
USENIX Association

Proceedings of the
5th Annual Linux

Showcase & Conference

Oakland, California, USA
November 5–10, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



An Integrated User Environment for Scientific Cluster Computing

Niclas Andersson, Peter Kjellström
National Supercomputer Centre
Linköping University, Sweden
{nican,cap }@nsc.liu.se

Abstract

We provide an integrated environment to the users of
clusters for scientific computation. The environment
simplifies the overall usage of the system and makes it
easier for new users to learn and start using the system. It
is an attempt to integrate the various pieces of software
that comprise the user environment of an open-source
based Linux cluster without introducing limiting con-
straints. We target this environment towards users who
consume the system’s volatile resources (CPU time and
network bandwidth) to do research in physics, chem-
istry, and other application areas. It does not require any
additional code in the application as long as the used
communication paradigm is supported on the system.
Instead, researchers with own code find it easy to build
and run their program.

This work also extends into the realms of system ad-
ministration, where tools and the configuration of the
system make it feasible to provide more informative ser-
vices to users.

This environment is currently in use on two clusters
which are used extensively for research in physics and
chemistry.

1 Introduction

On computer systems used for scientific computation, a
plethora of tools and libraries is often installed to support
researchers in their work. On Beowulf systems, clusters
built using primarily commodity of-the-shelf (COTS)
parts [14], the system software mainly consists of open-
source software. It is often comprised of many disparate
pieces of software not very well attuned to each other.
Consequently, there is a lack of integration in the soft-
ware environment presented to the user; tools have little
or no knowledge of each other, parameters need to be
mentioned multiple times, lengthy paths need to be spec-
ified, and so forth. For instance, the programmpirun ,

commonly used to start parallel MPI (Message Passing
Interface [10]) applications, is seldom aware of resource
managers. Therefore, users sometime find it difficult to
start applications on the right set of processors. In this
case, the lack of integration betweenmpirun and the
resource manager not only makes it more difficult to use.
It may also affect other users and hence the overall uti-
lization of the system. Our goal is to simplify the user
enviroment, improve integration between tools, and pro-
vide a stable system for production in a supercomputer
center.

To improve the integration of system software and
simplify the user evironment, we make modifications
and additions to installed software. The NSC1 clus-
ter environment (NCE) we provide does not restrict the
choice of which pieces of software to install and use. it
will always be possible to extend and incorporate more
tools. Neither do we hide the original interface of the
tools, presenting a completely new layer to the user. This
would require substantial work, packaging and repack-
aging for each new version of the underlying software.
Also, such additional layer would not be readily adopted
in the open-source community. Instead, the tools and
configurations we use is made aware of each other to
simplify the overall use. This is achieved by making
small modifications and additions to existing packages.

A short review of related work is given in section 2,
Section 3 and 4 describes the production environment
and programming environment which shape the land-
scape for the main tasks a user is faced with; to build
and run applications. In section 5 we explain the details
of the current implementation.

2 Related Work

In this section we will present an brief look at related
work done in the field of cluster toolkits and environ-

1NATIONAL SUPERCOMPUTERCENTRE IN SWEDEN



ments. The projects fall more or less into two differ-
ent categories, cluster installation and management, and
Linux environment support.

There are several toolkits available to aid in the in-
stallation and maintenance of Beowulf systems. These
toolkits have slightly different purposes and covers
slightly different aspects of running a HPC cluster.

Open Cluster Group’s OSCAR [11] toolkit can be de-
scribed as package of cluster related software bundled
with an GUI/wizard style installation tool. Advantages
with the OSCAR concept includes single point access
to updated software and a user-friendly installation pro-
cess. Configuration is stored in a MySQL database on
the front-end machine and node installation is handled
by Linux Utility fo cluster Installation (LUI).

NPACI Rocks [12] is a cluster distribution that strives
to be easy to install and maintain. It is designed to sup-
port heterogeneity in software as well as in hardware
thus offering a very flexible solution. To simplify node
management, Rocks employs the idea of stateless nodes.
The default action is to reinstall the node using Red Hat’s
kickstart installer. Rocks includes a very well designed
and well maintained base of tools to take care of instal-
lation and every-day maintenance. Like OSCAR, Rocks
uses a MySQL database to store cluster configuration
data. Rocks is developed by the Distributed Develop-
ment Group at SDSC and the Millennium Group at UC
Berkeley.

