USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,
Atlanta

Atlanta, Georgia, USA
October 10-14, 2000

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




The Development and Integration of a Distributed 3D FFT for a
Cluster of Workstations

Dr. Christopher E. Cramer
Duke University
cec@ee.duke.edu, http://www.ee.duke.edu/ cec

Dr. John A. Board

Duke University
jab@ee.duke.edu, http://www.ee.duke.edu/ jab

Abstract

In this paper, the authors discuss the steps taken in
the formulation of a parallel 3D FFT with good scal-
ability on a cluster of fast workstations connected
via commodity 100 Mb/s ethernet. The motiva-
tion for this work is to improve the performance and
scalability of the Distributed Particle Mesh Ewald
(DPME) N-body solver. Scalability issues in the
FFT and DPME as an application are presented
separately. Also discussed are scalability issues re-
lated to the networking hardware used in the clus-
ter. Results indicate that the existence of a parallel
FFT significantly improves performance in DPME
from a maximum of 5 processors to at least 24 pro-
cessors on a cluster of workstations. This has an
associated increase in speedup from 4 to 12 times
faster than the serial version.

1 Introduction

The Fast Fourier Transform (FFT) has many prop-
erties useful in both engineering and scientific com-
puting applications (examples include convolution
in real space becoming multiplication in Fourier
space, audio compression and every DSP technique
known to man). Because of these properties it has
become a standard tool in many fields and efficient
implementations are a subject of much research in-
terest.

Also of increasing research interest is the subject
of Cluster Computing. These clusters of worksta-
tions are capable of achieving the performance of
traditional supercomputers (on certain problems) at

a significantly reduced cost. Such clusters are of-
ten loosely coupled groups of machines which com-
municate using commodity networking hardware.
Networking is often 100 Mb/s ethernet, although
1 Gb/s ethernet and proprietary solutions such as
Myrinet are becoming more common.

Unfortunately, while there exist many vendor imple-
mentations of high speed parallel FFTs for tightly
coupled traditional supercomputers, there are few
parallel implementations available for clusters of
workstations. In our work, we had a need for a
portable and efficient parallel FFT. Not finding one
that fit both of our criteria, we decided to imple-
ment our own. It was found that the use of this
parallel FFT in our code allowed for a great deal of
improvement in its performance.

2 Parallel FFTs

The problem with a parallel FFT is that the com-
putational work involved is O(NlogaN) while the
amount of communication is O(N). This means
that for small values of N (we are targeting 64x64x64
3D FFTs), the communication costs rapidly over-
whelmed the parallel computation savings. While
many tightly coupled parallel processing machines
(Cray, SGI Octane, etc) have customized parallel
FFT routines, there are few implementations writ-
ten for a cluster of workstations (i.e. written in
PVM or MPI).

Other researchers, when facing this problem, have
resorted to using a naive DFT. So long as one is will-
ing to have multiple processors each keep a copy of



the space upon which the DFT is to be performed,
the DFT is highly scalable in that the results for
any given point in the space do not depend on ear-
lier computation that may have been performed on
another processor. While this approach can achieve
not only speed up, but also performance improve-
ments over a serial FFT, it seems aesthetically un-
pleasing and if an efficient, portable, parallel FFT is
available, it might not be the best use of processor
resources.

2.1 FFTW’s MPI-based FFT

One of the faster, yet still portable and freely
available, implementations of the FFT is FFTW
([FJ99]). Due to it’s portability, we have made use
of the library in our own applications.

The latest versions of the FFTW library do have
a parallel FFT using MPI for interprocess commu-
nications. While our application (DPME) is writ-
ten using PVM, this would not have been a seri-
ous impediment as we were already considering an
MPI port of DPME. Unfortunately, the FFT did
not scale for problem sizes we are interested in (ex-
cept for very large FFTs, 256x256x256, the speedup
was less than 1). This was even true when using the
“transposed” FFT which has significantly less com-

munication (see below for a discussion of transposed
FFTs).

2.2 Our Parallel FFT

It was then decided that we needed to create our
own parallel FFT which we based on FFTW’s se-
quential FFT libraries. Our FFT was originally
written in MPI but was also ported to PVM for
easy incorporation into (the then current version of)
DPME. The FFT starts with the assumption that
each processor contained one slab of the 3D data
space (see Figure 1).

