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Abstract

This paper describes “HP Secure OS Software for
Linux” (HP-LX) – a version of Linux that
incorporates modifications into the kernel to improve
security. A common attack strategy is to exploit a
bug in a service causing it to execute code that
downloads additional executables, and overwrites
existing system executables and web pages. If the
attack is in the form of a “worm”, it will then probe
the network looking for new targets.

This paper argues that incorporating additional
features into the underlying operating system best
resists such attacks. HP-LX has mechanisms that
contain a process within a known part of the system
and place severe limits on the damage that can be
caused by attacks. These mechanisms restrict
communication to constrain the ability to interfere
with and probe the network or other processes. They
protect the file system and can prevent even root
from overwriting files. In addition HP-LX has
extensive auditing mechanisms for detecting
compromised processes.

1. Introduction

Linux is increasing in popularity as a platform for
hosting web and other Internet services. With this
increasing popularity we are starting to see an
increase in the number of Linux specific attacks, for
example so far in 2001 we have seen three significant
"worms": Adore, Ramen and Lion. In addition
"defacing" of web pages continues to occur with
increasing frequency.

Figure 1 is generated from data obtained from
Attrition [Attrition]. It shows that during the 12
months from May 2000 to April 2001, the monthly
number of defaced Linux sites increased by more
than 5 times. Not all defaced web sites are reported to
Attrition, so the numbers on the vertical axis are a
fraction of the total number of sites defaced.

So what can you do to make your Linux server more
secure? There are three main strategies.

1. Keep up to date with patches

2. Run one or more security utilities

3. Strengthen the underlying kernel.

Figure 1: Web site defacement activity

It is very important to keep up to date with security
patches. There is a lot of evidence to suggest that
most sites are compromised after the flaw is
identified and a patch is available [Lemos01].
However, a significant number of systems are
compromised before the patch is available and this
strategy does nothing to protect you against
administration or installation errors: e.g. an
application script in a web server that can be used to
execute arbitrary shell commands.

You can also run one or more utilities that attempt to
improve the security of various aspects of your
system. For example, there are various scanners
available that can scan your system for known
vulnerabilities. Tripwire [Tripwire] will inform you if
a change has been made to sensitive files so that you
can change them back to their original form. Bastille
[Bastille] will “lockdown” your system using the
existing operating system security mechanisms. Its
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features include securing the configurations of
various popular daemons and services; changing the
permissions on various files and executables to make
them more secure; increasing logging from the
default level.

All of this will improve your security.

However, there are limits to what can be achieved by
layering security utilities on top of the existing Linux
kernel. Tools that try to address known
vulnerabilities are not completely reliable: a recent
study [Forrestal01] reporting on vulnerability
scanners showed that several of the currently
available tools detected less than 60% of known
vulnerabilities and the best detected less than 90%. In
addition these tools cannot protect you against
unknown vulnerabilities and can do little against
system specific errors such as a faulty service
available through a web server.

No security utility that is installed on top of the
operating system can restrict the internal
communication that takes place between processes
on the system. This means a compromised process
can interfere with and attack other processes. You
cannot limit the communication ability of a particular
process (e.g. the web server) to communicate with
other hosts in your network without applying that
restriction to all processes on the system. The access
control mechanisms in Linux are discretionary – this
means that any process that owns a file or directory
can change the permission of that resource. Further
any process that has write access to a file or directory
can overwrite the entire contents. Most logging is
performed by applications (e.g. writing to syslog).
Linux does not provide facilities for logging the
system calls executed by a process. As we shall
explain, this limits the ability to detect an intrusion
into the system.

We take a different approach. We accept that services
will be compromised by as yet unknown
vulnerabilities and mis-configuration. Our
philosophy is to strengthen the underlying operating
system to incorporate features that contain a process
within a known part of the system, so even if it is
compromised it can cause limited damage. The
following are the main security features of HP-LX.

• Containment – the communication channels
and files available to individual processes
are rigorously controlled – we can prevent
even root having write access to files

• Auditing of system calls to audit
administration actions and to detect
intrusion

• A secure administration model designed to
avoid the need to share administrator
passwords – root is not all powerful

What does this give us? Let’s look at the strategy
used by Ramen to compromise a host. Lestat
documents this in detail in [Lestat01], here we give
an overview abstracting from some of these details.