Both OSCAR and NPACI Rocks are examples of flex-
ible cluster solutions with complete Linux installations
on every node of the cluster. They focus on system in-
stallation and maintenance, whereas NCE focus on the
provided user environement.

The Scyld Beowulf [13] offers an architectural re-
make of the Beowulf cluster concept presenting a more
or less single process space across the cluster. This
approach offers many new possibilities but also raises
some compatibility issues with software (eg. PVM)
which has to be tailored for the new environement. The
single process space gives the user a much more man-
ageable environment. Scyld Beowulf main contribution
is an integrated operating system across separate, clus-
tered computers.

Cactus [1], an open source problem solving environ-
ment (PSE), offers a framework of utilities to computa-
tion requirements. It provides extensive services to the
user such as parallel I/O, data distribution, and check-
pointing. To obtain and enjoy these services the appli-
cation has to be interfaced with the framework and use
the provided toolkit. This is easily done when develop-
ing new software from scratch, whereas legacy code can
be more difficult to accomodate. There are several more
PSEs available with different levels of granularity and
different modularity schemes. A single, complete pro-

gramming model for parallel applications is not on the
horizon.

Modules [4] (and its various offsprings) is a UNIX
package to bundle commands for setting and modifying
user environment variables such asPATHandMANPATH
in a dynamic fashion. It is designed to facilitate having
many, possibly conflicting, software packages and ver-
sions on a single system and makes it feasible to select
which to use and switch between them. For users that
never have experienced Modules, it is a of course new
concept. However, it is easy to learn and simplifies the
handling of common user environment variables.

3 Production Environment

A production environmentis composed of the various
pieces of software that are used to execute and mon-
itor applications in a reliable and controlled manner.
For small clusters and clusters used by single research
groups, the out-of-the-box operating system installation
may be sufficient. For larger systems, systems installed
in remote computing centers, and clusters on which
many groups compete for the available resources, addi-
tional software for resource management and scheduling
as well as monitoring and accounting is needed.

3.1 Resource Management

A job submitted for execution on a computer system
must have the possibility to allocate the resources it
claims it need to run to completion. It is the resource
management (RM) system’s responsibility that these re-
quirements are fulfilled.

In a desktop computer, the operating system’s process
scheduler is typically the only present resource manager.
This is often adequate as long as there are a limited num-
ber of users. In servers for scientific computing with
many users present, there is a need for more manage-
able and tunable RMs. Such RMs often takes the shape
of a daemon implemententing a batch queue system al-
though its data structures and priority systems has little
resemblance with queues.

There are many resource managers available, both
commercial and open sorce. A few examples are: Load
Sharing Facility (LSF), Network Queueing Environment
(NQE), Distributed Queueing System (DQS), Portable
Batch Scheduler (PBS) and Condor. Although many
of these RMs are delivered with a builtin job sched-
uler, their abilities to efficiently schedule parallel jobs
on a cluster with many nodes are highly deficient. PBS
(which also exists in an open source version; OpenPBS)
provides the necessary set of limits and features. Ad-
ditionally, PBS has an open interface to external sched-
ulers. This makes it possible to use PBS together with



Figure 1: A WWW-page showing running jobs and submitted but not running jobs (advance reservations) on the Beowulf Ingvar
in a lucid time-node diagram. One square represents one node-hour.

for example the Maui job scheduler. (More on this in the
next section.)

3.2 Job Scheduling

Fair scheduling of parallel jobs on a cluster is a diffi-
cult task. There are many schedulers for batch queueing
systems available making half-hearted attempts which
result in underutilized systems and unfair distribution
of resources among users. One common technique of
these schedulers is to sort the jobs in a strict priority or-
der and start the job with the highest priority when the
requested resources becomes available. This is an ade-
quate technique as long as the required width (number
of hosts) for most of the jobs are identical (eg. 1). How-
ever, often they yield a low utilization when jobs are
parametrized on the number of nodes (hosts). To raise
the utilization, lower priority jobs are often allowed to
overtake and start when higher priority jobs are delayed
because of insufficient resources. The result is possible
starvation of highly parallel jobs since they constantly
may be overtaken by smaller jobs. This is a common
problem on highly utilized systems. It can be elimi-
nated by introducing an additional rule, a “starve pro-
tection” rule based on maximum allowed queueing time,
and raise priority or, more likely, force jobs to start when
they have reached this limit. However, this causes other
scheduling problems, eg. higher indifference to job pri-
orities.

