily bounded.
Using the generic sockaddr or the wrong protocol-

speci�c structure also creates problems with align-
ment. Most network protocols have some alignment
requirement for their protocol-speci�c address struc-
tures that may not be satis�ed by other structures.
Care must be taken to either use the correct protocol
speci�c address structure or to arrange for the bu�er
used to store addresses to be properly aligned.
The generic sockaddr should be used as a structure

to which an arbitrary socket address can be cast in
order to access the sa family and sa len �elds. While
those �elds should have the same type no matter what
protocol speci�c structure is used to access the bu�er,
it is still good use of types to use the generic sockaddr
for access where the network protocol in use are not
yet known, rather than to using the wrong protocol-
speci�c type.
Finally, many programs assume that a \port" is an

integer. The concept of an integer port number is not
universal. Some protocols use string service names
instead, or use other formats that are at least con-
vertable to a string. Service endpoints should be rep-
resented as strings that may or may not end up con-
verted to another format for representation in a socket
address.

2.3 In
exible User Interface

Many programs get address information through some
sort of user interface or user parameter syntax. For
example, web clients get resource information through
URLs, free network programs such as tcp wrappers

[6] read con�guration �les, and some GUI network pro-
grams use four three-digit entry blanks to enter a nu-
meric address. In many cases, the user interface or syn-
tax that these clients use is dependent on the syntax
of particular kinds of addresses. The use of colons and

slashes in URLs, for example, makes it di�cult to use
those characters in network addresses (colons are the
delimiter for IPv6 addresses, so this is a real problem).
Similarly, the con�guration �les for tcp wrappers 7.6
uses colons as the �eld separator. The generic solu-
tion to this problem is to provide support for escaping
and/or quoting so that somewhat arbitrary characters
can be used in address information. In many cases, a
quick-�x solution can be made by changing the �elds
or delimiters, but this is not backwards compatible
and only �xes things until the next new address syn-
tax comes along.

Another problem is that more informationmay need
to be provided to a program in order for it to know
how to correctly interpret an address. For example, a
host name may be valid in multiple protocol families.
If the user wants to use a speci�c protocol, then this
needs to be somehow speci�ed. Programs need to have
enough
exibility in their user interfaces to add these
sort of options.

2.4 Not Handling Multiple Addresses

Multi-homed IP support in programs is still not as
common as it should be. The problem of multi-homing
support { supporting multiple interfaces with one or
more IP address { is similar to the problem of support-
ing multiple addresses for di�erent network protocols.
In both cases, some subset of the available addresses
may need to be listened on (for a server) or be available
for an outgoing connection. The selection of these ad-
dresses creates interesting problems. In particular, it
sometimes (esp. in the case of servers) creates the need
to have multiple network sockets open at once and to
handle tra�c on any of them. Most networking pro-
grams are written to use only one network socket, and
changing that requires signi�cant work.

Both multi-homing and multi-protocol support re-
quires extra user interface capability. For example,
both will cause multiple addresses to be returned from
some name lookups, of which a subset might be reach-
able endpoints. The user should be either be given a
choice among this set or some attempt should be made
to progress in a reasonable way (for example, trying
each in sequence until one succeeds). Whatever actu-
ally happens, the user should be made aware of what's
happening.

2.5 Protocols Carrying Address Infor-
mation

Some IP application protocols, such as FTP and talk,
pass address information over the network. This
means that the application protocol will need to be
modi�ed to be multi-protocol, which generally means

adding
exibility similar to what has to be done in-
side a network program. Exactly how to do this is
outside the scope of this document, but an example
is the approach used for FTP[7]. In general, the best
solution to this problem is to change the application
protocol to not send address information over the net-
work, because this practice causes problems for many
network/protocol translation devices.

3 New Interfaces

The IETF's IPng working group and the POSIX
p1003.1g working group have made a good bit of
progress in identifying and standardizing new APIs
needed to develop protocol-independent programs.
Beyond this, the NRL IPv6 implementation found
several other interfaces that we felt needed to be
present in order to develop fully functional protocol-
independent applications. In many cases, the BSD
sockets interfaces were almost good enough but in
practice misused. The new interfaces extend many
BSD interfaces and supersede others.
The new interfaces break down into roughly two cat-

egories. The �rst are functions to perform name reso-
lution operations (name to addresses, address to name)
in a clean way. The second are operations to help use
socket addresses (sockaddrs) in a clean way.