Ramen uses stack overflow vulnerabilities in the
services rpc.statd, wu-ftpd and LPRng. Bugs in string
processing code are exploited to overwrite the stack
causing these processes to start executing code
included at the end of the string. This code
overwrites executables on your system, gains root
access, downloads executables, and overwrites any
index.html files (defacing your web pages). It then
attempts to probe the network looking for other hosts
to attack. When a host is found running a vulnerable
version of rpc.statd, wu-ftpd or LPRng an attack on
that host is launched, propagating the worm to that
host.

The HP-LX security mechanisms are designed to
prevent worm propagation, corruption of sensitive
files on the system (web pages and executables) and
to detect compromise of any service on the system.
This means that result of an attack like Ramen should
be limited in the worst case to unavailability of the
attacked service until it is restarted. How does it do
this?

HP-LX can restrict the communication channels
available to a process and all its children. So general
probing of the network is not possible. Typically we
do not allow any outbound connections to be made
from pure services (such as web servers), nor do we
allow these services to send IP packets to any other
hosts on the network other than to clients that already
have established TCP connections. This prevents
propagation of worms.

HP-LX can prevent write access to files including
web pages to any user (including root). Access
control is mandatory – the owner of the file cannot
override it. This prevents web pages from being
defaced and system executables from being
overwritten.

HP-LX has extensive auditing of system calls. This
can be used to build up profiles of processes, so that
a change in behavior due to a compromise will be
detected with high probability.

2. Review of security features

The primary purpose of HP-LX is to provide a secure
environment in which to run services that are



accessible from the Internet. It is therefore designed
to be robust against remote attacks and to provide an
environment to secure services against remote
attacks. It does not attempt to defend itself from
attackers that have physical access to the machine.

In this section we give a technical overview of the
following HP-LX security features.

• Containment

• File system integrity

• Lockdown of system configuration

• Audit

• The Secure administration model

These security features have been implemented by
making a few small changes to the Linux 2.4 kernel
to add security hooks. The bulk of the HP-LX kernel
functionality is provided by Dynamically Loaded
Kernel Modules (DLKMs) that are called by the
security hooks.

2.1 Containment

In HP-LX, every process has a compartment attribute
– this is an additional field in the process table.
Every time a process attempts to access a file or
attempts to communicate with another process or
network resource, the kernel checks the compartment
attribute against a table of rules to see if the access is
allowed. Similarly each time a process receives a
message from another process or from the network
the kernel checks the compartment attribute against a
table of rules to see if the access is allowed.

We say that two processes that have the same
compartment attribute are “in” the same
compartment.

All child processes inherit the attribute value of their
parent. So all processes are started in the same
compartment as their parents.

2.1.1 Containing communication
access

To control communication, the kernel maintains a
Communication Control Table or CCT that controls
what communication can take place between
processes in different compartments. It also controls
what communication can take place with network
interfaces from a given compartment. Most
communication mechanisms are supported including
IP, shared memory, semaphores, and message
queues). Communication between processes in the
same compartment is not restricted by the CCT.

Figure 2: Typical HP-LX configuration

Figure 2 shows a typical HP-LX installation. It is
often run as a dual-homed host providing a secure
bridge between the external network (Internet) and
internal network (Intranet). The HP-LX machine has
a number of compartments in which various services
are run.

In this example an Apache web server is run in a
compartment called “Web”. The following rules
allow any process in the Web compartment to receive
incoming tcp connections on ports 80 and 443 (i.e.
http:// and https://)

HOST * -> COMPARTMENT web PORT 80

METHOD tcp NETDEV lan_eth0

HOST * -> COMPARTMENT web PORT 443

METHOD tcp NETDEV lan_eth0

The “HOST *” field indicates that the connection is
permitted from any host. The “NETDEV lan_eth0”
field indicates that the connection must be on the
eth0 interface – that is the external network. The
“METHOD tcp” field indicates that communication
can only take place via TCP. Notice that there is no
rule allowing an outbound connection. This means
that the web server is unable to engage in any
communication on the network except in direct
response to an incoming TCP connection. So if the
web server became compromised and was under the
control of an attacker, it could not be used to probe
the network or make connections to any other service
on the network. This makes it harder to use HP-LX
as a “trampoline” from which to attack other systems
or to propagate worms through an HP-LX machine.