One effort to provide “fairness” in the use of comput-
ing resources is fair-share scheduling [7]. This approach

bases the current priority of a job upon the use history of
its owner. Since CPU-cycles are volatile and thus can not
be saved for later use, this technique is questionable [8].

The Maui Scheduler [6] is, a generally better ap-
proach: If there is a current lack of resources to start the
next job in line, make a reservation of the requested re-
sources in the future! The notable difference from most
other scheduling efforts is the presence of these advance
reservations in a future schedule, taking the dimension
of time into account. The schedule which is recreated
repeatedly by Maui resembles a meeting calendar where
the meetings are jobs and where the scheduler makes
constant efforts to fill every gap but still paying respect
to the job priorities.

We have found that the Maui scheduler provides a sur-
prisingly good scheduling strategy for a Beowulf clus-
ter. The ability to make advance reservations, facilitates
complex scheduling decisions and solves many of the
problems other schedulers have. Moreover, Maui’s re-
current dynamic scheduling makes it easy to change the
priority of a job if necessary.

3.3 Accounting

While the job scheduler can provide a fair use on a day
to day basis, the long term use of computing resources
has to be managed according to other principles such as
invested money and granted resources. For this purpose,
accounting information is collected and used to steer the
long-term scheduling policy. The raw accounting data
can be collected from several different sources. The



eric% projinfo
Project/User Used[h] Granted[h] Priority
----------------------------------------
2001218 807.33 1500.00 Normal
| bill 0.00
| donald 784.23
| eric 23.12

Figure 2: projinfo displays granted and used resource for
all the projects the user is member of.

most basic technique is process accounting collected di-
rectly from the operating system kernel. It is the most
exact method where the CPU time of every process is ac-
counted for separately. However, difficulties may arise
in correlating these data with sessions and jobs, espe-
cially in clusters where many kernels are involved. Fur-
thermore, in cluster where computing nodes are regarded
as dedicated resources, the process accounting generates
superfluous information for the accounting record.

Another source of accounting information is the re-
source manager system. Although this system has no
records of interactive time, time used without the re-
source managers knowledge (eg. compilations and small
tests), there are additional information such as size and
length of jobs and requested amount of resources. The
gathered accounting information can be used not only
to debit the consumed resources correctly but also to
limit the maximum use allowed for a single user or
project. Additionally, measurements for tuning and
statistics such as the level of utilization of the system,
the average job size, and the average wait time may also
be collected.

In NCE, the commandprojinfo displays the
amount of granted and used CPU-hours on the clus-
ter. For each project the user is member of, it gives
the project’s granted resources and the resources used
by each project member (see figure 2)

At NSC, when a project exceeds its granted resources
the priority of its member’s jobs are lowered for the rest
of the accounting period. The change in priority is for-
warded into the job scheduler which only schedules low
priority jobs when all jobs of normal priority have re-
ceived thier requested resources. In the absence of jobs
with normal priority, the resource may still be utilized by
projects with overdrafted accounts. In the Maui sched-
uler this is implemented by assigning different levels of
quality of service (QoS) to different users.

3.4 Monitoring

To get a general and quick overview of running and sub-
mitted jobs on a cluster, a dynamically updated WWW-
page is provided (see figure 1). It presents the infor-

mation in a time-node diagram, a format that is easy to
grasp. It has quickly become a useful tool for both users
and system administrators.