3.1 Name Resolution

Figure 5 shows a brief summary of the new name res-
olution interfaces.
The getaddrinfo() and getnameinfo() functions

provide a protocol-independent way of mapping names
to addresses information and of mapping address in-
formation back to names. Given a host name, a service
name, and other information to constrain the lookup,
getaddrinfo() returns either an integer error or a
list of �lled in addrinfo structures. Each contains the
information that needs to be passed to socket() to
open a socket as well as the information that needs
to be passed to connect() or sendmsg() to reach the
named endpoint.
Many programs can simply take the returned list

and iterate through it, executing socket() and
connect() calls with the information in each list el-
ement, until one attempt succeeds completely or the
list has been exhausted. Figure 6 gives an example of
how to do this. Notice how the program never needs
to manipulate addresses directly. The program only
needs to take information out of the addrinfo struc-
ture and feed it into other functions. This simple block
of code is capable of obtaining a connected socket with
any stream protocol that is supported in both the ker-
nel and in the runtime library. If the runtime library

int Network::dorecv(u_char* buf, int len, u_int32_t& from, int fd)

{

sockaddr_in sfrom;

int fromlen = sizeof(sfrom);

int cc = ::recvfrom(fd, (char*)buf, len, 0,

(sockaddr*)&sfrom, &fromlen);

if (cc < 0) {

if (errno != EWOULDBLOCK)

perror("recvfrom");

return (-1);

}

from = sfrom.sin_addr.s_addr;

Figure 4: Using an Integer for an Address (from vat 4.0b2)

#define AI_PASSIVE /* Socket address is intended for bind() */

#define AI_CANONNAME /* Request for canonical name */

#define AI_NUMERICHOST /* Don't ever try nameservice */

struct addrinfo {

int ai_flags; /* input flags */

int ai_family; /* protocol family for socket */

int ai_socktype; /* socket type */

int ai_protocol; /* protocol for socket */

int ai_addrlen; /* length of socket-address */

struct sockaddr *ai_addr; /* socket-address for socket */

char *ai_canonname; /* canonical name for service location (iff req) */

struct addrinfo *ai_next; /* pointer to next in list */

};

int getaddrinfo(const char *name, const char *service,

const struct addrinfo *req, struct addrinfo **pai);

void freeaddrinfo(struct addrinfo *ai);

char *gai_strerror(int ecode);

#define NI_MAXHOST /* Maximum host name buffer length needed */

#define NI_MAXSERV /* Max. service name buffer length needed */

#define NI_NUMERICHOST /* Don't do name resolution for the host */

#define NI_NUMERICSERV /* Don't do name resolution for the service */

#define NI_NOFQDN /* Don't fully qualify host names */

#define NI_NAMEREQD /* Fail if name resolution for the host fails */

#define NI_DGRAM /* Service is for a DGRAM socket (not a STREAM) */

int getnameinfo(const struct sockaddr *sa, size_t addrlen, char *host,

size_t hostlen, char *serv, size_t servlen, int flags);

int nrl_afnametonum(const char *name); /* (Nonstandard) */

const char *nrl_afnumtoname(int num); /* (Nonstandard) */

int nrl_socktypenametonum(const char *name); /* (Nonstandard) */

const char *nrl_socktypenumtoname(int num); /* (Nonstandard) */

Figure 5: Summary of New Name Resolution APIs

does not support a protocol, it will not be returned by
getaddrinfo(). If the kernel does not support a pro-
tocol, this function will print an error for those sockets
and skip that protocol. This is especially important for
binaries to be shipped on systems where the protocols
available in the runtime library and/or kernel can be
con�gured by the end user; one binary will be able to
work as long as the system is con�gured so that there
is one protocol that the entire system supports.
Note that getaddrinfo() and getnameinfo() han-

dle both host names and printable numeric addresses,
as appropriate. One historical problem with functions
like gethostbyname() and gethostbyaddr() is that
on some systems they handle printable numeric ad-
dresses and on some systems they do not. Portable
programs must be written to attempt printable-
numeric conversion separately, just in case { programs
that assume the system handles these have encoun-
tered portability problems. Some programs have bugs
caused by the old printable numeric conversion func-
tions, making this even more of a problem. These new
functions should hopefully put these problem to rest.
As shown in the example, the gai strerror() func-

tion converts the errors returned by getaddrinfo()