In this example there are three compartments for
running Java servlet engines (Tomcat). These receive
requests from the Apache web server and run Java
servlets to access data from machines running on the
internal network. Rules like the following are needed
to allow the web server to talk to the servlet engines.

Apache

Backend Servers
e.g. Tomcat

External network Internal network



COMPARTMENT web -> COMPARTMENT tomcat1

PORT 8007 METHOD tcp

NETDEV lan_lo

This rule allows the web server to talk to the servlet
engine in compartment Tomcat1 bound to port 8007
via “lo” or the local loopback. Notice that with the
rules given so far the Tomcat1 compartment is not
allowed to engage in any communication with the
external network. The HP-LX host will ignore any
packet arriving on eth0 (the Internet) for port 8007.
In this respect the behaviour is similar to that of a
firewall.

The Tomcat1compartment needs to be able to access
the host test1 to retrieve data. This is accomplished
by the following rule

COMPARTMENT tomcat1 -> HOST test1.foo.com

METHOD tcp PORT 8080

NETDEV lan_eth1

The interface eth1 is the internal network interface.

There are some similarities with the way
communication is controlled in HP-LX and the Linux
ipchains, netfilter and iptables facilities. The major
differences are that we support communication
mechanisms other than IP and that we have different
rules that can be applied to different compartments.
For example two servlet engines in different
compartments may be able to communicate with
different hosts on the internal network. The following
rule allows the compartment Tomcat2 to access the
host test2 (which is not accessible to compartment
Tomcat1 by any of the above rules).

COMPARTMENT tomcat2 -> HOST test2.foo.com

METHOD tcp PORT 8080

NETDEV lan_eth1

2.1.2 Containing file access

In addition to the ‘r’, ‘w’, ‘x’ permission bits found
in Linux, HP-LX also uses the compartment attribute
to restrict what files a process can access. Each time
a process opens a file its compartment attribute is
checked against a set of rules in the File Control
Table (FCT) to see if the access is allowed. The
following are a set of sample rules for the Web
compartment.

web /compt/web/apache/logs read,write,append

web /compt/web/dev read,write

web /compt/web/tmp read,write

web /compt/web read

web /bin read

web /lib read

web /sbin read

web /usr read

web / none

Entries in the FCT consist of a compartment name,
followed by a path and an access mode. The
following access modes are supported: read, write,
append and none. The most specific matching rule is
enforced.

For example, if a process running in compartment
Web attempted to access the following file:
/compt/web/apache/htdocs/index.html

the following rule matches and specifies the access
mode:
web /compt/web read

If a process running in compartment Web attempts to
access the file /etc/password, the following rule
specificies the access mode:
web / none

This access mode is mandatory [TSEC] — it does not
matter if the process is running as root or is the
owner of the file, the kernel will still enforce the
access mode specified in the FCT. So in this
example, even if a process in the compartment Web
is under the control of an attacker and becomes root,
it cannot overwrite the index.html file and it can gain
no access to the /etc/passwd file.

The rules in the FCT are mapped to inode numbers in
the kernel. So any attempt to access the file by a
different path (different mount path or a link) will
still be subject to the control specified.

The FCT provides an extremely flexible mechanism
for controlling access to files. It can restrict each
compartment to a completely separate part of the file
system, so that there are no shared files between
compartments. However, it also allows files to be
shared between compartments, with different
compartments having different access modes. The
following rule allows the compartment WebAdmin
read and write access to the web server’s HTML
files.

webAdmin /compt/web/apache/htdocs read,write

This means a user running processes in the
WebAdmin compartment can update the web
server’s pages.

HP-LX also supports the Linux chroot facility and is
enhanced to make it more secure. The chroot facility
provides a subset of the functionality of the FCT: it is
used to contain processes within completely separate
parts of the file system

We create a separate directory for each application to
be run in a chroot environment. The files required by
the application are then copied into the chroot



directory. Processes in one or more compartments
can share the same chroot environment.