During execution, both the job owner and the sys-
tem managers should have the possibility to monitor the
progress of the jobs. By examine the job output, the job
owner can check the job’s progress and decide if the job
should be aborted prematurely and free the resources. In
NCE, the commandpbspeek can be used to display
the stout or stderr of a running job. The system man-
ager is concerned with the efficient usage of the system
and with the proper functioning of its components, both
hardware and software. For this purpose there are plenty
of different tools available. These tools are not included
here since they are primarily targeting the system admin-
istrator and not the users of the cluster.

4 Programming Environment

To build applications, a supportive programming envi-
ronment is necessary. On a cluster for scientific compu-
tations the necessary components includes:

• Compilers producing efficient code,

• Libraries for high bandwidth and low latency com-
munication, and

• Highly optimized scientific libraries.

Unless a separate system is avilable for development, ef-
ficient tools for profiling and debugging are also desired
on the production cluster.

In the quest for maximal performance, it is essential
that alternatives to the main compilers, communication
software, and libraries can be installed and easily used.
However, to provide a wide variety of tools to users and
still keep them simple and intuitive to use is not an easy
task.

4.1 Compilers

Most scientific high performance applications are writ-
ten in Fortran. Fortran 90 is the standard of today and
since the freely available g77 in the GNU Compiler Col-
lection (GCC) only implements Fortran 77, a Fortran 90
compiler has to be purchased. Portland Group’s com-
piler suite (PGI Workstation) is selected for its good
performance and acceptance of several language flavors.
Beside the Fortran 90 compiler (pgf90 ) PGI Work-
station also contains a Fortran 77 compiler (pgf77 ),
a C compiler (pgcc ), a debugger (pgdbx ) and a pro-
filer (pgprof ). Since their default names differs from
the Linux native GCC tools (g77 , cc , c++ , gdb , and
gprof ) there are no difficulties to make all of them



available to users. The user can easily access them after
installation by extending the search path to the installed
binaries.

In both PGI Workstation and GCC it is possible to
add local options to the tools without writing additional
drivers or wrappers. This possibility is utilized to sim-
plify the choice of communication libraries as described
in the next section.

4.2 Communication Libraries

Next after compilers, the most important system soft-
ware on a Beowulf are the communication libraries.
They provide the application program interface (API)
for fast communication among the collaborating pro-
cessors within an application. Both MPI and PVM
implement the message passing paradigm and are ac-
customed communication APIs in scientific comput-
ing. The most widely used implementations include
MPICH [3], LAM [2], and PVM [5]. For the fast SCI
network installed on Ingvar (see section 5), the propri-
etary MPI implementation ScaMPI from SCALI.

Instead of choosing one package for each of MPI and
PVM, there are reasons for supporting them all:

• The proprietary ScaMPI is the only library avail-
able for the fast SCI network interfaces.

• Applications which are compiled elsewhere can
easily use any of the communication libraries and
launch methods.

• There are differences in performance and portabil-
ity between the different MPI packages.

• Functionality differs between implementations.

This availability of interchangeable packages presents a
challenge to the integrated easy-to-use approach.

Even if the application programming interface (API)
is almost identical in ScaMPI, LAM, and MPICH, im-
plementation details such as the names and number of
libraries needed during linkage differ. Compiler wrap-
pers provided by some packages (eg.mpicc shipped
with MPICH) eliminates the path problem from the in-
clude and library paths. Instead, it becomes a combina-
torial problem when multiple compilers for one imple-
mentation language is available. For two different com-
piler suites and three different MPI implementations, six
different compiler wrappers is needed just for the C lan-
guage. Additional problems arise when other APIs, not
related to MPI or PVM, also require the use of compiler
wrappers. To circumvent this, NCE provides a more or-
thogonal approach by defining local compiler options.
The difference from using the normal include and library
paths is that we can encapsulate lenghty paths and files

needed in a short, easy to remember, word or abbrevia-
tion. For instance, to compilepingpong.c with PGI’s
C-compilerpgcc and MPICH, we can use the full paths
to include and library directories:

pgcc -I/usr/local/mpich-pgi/include \
-o pingpong pingpong.c \
-L/usr/local/mpich-pgi/lib -lmpich.a

or the the designated compiler wrapper,mpicc :

/usr/local/mpich-pgi/bin/mpicc \
-o pingpong pingpong.c

or the NCE option:

pgcc -Nmpich -o pingpong pingpong.c

Furthermore, there are a wide variety of ways to launch
an appliacation:

1. Even though MPICH, LAM, and ScaMPI all pro-
vide and use a program namedmpirun , these can
not be used interchangeably; MPICH’smpirun
can not be used to launch an application linked with
neighter LAM nor ScaMPI and vice versa.