Each slab of the data space contains (for now, ex-
actly) m = N/P 2D slices. Each processor com-
putes a single 2D FFT on each of its m slices, send-
ing the results to all other processors using non-
blocking communication. After each processor has
received all of the data sent to it, the data is scat-
tered on the processors as seen in Figure 2.

Finally, each processor performs m * N 1D FFTs

P1

Pn

Figure 1: Processor representation of the 3D data
space.

PL|P2| -+ |Pn

Figure 2: Processor representation of the 3D data
space after 2D FFTs and communication step.

in the final dimension, yielding the 3D FFT. Note
that unless an additional communication step is per-
formed, the resulting data is on different processors
than was the original data. This is known as a
transposed FFT. In this case, performing either a
forwards or backwards FF'T results in the Most Sig-
nificant and the Second Most Significant axes be-
ing swapped. So, if the original data layout was
stored in ZYX major order, with the data along the
Z axis being partitioned to different processors, ei-
ther a forwards or backwards FFT would result in a
changed data layout to YZX major order with the
Y axis partitioned to the different processors. The
algorithm was designed this way in order to min-
imize communication, while still being symmetric.
In other words, one may call the forward or back-
ward FFT first and have the opposite call put the
data back in place.



3 Testbed Configuration

All of the experimental results given in this paper
were computed on a cluster of 16 dual processor ma-
chines. The processors are Intel Pentium II running
at a clock speed of 450 MHz. Each node has 512
MB of RAM as well as an additional 512 MB of vir-
tual memory. The machines are connected using a
private 100 Mb/s Ethernet Cisco 2924 switch. All
nodes are running the GNU/Linux operating system
with kernel release 2.2.12 compiled for SMP.

No kernel patches have been applied to increase net-
work performance as it was found that machines
were already capable of 95% of wire speed band-
width. Kernel patches designed to reduce latency
might increase performance slightly at the cost of
reducing cluster maintainability.

The parallel programming of this cluster has
been performed using both PVM and MPIL. PVM
([GBD"94]) results are given using version 3.4.3.
MPI ([SOHL"96]) results were found using LAM
MPI version 6.3.1.

4 FFT Results

The FFT algorithm described above performs very
well provided that one can make use of transposed
data in Fourier space. Fortunately, DPME’s compu-
tation of the electrostatic potential in Fourier space
can easily accommodate transposed data. Speed-up
results (as compared to a single call to the sequen-
tial FFTW 3D FFT routine) for this algorithm are
given in Figure 3 and Figure 5 (Figures 4 and 6 give
the respective timings). As can be seen from the fig-
ures, the method achieves reasonable efficiency for
up to 12 processors. The sudden degradation after
12 processors in performance will be discussed in a
subsequent section.

The algorithm has also been tested on the IBM
SP2 at the North Carolina Super-Computing Cen-
ter (NCSC). As shown in Figures 7 and 8, the algo-
rithm exhibits moderate speed-up for small FFTs
(64x64x64) and good speed-up for medium sized
FFTs (128x128x128) - 70% efliciency for up to 32
Processors.

3D FFT Speed Up vs Number of Processors (Beowulf Cluster)
T T T T

T T
-
AN 64x64x64 FFT <—

128x128x128 FFT —+- |

Speed Up
~
o

L L
6 8 12 14 16
Number of Processors

Figure 3: 3D FFT performance on the Duke ECE
Beowulf Cluster - speedup

3D FFT Timings vs Number of Processors (Beowulf Cluster)
10000

T T
64x64x64 FFT —+—
128x128x128 FFT ---x---

1000 |

Time (ms)

100

10

Number of Processors

Figure 4: 3D FFT performance on the Duke ECE
Beowulf Cluster - timings

4.1 Algorithmic Comparison

The speed up of our algorithm is significantly
greater than FFTW’s parallel FFT. This is primar-
ily due to the way communication is handled in each
algorithm. FFTW has each processor perform all of
its 2D FFTs in a single FFTW library call. Then
there is a blocking communication step and finally
the remaining 1D FFTs are performed. While this
decision makes sense in that FFTW achieves its
greatest efficiency when performing multiple FFTs,
it does not address the real problem in a cluster of
workstations: communication. All of the commu-
nication in our algorithm is non-blocking. Further-
more, by interleaving communication with compu-
tation, we are able to hide a greater degree of the
communication overhead involved.