We also have the ability to “seal” a compartment.
The kernel will not allow any process in a sealed
compartment to run with the user identity root. In
addition, it will not allow any process running in a
sealed compartment to exec an SUID program. So
strategies that might be used to escape chroot, such
as running mknod (which requires you to be root),
will not be available.

Chroot gives coarse grain access control to files. It is
Mandatory Access Control [TSEC] because a process
contained within a chroot environment cannot access
files outside the chroot environment no matter who
owns them

Our experience is that chroot on its own is not
sufficient to provide containment. It is difficult and is
sometimes not possible to chroot all applications. For
example, it is not possible to chroot the backup
process. Also it is convenient to have mandatory
access control be more fine grain than is possible
with chroot. For example, ensuring that the web
pages visible to a web server are immutable. In
addition it is sometimes more convenient to share
access to files than to copy them into a chroot
environment. We introduced the FCT to address all
these issues.

If you have already engineered a chroot environment
on your system for an application, you can use it on
HP-LX to contain that application. You can also use
the FCT to enhance the security of that chroot
environment by doing things like granting read only
access to the web pages.

One advantage that chroot has over the FCT is that it
creates the illusion of a separate file system. For
example, if we have two compartments Web and
Tomcat, we create chroot environments under
/compt/web and /compt/tomcat for each. We can then
put the binaries needed for the Web compartment in
/compt/web/bin and the binaries needed for the
Tomcat compartment in /compt/tomcat/bin. A
process running in a chroot environment under
/compt/web will see the binaries in /compt/web/bin
as if they were in /bin on a nomal system. So running
the command “ls” from a shell in the chroot
environment in the compartment Web runs the binary
/compt/web/bin/ls. Similarly a process running in a
chroot environment under /compt/tomcat will see the
binaries in /compt/tomcat/bin exactly as if they were
in /bin. So running the command ls from a shell in
this chroot environment runs the binary
/compt/tomcat/bin/ls.

In contrast to chroot, the FCT does not hide the parts
of the file system that are not accessible to a
compartment: the absolute paths are still visible.

We often use chroot and the FCT to completely
isolate compartments into separate, non-overlapping
parts of the file system. We use chroot to provide the
illusion of a separate files system and then use the
FCT to provide fine grain access control within the
“separate” file system. This has the major benefit of
allowing us to run multiple instances of the same
service on the same machine: for example multiple
web servers. Each web server is run in its own
compartment in its own part of the file system. The
CCT does not allow any communications between
web server compartments. This completely isolates
the web servers – they cannot interfere with each
other via the file system or direct communication.

All the file system protection described above is
implemented without any changes to the Linux file
system – security attributes associated with a file are
stored independently from the file. The reason that
this is important is that it allows the files to be
mounted by another system with no conflict of
security attributes. This is to allow us to take
advantage of shared-disk high availability
technology. Further, this approach allows standard
backup and restore utilities to be used.

2.2 File system integrity

HP-LX includes Tripwire [Tripwire]. This utility
takes a cryptographic hash of all sensitive files. It
informs administrators if they have been changed so
that they can change them back again.

Tripwire provides additional protection against
administration errors. If an administrator with the
privilege to update a sensitive file updates that file,
Tripwire will send an email message to them
notifying them of this change. The administrator can
then review the change to decide whether or not it
should be reversed.

2.3 System configuration lockdown

System configuration lockdown in an operating
system refers to creation and persistence of a secure
or hardened configuration that eliminates non-
essential services and secures the services left
enabled.

Newly installed operating systems are often
vulnerable to attack because the operating system's
installation program generally installs all available
packages and its initialisation program enables all



available services, daemons, and networking
features. This allows an attacker to explore multiple
avenues of attack. Every process that does not
perform an essential function on the system thus
constitutes a security risk. Moreover, file permissions
on a newly installed operating system are generally
set for high accessibility. As a result, the
configuration of the system and its applications is
vulnerable to unauthorized modification.