2. Applications linked with PVM is always started on
one single processor.

3. Both LAM and PVM requires that necessary dae-
mons,lamd or pvmd, has been initialized before-
hand on the allocated nodes.

To simplify and to present a unified launch method
to users, NCE providesmpprun which can launch
MPICH, LAM, ScaMPI as well as PVM applications.
It uses the designated method for each communication
library. To interactively start the previously builtping-
pong on two nodes, we simply give the command

mpprun -np 2 ./pingpong

mpprun will request two nodes from the resource man-
ager. It will also discover that it is linked with MPICH
and issue the necessary commands to run the application
with MPICH’s mpirun .

4.3 Scientific Libraries

Optimized libraries for calculations such as BLAS and
Lapack are essential components in the provided pro-
gramming environment. The highly optimized ATLAS
library [15], which implements BLAS level 3 is easily
built and installed. Just as in the case of communication
libraries, an extra compiler option is provided for these,
most common, libraries.



5 Implementation Details

We initially implemented and installed these environ-
ment enhancements on the class II Beowulf systemIn-
gvarIngvar is now one of the resources available to re-
searchers throughout Sweden via the Swedish National
Allocation Committee (SNAC). It is used extensively for
research in mainly physics and chemistry.

The system consists of a front-end used for login,
compilations, job submissions, and file services and
32 compute nodes. All 33 computers are connected to
a switch using Fast Ethernet. Furthermore, the 32 com-
pute nodes are equipped with SCI-based interfaces built
by Dolphin. The SCI networks performance is far bet-
ter than the Fast Ethernet (88.2 MByte/s node-to-node
bandwidth, 4.7µs latency [measured]) and is suitable
for communication intensive applications.

The distribution we use is Red Hat Linux 6.2. The
installation of the nodes is done by configuring one node
and use VA Systemimager to clone the disk to the other
31 compute nodes. For day-to-day administration, we
keep a centralized copy of some of the files in/etc
which we synchronize usingrsync when necessary.

Crucial to every easy-to-use approch is a good choice
of default values. For instance, without any action taken
from the user, environment variables such asPATHand
MANPATHshould have values that allow the user to ac-
cess binaries and man-pages for the most common soft-
ware packages installed on the cluster such as compilers,
resource manager, and monitoring commands. How-
ever, when there are several software packages available
to choose from and none of them is an obvious alter-
native, it is necessary to require that the user make an
active choice. To this end, none of the installedmpicc -
wrappers are found by using the defaultPATH.

5.1 Compiler Options

The local compiler options NCE provides-Nscampi ,
-Nlam , -Nmpich , -Npvm, -Nblas , -Nlapack can
be implemented either by writing asite widecompiler
wrapper2 or, as we have managed to do so far in NCE,
by modifying configuration files for the existing com-
piler drivers. Both PGI and GCC have configuration
files with which to specify the connection between the
options given to the compiler driver and the options the
driver should add to the separate compiler stages. Eg.
the rule

*lib:
%{Nmpich:-/usr/local/mpich-gcc/lib/

libmpich.a}

2in contrast to thepackage widecompiler wrappers often enclosed
in different packages

communication
libraries

��

source

��-Nscampi
-Nmpich
-Nlam
-Npvm

//
enhanced
compiler

driver

select

OO

generate

��

// compile
& link

��
NCE label

��

binary

��
mpprun // scheme

selection
// launch

��

jobs

interactive{{{{

=={{{{

batch
CCC

!!CCC

resource
manager

��

KS

oo // execution

job scheduler
��

KS

__ _ _ _ _ _ _ _ _ _ _ _ ��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��

_ _ _ _ _ _ _ _ _ _ _ __

Figure 3: Besides selecting the appropiate communication li-
brary the local compiler options also labels the binary. This
label is used to set thempprun default launching scheme.

specifies that the MPICH library is passed to the linker
when you supply the option-Nmpich to gcc . All of
the above mentioned local options are possible to imple-
ment in both GCC and PGI by adding rules to configu-
ration files.