3D FFT Speed Up vs Number of Processors (Beowulf Cluster)
T T T T T T

7 T T
60x60x60 FFT —-—
120x120x120 FFT —+-

Speed Up

0 2 4 6 8 10 12 14 16 18 20
Number of Processors

Figure 5: 3D FFT performance on the Duke ECE
Beowulf Cluster - speedup

3D FFT Timing vs Number of Processors (Beowulf Cluster)
10000 T T T T T T

60X60%60 FFT ——
120x120x120 FFT ---%---

1000 |

Time (ms)

100

10 L L L L
0 2 4 6 8 10 12 14 16 18 20

Number of Processors

Figure 6: 3D FFT performance on the Duke ECE
Beowulf Cluster - timings

4.2 Hardware Considerations

Early results of our parallel algorithm demonstrated
scalability only up to four processors. After that
point, speedup dropped significantly. Surprised at
the suddenness of the scaling drop-off, we began in-
vestigating whether the reduced scalability was due
to our algorithm or the specific hardware being used.

At the time, the cluster used an Intel 510T 100
Mb/s switch. It was decided to try replacing this
switch with a Cisco 2924. After the replacement,
we saw improved scalability of the FFT algorithm
up to 12 processors. These results were well cor-
related with those presented by Mier Communica-
tions, Inc ([Mie98]) for the number of simultaneous
100 Mb/s full-duplex streams that could be sup-
ported by the various switches without dropping
packets. It should be noted that the Mier results

3D FFT Speed Up vs Number of Processors (IBM SP2)
25 T T T T T
64x64x64 FFT -—
128x128x128 FFT —~+—-
A
20 4

15 - 4

Speed Up

35

Figure 7: 3D FFT performance on the IBM SP2 -
speedup

3D FFT Timings vs Number of Processors (IBM SP2)
10000 T T T

64X64x64 FFT (time) ——
128x128x128 FFT (time) -

1000 - 9

Time (ms)
X

100

L L L L
0 5 10 15 20 25 30 35

10 L L

Number of Processors

Figure 8: 3D FFT performance on the IBM SP2 -
timings

were for the Cisco 2916 and the Intel 510T. How-
ever, the Cisco 2916 and 2924 have similar back-
plane architectures.

The Mier Communications tests also included a
comparison with the Bay 350. We then tried using
a switch in the same family, the Bay 450. Again,
the scaling results on our algorithm were well cor-
related with the number of simultaneous 100 Mb/s
full-duplex streams that the switch backplane could
handle without dropping packets.

It is uncertain why the switches perform so differ-
ently. The backplanes of each switch are all rated at
over 2 Gb/s (Intel - 2.1 Gb/s, Bay - 2.5 Gb/s, Cisco
- 3.2 Gb/s). Latency also does not appear to be a
factor as all of the switches have minimum latency
times of 10us or less. The most likely reason behind
the differences is that the backplane architecture of
the various switches results in the Intel switch drop-



ping packets under full load. Since MPI and PVM
communicate using TCP/IP protocols, this results
in the packet being resent.

Therefore, the strong correlation between the num-
ber of simultaneous full-duplex streams (found by
Mier) and our own scaling results is likely due to
the nature of our algorithm which aims to fully uti-
lize the switch architecture by having each proces-
sor send data to every other processor after each
2D slice of the data has been converted to Fourier
space. So, each processor is not only sending data to
all other processors, but is also receiving data from
each of the other processors. The amount of data in
each message depends on the size of the FFT and
the number of processors being utilized. In general,
it is: B * N?/P where B is the data size (for the
complex doubles we are using, this is 16 bytes), N
is the size along one dimension of the FFT and P is
the number of processors. For a 64264264 FFT on
4 processors, the messages are 16 kB in size. The
number of messages is N % P. The number and size
of these messages insures that the switch is fully
utilized on the P ports. Therefore, the number of
simultaneous full-duplex streams capable of being
supported is very important.

Determining whether the most important factor in
the algorithm’s performance is the switch band-
width or the overall latency is a fairly difficult task.
The various switches we used on our local cluster all
had similar latencies and had the same (theoretical
bandwidths), however, they performed in vastly dif-
ferent manners. The IBM SP2 had a completely dif-
ferent switch architecture, with over 1 Gb/s band-
width and very low latencies. However, some anal-
ysis of the amount of data being sent should give us
some idea of which factor (bandwidth or latency) is
the most important.