In HP-LX we take a minimalist approach. The only
service installed on the system by default is the
Secure Shell Daemon that is used for remote
administration. In addition we have a lockdown
script that performs many functions that are similar
to those in Bastille [Bastille]1 — functions that are
standard practice for Linux system configuration
security:

• Disables console logins accept for root and
administrator

• Defines limits on resources (CPU, disk
space) for specific users and groups

• Unsets SUID/SGID bits from server
executables

• Causes logs to be rotated weekly and
compressed

• Sets password expiration to ninety days

• Restricts permissions on automated system
tasks (cron jobs)

• Restricts permissions on a various
executable programs

This approach ensures that HP-LX starts up with the
most secure configuration by default. All extraneous
applications and services must be explicitly installed
and enabled, allowing administrators to achieve a
well-considered balance between security and
usability.

2.4 Audit

The architecture of the audit subsystem is shown in
Figure 3. It is implemented as a DLKM that collects
audit data by hooking the system call entry points
and collecting the data that is passed into the kernel.
The data that is collected by the kernel is pooled in a
kernel buffer area and then later spooled to disk via a
user space daemon.

1 We had to implement our own lockdown feature, as
Bastille was not ready. We hope to use Bastille in a
future release.

Linux capabilities are used to protect the audit
subsystem2. The audit subsystem checks for
AUDIT_CONTROL whenever the subsystem is
configured or managed (e.g. started, stopped, etc).
The AUDIT_WRITE capability is needed by
applications that want to add their own "application
audit records". Additionally, the audit daemon runs
with minimal capabilities. As it finishes with the
capabilities that are needed to configure it, it removes
them from the permitted set. It is finally left running
with only 2 capabilities.

Figure 3: Audit subsytem architecture

The audit daemon's task is to move the audit data
from the kernel buffer to storage (e.g. disk). It is
notified by the kernel when to start writing the audit
data. While writing this data, the kernel continues to
collect audit data in a second audit buffer.

To protect the audit subsystem, including the
integrity of the audit data we use compartments. The
audit daemon is run in its own compartment and so is
not accessible to services running in other
compartments. In addition the audit configuration
files and data are not accessible to services running in
other compartments.

A filtering mechanism is used to help reduce the
volume of data that is generated. This mechanism
allows you to specify criteria to determine whether a
particular event should be recorded. For instance, this
filtering can be done based upon specific system calls
or user IDs. The audit daemon loads the filtering
information from its configuration file. The filtering

2 Linux capabilities confer the ability to execute
privileged system calls. The root user normally has
all capabilities. By selectively removing capabilities
from the set of active capabilities of a running
process, the set of allowable operations is reduced.
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information is an XML document. Here are two
examples.
<syscall id="execve"/>
<syscall id="open">

<uid action="equal">4</uid>
<guid action="equal">20</guid>

</syscall>

Each <syscall> element may contain a number of
child elements that restrict the occurrences of the
system call that will be audited. The action attribute
can take a value of “equal or “notequal”.

The first example instructs the audit system to audit
all occurrences of the “execve” call. The second
instructs the audit system to audit all occurrences of
the “open” system call by user ID 4 and the group ID
20.

Two major issues for audit data are: how best to
display the data to make it easy to understand; how to
format it so other programs can process it. To
address these issues, templates are used to specify the
format of the data: XML, plain text, etc.
Administrators are able to format their own templates
giving them the freedom to view the data as they
want.

A template specifies how each audit record will be
printed by the auddump utility. Here is an example
fragment of a template that we use to print the audit
data as XML.
<event>\

<header>\

.

.

<eventid> &at_evtid;</eventid>\

<date> &at_time;</date>\

<pid> &at_pid;</pid>\

.

.

</header>\

<data>\

.

.

</data>\

</event>\

\

The auddump utility applies this template to each
audit record. The symbols beginning with “&” are
replaced with the corresponding elements in the audit
record. This generates output like the following.
<event>

<header>

.

.

<eventid>195</eventid>

<date>Thu Jul 26 15:19:59 2001 BST</date>

<pid>1</pid>

.

.

</header>

<data>

.

.

</data>

</event>

HP-LX also has an audit API, to allow trusted
applications to write their own audit data.