and getnameinfo() into human-printable form.
There are also constants for the error values, but few
programs need to distinguish between the types of fail-
ures beyond giving an appropriate error message. The
freeaddrinfo() function releases the memory used
by the result list, and must be called when the result
is no longer needed.
The functions nrl afnametonum() and

nrl afnumtoname() convert address family names
(inet, inet6, local, etc.) to numbers and back. This
is needed in order to support user entry of an ad-
dress family to constrain getaddrinfo() lookups.
For example, many NRL IPv6-enabled applications
support a command line
ag that the user can use
to specify a family, such as \inet" or \inet6," that
selects what protocol to use. The number-to-name
function is also helpful for diagnostic output. Simi-
larly, the functions nrl socktypenametonum() and
nrl socktypenumtoname convert socket type names
(stream, dgram, seqpacket, etc.) to numbers and
back. These are less useful for user input, but are still
useful for diagnostic purposes.

3.2 Socket Addresses

Figure 7 shows a brief summary of the new socket
address interfaces. The major new addition is the
sockaddr storage, which is de�ned as a structure
that is big enough to hold any socket address that
the system supports or might support in the future,
and provides su�cient alignment for any socket ad-
dress that the system supports or might support in

the future. In practice, the size of the structure is
bounded on many systems by the capacity of the eight
bit integer used in the sa len �eld of all socket ad-
dresses. On other systems, the bound might be pro-
vided by other structures' �elds. The bound actu-
ally chosen can be selected by the systems' authors,
but the sockaddr storage is de�ned to have what-
ever size is needed. The alignment provided by the
sockaddr storage will typically be the largest align-
ment available on the system, though again the exact
choice is up to the systems' implementors.
Note that the sockaddr storage is required to

have �elds of the same type and in the same place
as the sa len and sa family �elds in the systems'
sockaddrs, but that the standards that specify this
data structure don not actually require those �elds to
have a known name and give examples with names that
makes them \hidden." While it is hoped that the long
term solution will be to �x this problem in the stan-
dards, the short term most portable way to use these
�elds is to cast a sockaddr storage to a sockaddr

and to use the �elds through the latter type.
The sockaddr storage is used where a socket ad-

dress needs to be stored before its exact length is
known. Figure 8 shows some of the example in Fig-
ure 3, changed to take advantage of this structure as
well as getnameinfo(). The code is not very di�er-
ent, but the use of the sockaddr storage guarantees
that any protocol-speci�c socket address can be safely
stored in the bu�er.
A controversial API extension that was used heav-

ily in the NRL code is the SA LEN() macro. On
systems whose sockaddr has a sa len �eld, this ex-
pands to return the contents of that �eld and has the
same semantics except that it is only de�ned to be an
rvalue. On systems whose sockaddr does not, this ex-
pands into an operation that returns the correct value
based on the value of the sa family �eld. This macro
solves the problem of needing a sockaddr's length for
many function calls well after existing code has lost
the length information. It is frequently far easier to
replace a hard coded value such as sizeof(struct

sockaddr in) with a macro use like SA LEN(sa) than
it is to gut an entire program and �x this. Using the
macro, this technique is portable to systems with and
without sa len support. Authors who have used this
technique extensively have been quite supportive of it,
while authors of systems that don't have sa len �elds
have been opposed to it.

3.3 State of Deployment

New API functions are �ne as long as they are avail-
able everywhere, but deployment does not happen
quickly. The interfaces described as non-standard
are just that, and are unlikely to be present any-

int get_stream(char *host, *service)

{

int error, fd;

struct addrinfo req, *ai, *ai2;

char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];

memset(&req, 0, sizeof(struct addrinfo));

req.ai_socktype = SOCK_STREAM;

if (error = getaddrinfo(host, service, NULL, &ai)) {

fprintf(stderr, "getaddrinfo(%s, %s, ...): %s(%d)", gai_strerror(error),

error);

return -1;

}

for (ai2 = ai; ai = ai->ai_next) {

if (error = getnameinfo(ai->ai_addr, ai->ai_addrlen, hbuf, sizeof(hbuf),

sbuf, sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV)) {

fprintf(stderr, "getnameinfo(%p, %d, %p, %d, %p, %d, %d): %s(%d)\n",

ai->ai_addr, ai->ai_addrlen, hbuf, sizeof(hbuf), sbuf, sizeof(sbuf),

NI_NUMERICHOST | NI_NUMERICSERV, gai_strerror(error), error);

continue;