Consider a 64264264 parallel 3D FFT running on
4 processors. Each 2D slice of the data is 64 kB in
size. Each message (to the 3 other processors) for
this slice is 16 kB in size. On a 100 Mb/s switch, the
theoretical minimum time that this message could
cross the network is approximately 1.3ms. Switch
latencies are on the order of 10us. When the TCP
stack latencies are considered, the latencies involved
are still roughly an order of magnitude less than the
time to transfer the message. Of course if more pro-
cessors are used, if the FFTs are smaller, or if the
switch bandwidth increases, the latencies inherent
in the switch and the TCP stack become signifi-
cantly more important.

This fact has been recognized by IBM in developing
the SP2 in that there are two interfaces for access-
ing the switch. The standard method routes a user’s
network requests through the kernel to the adapter
and then to the switch. This results in a through-
put of 440 Mb/s primarily because of the latency
of 165us. The second method bypasses the kernel
and goes directly from user space to the adapter,
resulting in the throughput increasing by a factor
of 2.4 to approximately 1 Gb/s due in part to the
latency being decreased by a factor of 6.9 to 24us.
If we repeat the previous examination of bandwidth
versus latency for the two SP2 network interfaces,
on the first interface we find that at a speed of 440
Mb/s, each message only requires 297us to traverse
the switch. In this case, the 165us latency is within
the same order of magnitude as the transport time,
causing latency to be a much greater factor than
for our 100 Mb/s switches. For the second inter-
face, the transport time is 123us while the latency
is 24pus. So, on the SP2 we see that latency is more
important primarily because of the maximum speed
of the switch itself.

5 Application: DPME

The application for which the parallel 3D FFT
was developed is Distributed Particle Mesh Ewald
(DPME) which is a parallel N-body solver (with
Periodic Boundary Conditions) based on the Par-
ticle Mesh Ewald (PME) method developed by
Tom Darden [DYP93, EPB195]. Ewald Summation
([Ewa21]) is a technique for finding the electrostatic
potential of particles in an infinite lattice. In the
method, a single cell of a crystal lattice is assumed
to be infinitely replicated in all dimensions. Fur-
thermore, periodic boundary conditions (PBC) are
assumed, meaning that as particles leave the cell
from one side, they enter from the opposite repli-
cation and so emerge on the opposite side of the
cell.

5.1 Ewald Summation

The common trait of all Ewald methods is that they
split the original problem space of electrostatic point
charges into two separate problem spaces. The first,
designated the real (or direct) space part contains
the original point charges plus proportional charge



distributions centered at the same locations in space
as each point charge, with the opposite charge. The
second problem space is known as the reciprocal or
Fourier space. This space contains only the negative
of the charge distributions from the direct space.
Therefore, adding the two problem spaces yields the
original point charge distribution (see Figure 9).
Original

Direct Reciprocal

s A A
VIV TV

Figure 9: 1D representation of the original, direct
and reciprocal problem spaces.

q
+

By choosing the appropriate amplitude for the
charge distribution, the point charge plus the charge
distribution will have an electrostatic potential of 0
at an infinite distance or at any distance where the
charge distribution is equal to 0. For infinite distri-
butions, the electrostatic potential can be approxi-
mated as 0 at a distance r less than infinity, with a
known error bound. Therefore, to solve the direct
space portion of the problem, one simply evaluates
the all-pairs interaction of each point charge and
charge distribution combination with all other com-
binations centered at a distance less than the cut-off
radius.

Due to the periodic boundary conditions, the recip-
rocal sum is a set of N periodic functions. By solving
this problem in the Fourier domain, the infinite peri-
odic functions converge rapidly. The result can then
be converted back into real space and summed with
the direct space results to obtain the electrostatic
potential for the original problem space.

5.2 Particle Mesh Ewald

Particle Mesh Ewald is a derivative of the Ewald
method that again splits the problem space into a
direct and a reciprocal space. The direct sum is
solved by directly computing the interactions be-
tween all particles within each particle’s cut-off ra-
dius. Assuming constant density of the particles
being simulated, this is an O(N) problem.