Auditing can generate a lot of data, so it is usual to
limit the amount of disk space available to the audit
system (e.g. have the records stored on a separate
partition) and specify the behavior of the system
when there is insufficient disk space to store more
audit records. On HP-LX the audit daemon either
writes to the system logging subsystem or it halts the
system.

One important feature of the HP-LX auditing system
is that by auditing the system calls rather than relying
on application logs (e.g. web server logs) we do not
rely on an application being honest about its
behavior. This is important because a compromised
process will almost certainly stop writing log data.
In the case of some attacks the last application log
entry may give some indication of the nature of the
compromise, as is demonstrated in [Lestat01]. In
other cases no applications level logs will be
generated or they will be erased to hide the attack. It
is much harder to avoid kernel level auditing. All
processes need to make system calls and these
system calls will be audited by the HP-LX audit
subsystem. Preventing HP-LX auditing requires
compromising the kernel. This is a difficult task, if
the only attack points of the system are specific
remote services (e.g. a web server). Thus HP-LX
auditing will continue to record the behavior of a
compromised process, even if it fails to write an
application log. This can be used by an automated
intrusion detection system to detect an attack in
progress.

2.5 The secure administration model

In addition to the compartment attribute the HP-LX
process table also contains a privilege bit field for
each process. Currently we use only two bits: one is
designated “hplx_admin” and the other is designated
“set_comp”. These are the administration privileges
for HP-LX.



The hplx_admin privilege allows processes to create
new compartments, reconfigure existing
compartments and change the rules in the CCT and
FCT. The kernel will check that this bit is set before
executing the appropriate system call.

The set_comp privilege allows a process to change
its compartment. Again, the kernel checks that this
bit is set before executing the appropriate system call.

In the kernel startup code (pre user space operation)
these bits are cleared for all tasks (including kernel
threads). They are set within the init kernel thread
prior to it invoking the init user space program. Init is
the first user space process and all other user space
processes are descended from it.

A child inherits the bit values of its parent. By default
init clears the hplx_admin bit and set_comp bit for all
its child processes. The exceptions are if the entry in
/etc/inittab explicitly tells init that the hplx_admin bit
or set_comp bit are to be left set. Note that the file
/etc/inittab is protected by the HP-LX file protection
mechanisms.

It is important to note that we provide no method to
set hplx_admin or set_comp after they have been
cleared from user space. It is only possible to clear
each bit or query its value from user space.
Therefore a user space process can voluntarily give
up one or both these privileges (never to get them
back), but it can never gain a privilege it did not have
when created.

In the default configuration init spawns two
processes with both hplx_admin and set_comp set:
getty for terminal 1 (console login) and an instance of
the Secure Shell Daemon [SSH].

The console login is only usable by those that have
physical access to the system. Any successful login
to terminal 1 will have both the hplx_admin and
set_comp bits set, irrespective of user identity. This
is a convenience feature for those who have physical
access to the hardware – we do not attempt to protect
the machine from those that have physical access.

The Secure Shell (SSH) is used for remote
administration. After a remote user has been
successfully authenticated by SSH, a PAM
(Pluggable Authentication Modules) module checks
whether or not that user is an authorized
administrator, if they are not authorized the
hplx_admin and set_comp bits are cleared by the
PAM module. Using PAM in this way avoids
modifying SSH.

By default we do not permit remote login as root
using SSH. We require users login under their real

identity so we can audit their administration activity.
Note that users need to su to root to perform
administrative operations such as mount, as they
would on an ordinary Linux system.

The mechanisms described in this section work
independently of the “root” privilege and Linux
capabilities. HP-LX still requires the root privilege to
perform administrative operations only available to
root on Linux. The set_comp and hplx_admin
privileges are additional privileges introduced and
used only for managing the security configuration of
HP-LX. We choose not to use Linux capabilities
because we wanted a well-defined management
model for controlling who gets the privilege as
described above. This means we can audit which
users are performing administrative actions on the
system, because we will have their real user
identities. In addition, it enables us to easily control
which processes administrative users can use to enter
the system. Finally, it was not obvious which of the
existing capabilities in Linux we could use without
changing the semantics associated with that
capability. The three privileges of “hplx_admin”,
“set_comp” and “root” constitute a split privilege
model, but the granularity is much coarser than is
found in many implementations. For example there
are currently 29 capabilities in Linux and in some
systems there are over 70 privileges [Sun]. By
choosing a coarse granularity we have chosen to
trade flexibility for simplicity.