}

fprintf(stdout, "Trying %s.%s...\n", hbuf, sbuf);

if ((fd = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol)) < 0) {

fprintf(stderr, "socket(%d, %d, %d): %s(%d)\n", ai->ai_family,

ai->ai_socktype, ai->ai_protocol, strerror(errno), errno);

continue;

}

if (connect(fd, ai->ai_addr, ai->ai_addrlen) < 0) {

fprintf(stderr, "connect(%d, %p, %d): %s(%d)\n", fd, ai->ai_addr,

ai->ai_addrlen, strerror(errno), errno);

close(fd);

continue;

}

freeaddrinfo(ai2);

return fd;

}

freeaddrinfo(ai2);

fprintf(stderr, "No connections result.\n");

return -1;

}

Figure 6: Using getaddrinfo() to Get one Stream Connection

struct sockaddr_storage { /* Slightly nonstandard - See text for a warning */

u_int8_t ss_len; /* address length */

sa_family_t ss_family; /* address family */

/* other fields guarantee size and padding */

};

#define SA_LEN(sa) ((sa)->sa_len) /* Nonstandard */

Figure 7: New Socket Address Interfaces

struct sockaddr_storage ss;

...

if (logging) {

sval = sizeof(sockaddr_storage);

if (getpeername(0, (struct sockaddr *)&ss, &sval) < 0)

err("getpeername: %s", strerror(errno));

Figure 8: Use of a sockaddr storage to Store Arbitrary Addresses

where but systems with the NRL IPv6 code or with
the (NRL-derived) Linux inet6-apps kit. The stan-
dard new interfaces are supposed to be present now in
AIX, BSD/OS, FreeBSD, Linux (with GNU libc 2.1),
OpenBSD, NetBSD, Solaris, and Tru64 UNIX. In ad-
dition, IRIX and HP-UX will probably adopt these
functions very quickly (if they haven't already). In
summary, all modern UNIX systems are expected to
support the standardized interfaces now or very soon.
But what about legacy systems? The good news is

that there are fairly portable implementations of these
functions that run on legacy systems and can be in-
cluded with programs. Several free implementations of
the new interfaces exist, and are reasonably portable.
There are already some free software packages, such as
Zmailer, that have used this approach.

4 Conclusions

The existing BSD sockets API provides most of what
is needed to write protocol- independent applications,
but there are some things that needed to be added.
More important is that the mechanisms for being ab-
stract and generic be used correctly. It is not di�cult
to do, and the e�ort pays for itself in
exibility and
future-proo�ng. It is hoped that authors of network
programs will take the time to learn about protocol
independence and work to use the technique in their
programs.

5 Acknowledgements

The NRL IPv6 code, and our exploration of proto-
col independence, was a team e�ort. Other than
myself, the implementation team includes or has in-

cluded Randall Atkinson, Ken Chin, Daniel McDon-
ald, Ronald Lee, Bao Phan, Chris Telfer, and Chris
Winters.
When I �rst pushed people to look at protocol inde-

pendence issues in IPv6 API discussions, W. Richard
Stevens, Jun-Ichiro \itojun" Hagino, and the KAME
project team provided strong support for the idea, and
their support was critical to the development of these
APIs.
David Greenman, Kevin Skadron, and Chris Telfer

reviewed early drafts of this paper and provided valu-
able feedback.

References

[1] R. Gilligan, S. Thomson, J. Bound, and
W. Stevens. Basic Socket Interface Extensions for
IPv6, RFC 2553, March 1999.

[2] Randall J. Atkinson, Ken E. Chin, Bao G. Phan,
Daniel L. McDonald, and Craig Metz. Imple-
mentation of IPv6 in 4.4BSD. Proceedings of the

1996 Usenix Annual Technical Conference, Jan-
uary 1996.

[3] Regents of the University of California. 4.4bsd-lite2
software distribution, 1995.

[4] Eric Allman et al. Sendmail, version 8.7.6, 1999.

[5] Van Jacobsen et al. Vat, version 4.0b2, 1996.

[6] Vietse Venema et al. tcp wrappers, version 7.6,
1997.

[7] M. Allman, S. Ostermann, and C. Metz. FTP Ex-
tensions for IPv6 and NATs, rfc 2428, September
1998.