To solve the reciprocal sum, one first discretizes the
problem space as a 3D mesh. The charge functions
are then interpolated onto the mesh. A 3D FFT is
then performed on the mesh, transforming it into

Fourier space. The electrostatic potential of the the
mesh is computed (still in Fourier space). The mesh
is transformed back into real space (by means of an
inverse FFT). Finally, the electrostatic potentials of
the original point charge locations are interpolated,
based on the values in the 3D mesh.

The direct and reciprocal space electrostatic poten-
tials can then be summed to find the electrostatic
potential of the total problem space at the locations
of each point charge. As was previously mentioned,
solving the direct space portion of the problem is
O(N). The reciprocal sum’s order of complexity is:
O(Mlog(M) + p* x M) where p is the order of inter-
polation when converting to or from the mesh and
M is the number of mesh points. The 3D FFT is
O(Mlog(M)) and the interpolation is O(p® * M). If
M is approximately N, then the complexity of com-
puting the reciprocal sum is O(Nlog(N)).

5.3 Distributed Particle Mesh Ewald

Distributed Particle Mesh Ewald (DPME) is a dis-
tributed implementation of the PME method, writ-
ten by Abdulnour Yakoub Toukmaji for his Ph.D.
work in Duke University’s Scientific Computing re-
search group ([Tou97]).

DPME uses a Master/Slave model for performing
parallel computations. The direct sum is performed
on the set of Slave processors spawned by PVM.
The Master processor performs the reciprocal sum
serially. This decision was primarily made due to
the lack of a parallel FFT with a speed-up greater
than 1 for a cluster of workstations.

DPME has several options which affect perfor-
mance. The most significant of these is the Ewald
Parameter («) which is inversely proportional to the
width of the Gaussian charge distribution. By ad-
justing the width of the Gaussian, one can shift work
between the direct sum and the reciprocal sum. For
example, a very narrow Gaussian charge distribu-
tion would allow for a small cut-off radius in the
direct sum without incurring a large error penalty.
However, a narrow Gaussian distribution would re-
quire a large number of mesh points in the recip-
rocal sum. Conversely, a wide charge distribution
would result in a nearly uniform reciprocal sum and
would therefore require few mesh points, however,
the cut-off radius would have to be proportionally
larger.



Since the reciprocal sum in DPME is sequential, the
obvious strategy to increase its scalability is to set
the Ewald parameter relatively small (a wider Gaus-
sian charge distribution). This places most of the
work in the direct sum which has a great deal of
scalability. Unfortunately, there is a limit to how
wide the charge distribution can be. If it is too
wide, then the work in the direct sum approaches
O(N?) complexity minimizing the advantages of us-
ing a larger number of processors. In general, it
was found that optimal performance was achieved
using 8 direct sum processors along with the 1 re-
ciprocal sum processor. However, these results were
obtained on an older generation of processors. On
the cluster we are currently developing under, the
performance was significantly worse (see Figure 10).

Speed Up vs Number of Processors
4 T T T T T T

DPME 64x64x64 Mesh —o—
“DPME U6XJ6x96 Kesh 2+—=

35

25

Speed Up

6 8 10 12 14 16
Number of Processors

Figure 10: Original DPME speed up curves for
64x64x64 and 96x96x96 meshes

6 Application Speedup

The existence and inclusion of a parallel 3D FFT has
allowed us to parallelize the remainder of the recip-
rocal sum in DPME. This does make it somewhat
more difficult to examine speedup in DPME. Before,
if you had N processors, then N-1 were dedicated to
the direct sum, and one was given to the recipro-
cal sum. With a parallel reciprocal sum, there can
be N-1 ways to divide the work on N processors,
since at least one processor must be used in both
the direct and reciprocal sum parts. However, since
the reciprocal sum is still less efficiently parallelized
than the direct sum, it is possible to begin with
a single reciprocal sum processor and increase the
number until the optimal operating point is found.
The following results were computed by taking the
desired number of processors and dividing them into

direct and reciprocal processors as discussed above
until the optimal partition was found. This optimal
point is then given as the timing for the number of
processors. Performance results for DPME with the
parallelized reciprocal sum as compared to the serial
reciprocal sum are given in Figure 11 and Figure 12.

Speed Up vs Number of Processors (64x64x64 Mesh)
12 T T T

T
Original DPME %~
DPME with Parallel Reciprocal Sum #--

.
10 | B
ot

Speed Up
£
T
"
.