3. The typical default configuration

Figure 4 shows the typical default compartment
configuration for HP-LX with a web server (Apache)
and Tomcat engine installed.

Figure 4: Typical compartment configuration

The administration compartment is a unique
compartment on HP-LX. This is not subject to the
HP-LX communication and file access controls.
Processes running in this compartment are not able to
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they can access any network, any file (provided
permission bits allow it) and can send messages to
any process in any other compartment.

The primary use of the administration compartment
is for system diagnosis and administration. It is not
recommended that network services be run in this
compartment – any service run in this compartment
will not derive benefit from the security mechanisms
in HP-LX.

Recall that HP-LX is often installed as a dual-homed
host providing a secure application-level gateway
between the Internet and Intranet. In this
configuration, with the exception of the
administration compartment, the only compartment
that has access to the external network or Internet is
the Web compartment.

The following compartments have access to the
internal network or Intranet

• Backup – so that backups can be made and
sent to remote backup servers

• Xinetd – runs xinetd which is used to start
the backup daemon (amandad)

• Mail transport agent – for sending outbound
email (certain services need this, for
example, Tripwire needs to be able to email
reports of file integrity problems to an
administrator) – HP-LX will not accept
incoming email in its default configuration

• Tomcat – runs the java servlet engine
Tomcat to connect to and retrieve data from
hosts on the Intranet.

• SSHD – runs the Secure Shell Daemon to
allow remote logins for secure
administration.

The Audit, Syslog and System compartments are
used to run various services (see diagram) that do not
require direct network connections.

4. The tension between security and
usability

It is a well-accepted and good security principle that
you should never have “unnecessary” software on a
host [Pipkin97]. The idea is that an attacker could
abuse this software. In the past this has led to
“hardened” versions of operating systems being
shipped to customers with much less software being
installed than on the default “non-hardened” system.

Unfortunately predicting what is “unnecessary” is
very hard. Different customers require different
application sets. Support activities such as diagnosing

a fault often requires additional software not used in
normal operation of the host (e.g. debuggers). So
what software is necessary will change during the
lifecycle of the system.

In HP-LX we take a different approach. When the
system is initially installed it has only a few minimal
services running as described above. However, after
initial installation and configuration, any software
available in the Red Hat 7.1 Linux distribution can be
installed and run on HP-LX. We rely on the HP-LX
security mechanisms to prevent the software from
being used to execute an attack.

The administration compartment is used for running
software such as ping, traceroute and gdb. In this
compartment ping and traceroute behave as they
would on any normal Linux installation. The
debugger, gdb can be attached to any process in any
other compartment. If you tried to run the debugger
in a compartment other than the administration
compartment, it would be allowed only to attach to
processes in its own compartment.

5. Related work

HP-LX draws heavily on our own experience with
HP Virtualvault [Virtualvault] – a secure web server
appliance. This system is based on an evolution of
the Bell and La Padula model [Bell76] and its
refinement in [TSEC]. The basic concept in [TSEC]
is that a system is divided into a number of
hierachical classification levels (unclassified, secret,
top secret, etc) and non-hierarchical categories
(project1, project2). Every entity (processes and
files) in the system is assigned a sensitivity label
consisting of its classification and categories (an
entity can only have a single classification, but can
be in multiple categories). The classifications and
categories in a system form a security lattice. [TSEC]
specifies the information flows allowed within the
lattice: information can flow up the lattice, but not
down or across it. In Virtualvault we used the
security lattice to separate the machine into 4
separate regions as shown in Figure 5.

The web pages and any immutable data is stored with
sensitivity label S. It is at the bottom of the lattice, so
it can be read, but not written by processes in other
parts of the lattice. The web server is assigned the
label SO, as is the external network interface. The
internal network interface and the processes used to
access the internal network are assigned the label SI.
The label SIO is used to store data that cannot be
read by any other processes in other parts of the
lattice (although they can write it). This is used to



store audit data. Since there is no relationship
between SI and SO, no information can flow between
them. This is a problem, because we need to get data
from the web server to the internal network and back
again in a controlled, secure fashion. The information
flows permitted by the lattice are too restrictive to
build a useful system.