Furthermore, an extra object file with a single unique
symbol is used to label the binary. This symbol facili-
tates an unambiguous identification of used libraries and
thus provides a channel of information from compile
time to execution time (see figure 3).

5.2 mpprun

NCE’s mpprun is inspired by the Cray T3E command
by the same name. While T3E uses the global resource
manager (GRM) daemon within the kernel to allocate
the requested resource, NCE communicates with PBS
for resource negotiations.

mpprun first checks if it is invoked within a PBS job
script. If so, the number of nodes PBS has allocated
for the job becomes the number of instances of the ap-
plication to launch.mpprun further determines which
launching scheme to use by examining the unique sym-
bol described in section 5.1. In case this symbol is absent



(application is linked elsewhere or the local compiler op-
tions were not used), heuristic methods are instead used
to guess the appropriate lauching method. Since there is
a possibility that the wrong method is selected, it may be
overridden with options supplied by the user3

If mpprun is invoked interactively from a shell, an
interactive job4 is submitted to PBS usingexpect [9]
The I/O connection between application and terminal is
retained as for any other interactive command. Conse-
quently, starting parallel applications become as easy as
starting sequential applications or commands.

We keep the configuration for each installation of the
communication package in its original form to simplify
uppgrades and future installations. This also allows
users to continue to use the original schemes of library
paths or compiler wrappers (eg.mpicc ).

5.3 PBS and Maui

PBS has daemons (pbs mom) continuously running on
every node. pbs mom is responsible for launching,
monitoring and killing application instances on one
node. PBS’ central resource manager,pbs server ,
contacts each mom frequently to gather status informa-
tion and issue commands in accordance with the sched-
uler.

The use of the Maui job scheduler, reduces the needed
configuration in PBS significantly. Features in Maui
such as policies, quality-of-service, and standing reser-
vations supersede the resource controlling features in
PBS. Only one single unlimited default “queue” remains
necessary.

Crucial to the production environment is that all re-
sources that a job has allocated are released and made
available to future computations. To enforce this, we
supply PBS with an epilogue script which kills running
user processes and removes all files in the scratch di-
rectories local on the nodes.pbs momis instructed to
execute this script after each job.

6 Future Work

The changes and additions we have applied are not easily
encapsulated in a automatically installable package. It
requires knowledge of the combination of the used soft-
wares to correctly apply the tools and scripts that “glue”
them together. However, we will pursue a method to
readily apply these changes and relase them under an
open source license.

3To achieve consistency in the user environement, the same options
are used here as for the compiler:-Nscampi , -Nmpich , -Nlam ,
-Npvm.

4a PBS job with option ’-I ’

In the current programming environment only the ba-
sic functionality is provided so far. We plant to extend
the framework to include support for debugging, profil-
ing, and performance measurements.

On classic (non-Scyld) Beowulf clusters where nodes
can be accessed withrsh or ssh , a user can easily by-
pass the resource manager. To strengthen the system in-
tegrity, a more restricted access policy can be enforced
by modifying the user access to nodes on a job to job
basis. The Pluggable Authentication Modules (PAM)
can easily be used to dynamically allow or deny specific
users.

The Modules package mentioned in section 2 can
be used to further enhance NCE. When accustomed to
Modules, it is a very efficient tool when configuring and
handling the settings in a user environement.

7 Results

The result of this work isnot another distribution or ad-
ministration package to make installations and adminis-
tration of Beowulfs easier. On the contrary, NCE could
be successfully employed together with such packages.

The environment alleviates the users of some of the
difficulties usually experienced when starting to use a
Beowulf system. We provide a user environment which
is more consistent and easier to use then most users cur-
rently expect from a Beowulf system. The concealment
of lengthy tool options reduces the demand for extensive
documentation on how to use and combine the numerous
existing options. It also eases the task of reconfiguring
the system eg. the placement of libraries. Furthermore,
options are mentioned in fewer places, eliminating er-
rors and increasing the number of successfully launched
jobs.