0 L L L L
20 25

10 15
Number of Processors

Figure 11: Original DPME speed up versus that
of DPME with a parallel reciprocal sum (64x64x64
point mesh)

Speed Up vs Number of Processors (96x96x96 Mesh)
T T T T T T

Original DPME_~s—
DPME with Parallel Reciprocal Stm ="

Speed Up
«
T

8 10 12 14 16 18
Number of Processors

Figure 12: Original DPME speed up versus that
of DPME with a parallel reciprocal sum (96x96x96
point mesh)

7 Conclusions

In this paper, we have described the formulation of
a parallel 3D FFT capable of achieving speed up on
a cluster of workstations connected via 100 Mb/s
ethernet. By incorporating this parallel FFT, we
have been able to increase the scalability of DPME
from a maximum of 5 processors to a maximum of



24 processors, with a corresponding increase in the
speedup from 4 to 12.

The FFT itself is general purposed and unlike much
other work in the field, it will achieve reasonable
speed up on a cluster of workstations. It should give
some hope to people contemplating the massively
scalable DFT as a replacement for FFT code.

8 Current and Future Work

Currently, we are working on or planning to work
on several more improvements in the FFT code for
DPME. One area is whether there is an advantage
to be had in writing the FFT code to exploit two
levels of parallelism on SMP machines: inter-node
and intra-node. FFTW does have a thread-based
version capable (in our tests) of a speed-up of 1.8
by using two SMP processors on a single node. So,
rather than using 8 processes on 4 nodes (8 proces-
sors) where each processor had a portion of the data
that it operated on, it might prove better to divide
the data amongst the 4 nodes. Each node could
then put its two processors to work on performing
the computation faster. Hopefully, this would shift
the operating point of the FFT algorithm to a place
where the communication was more efficient (fewer
communication calls with more data per call).

Another place where the FFT code might be opti-
mized is in the amount of work done per commu-
nication call. As our algorithm stands now, each
2D slice of the data has a 2D FFT performed on it
and it is then divided and sent to all other proces-
sors. It might prove to be more efficient to perform
multiple 2D FFTs before sending the data to the
other processors. Of course, if all slices were com-
puted before sending the data, then our algorithm
would be identical to the FFTW parallel algorithm.
However, there may be an optimal point somewhere
between 1 and all slices at a time.

9 Acknowledgments

We would like to thank NIH for funding work on
DPME. We would also like to the North Carolina
Super-computing Center for grants of time on the
Cray T3D and IBM SP2.

References

[DYP93]

[EPB+95]

[Ewa21]

[FJ99]

[GBD*94]

[Mie98]

[SOHL"*96]

[Swa82]

[Tou97]

Tom Darden, Darrin York, and Lee
Pedersen. Particle mesh Ewald: An
n*log(n) method for Ewald sums in
large systems. Journal of Chemical
Physics, 98(12):10089-10092, 1993.

Ulrich Essmann, Lalith Perera, Max
Berkowitz, Tom Darden, Hsing Lee,
and Lee G. Pedersen. A smooth particle
mesh Ewald method. Journal of Chem-
ical Physics, 103(19):8577-8593, 1995.

P. Ewald. Die berechnung optis-
cher und elektrostrischer gitterpoten-
tiale. Anals of Physics, 64:253, 1921.

Matteo Frigo and Steven G. Johnson.
FFTW User’s Manual, 2.1.2 edition,
1999.

Al  Geist, Adam Beguelin, Jack
Dongarra, Weicheng Jiang, Robert
Manchek, and Vaidy Sunderam. PVM:
Parallel Virtual Machine, A Users’
Guide and Tutorial for Networked
Parallel Computing.  Massachusetts
Institute of Technology, 1994.

Product lab testing comparison. Tech-
nical report, Mier Communications,
Inc., 1998.

Marc Snir, Steve Otto, Steven Huss-
Lederman, David Walker, and Jack
Dongarra. MPI: The Complete Refer-
ence. MIT Press, 1996.

P.N. Swarztrauber. Vectorizing the
FFTs. In G. Rodrigue, editor, Parallel
Computations, pages 51-83. Academic
Press, 1982.

Abdulnour Yakoub Toukmaji. Effi-
cient Methods for Evaluating Periodic
Electrostatic interactions on high per-
formance compters. PhD thesis, Duke
University, 1997.