We have shown that, with small changes, the integra-
tion between tools can in an open-source environment
be significantly improved. Details, such as consistency
in options (section 4.2 and 5.2) and an easy-to-grasp
WWW-page (section 3.4) can have a large impact on
new users. The script generating the WWW-page is now
included as contributed work in the Maui scheduler dis-
tribution.

NCE is currently in use on two Beowulf systems.
Both of them are available as nation-wide computing re-
sources for academic research. With the increasing num-
ber of Beowulfs, NCE makes it possible to present an in-
tegrated, uniform environment to users on several clus-
ters, even if the selection and the location of installed
packages are not identical. We currently offer the users
two compiler suites, three different MPI implementa-
tions, PVM, and scientific libraries. Still, the need for
supportive help to new users is remarkably low.



Acknowledgement

We want to thank Anders Ynnerman for his efforts, with-
out which this work would have been impossible. An-
ders initialized NSC’s involvement in commodity clus-
ters. We also want to thank Zach Brown for his valuable
help in proofreading and correcting this paper. Finally
we thank the anonymous reviewers for their comments
and suggestions.

References

[1] Gabrielle Allen, Werner Benger, Tom Goodale,
Hans-Christian Hege, Gerd Lanfermann, André
Merzky, Thomas Radke, Edward Seidel, and John
Shalf. The cactus code: A problem solving envi-
ronment for the grid. InProceedings of the Ninth
High Performance Distributed Computing Confer-
ence, pages 253–260, Pittsburg, PA, 2000. IEEE
Computer Society.

[2] G. Burns, R. Daoud, and J. Vaigl. LAM: An open
cluster environment for MPI. InProceedings of
Supercomputing Symposium ’94, pages 379–386.
University of Toronto, 1994.

[3] N. E. Doss, W. Gropp, E. Lusk, and A. Skjel-
lum. An initial implementation of MPI. Technical
Report MCS-P393-1193, Mathematicas and Com-
puter Science Division, Argonne National Labora-
tory, Argonne, IL 60439, 1993.

[4] John F. Furlani. Modules: Providing a flexible
user environment. InProceedings of the Fifth
Large Installation Systems Administration Confer-
ence (LISA V), pages 141–152, San Diego, CA,
September 1991.

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam.PVM: A Users’
Guide and Tutorial for Networked Parallel Com-
puting. MIT Press, 1994. The book is available
electronically at ftp://www.netlib.org/
pvm3/book/pvm-books.ps .

[6] David Jackson. Maui scheduler on Linux. Work-
shop notes and presentations, USENIX Annual
Technical Conference, June 1999.

[7] J. Kay and P. Lauder. A fair share scheduler.
Communication of the ACM, 31(1):44–55, January
1988.

[8] Richard Klamann. Opportunity scheduling: An un-
fair CPU scheduler for UNICOS. InProceeding of
CUG Meeting. Cray User Group, 1997.

[9] Don Libes. expect: Scripts for controlling interac-
tive processes.Computing Systems, 4(2), Novem-
ber 1991.

[10] Message Pasing Interface Forum. MPI: A
message-passing interface standard.International
Journal of Supercomputer Applications, 8(3):157–
416, 1994.

[11] OSCAR: Open source cluster application resour-
ces.http://www.csm.ornl.gov/oscar/ .

[12] Philip M. Papadoupoulos, Manson J. Katz, and
Greg Bruno. NPACI Rocks: Tools and tech-
niques for easily deploying manageble linux clus-
ters. Submitted to Cluster ’01, The Third IEEE In-
ternational Conference on Cluster, October 2001.

[13] Scyld Beowulf clustering for high performance
computing.http://www.scyld.com/ .

[14] Thomas L. Sterling, John Salmon, Donald J.
Becker, and Daniel F. Savarese.How To Build a
Beowulf: A guide to the Implementation And Ap-
plication of PC Clusters. Scientific and Engineer-
ing Computation Series. MIT Press, 1999.

[15] R. Clint Whaley, Antoine Petitet, and Jack J.
Dongarra. Automated empirical optimiza-
tion of software and the ATLAS project.
http://www.netlib.org/atlas/ .