Figure 5: The security lattice in Virtualvault

To address this problem a number of privileges are
introduced that a process can possess to allow it to
override the information flows permitted by the
lattice security model. To relay information across
the lattice, privileged processes are used. These
privileged processes are called “Trusted Processes” –
this is an appropriate term as the security of the
whole system depends on them not being
compromised and abusing their privileges. Writing a
Trusted Process is a difficult and time-consuming
task – you need a deep understanding of the model in
[TSEC] and the use of privileges.

In HP-LX we carried forward the fundamental idea
of separating the machine into a number of regions –
we call these compartments. However, we do not
have any implicit information flows. Instead we
require administrators to configure the
communication patterns explicitly using metaphors
that should already be familiar to them (similar to the
idea of configuring a packet filter). Instead of
assigning files into compartments only processes are
assigned to compartment and we require
administrators to make explicit what files should be
available to particular compartments and what the
access mode should be.

Domain and Type Enforcement is a more recent
model [O’Brien91, Badger96]. The basic idea in type
enforcement is that each active entity (e.g. process) is
assigned a domain and each passive entity (e.g. file is
assigned a type). A Domain Definition Table (DDT)
specifies the interactions allowed between a given
domain and type. A Domain Interaction Table (DIT)
specifies the interactions allowed between entities in

different domains. Badger et al. reported that this
approach has a number of problems [Badger96]: the
configuration of the tables becomes very complex;
the tabular structure does not map well to the
hierarchical structure of a file system; designing the
type enforcement policies is complicated and it is
hard to reuse them. Fundamentally these problems
concern difficulties in mapping the model to the
abstractions used by the underlying operating system.
[Badger96] proposed overcoming these problems by
introducing a high-level policy language that can be
used to specify the information held in the DDT and
DIT. Our approach differs in that our model is built
around the underlying abstractions used by the
operating system (files, directories and ports). So our
model fits well with the underlying operating system
abstractions and the metaphors used to configure it
are familiar to system administrators.

PitBull LX [Argus] uses the concept of domains to
label system resources. A dominance and intersect
relationship is defined on domain sets. Whenever a
process attempts to access a file the process’s domain
set must dominate the file’s domain set for the access
to be allowed. Similarly a process’s domain set must
intersect the network’s domain set for a network
access to succeed. Thus this model creates implicit
information flows based on abstract domain set
relationships that are not part of the underlying
operating system. Our philosophy is that it is simpler
to make the information flows explicit using the
abstractions of the underlying operating system.

Linux Intrusion Detection System or LIDS [LIDS,
Chaubal01] has several features to improve the
security of Linux: controlling kill signals, protection
of sensitive parts of the kernel and file system
protection. The file system protection mechanisms
have some similarities with those in HP-LX. LIDS
can specify access controls that apply to everybody
including root: so even root can be prevented from
modifying a file. LIDS can specify access controls
that apply to particular executables – so an
executable can be restricted to a predefined set of
files and directories. The key differences between
HP-LX and LIDS are that LIDS does not have a
notion of compartments and does not provide control
of network access. Compartments provide us with a
convenient way of grouping processes together, so
that they are contained together and subject to the
same controls.

Immunix [Immunix] has two main features that seek
to contain applications and services in a similar way
to HP-LX. Immunix provides protection against two
common classes of bugs that are exploited by
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attackers to compromise and take over applications
and services. The HP-LX containment mechanisms
attempt to protect against arbitrary vulnerabilities
(not just specific classes). In addition the HP-LX
containment mechanisms provide some protection
against application mis-configuration. Immunix also
provides a file system protection mechanism called
SubDomain. This is very similar to the HP-LX FCT
mechanism: it allows the administrator to list the files
a program may access, and the operations the
program may perform on those files. The major
difference between the HP-LX FCT and SubDomain
is that in HP-LX we specify the file access per
compartment, rather than per process. Using
compartments in this way makes it easy to apply
controls to groups of processes. HP-LX also provides
extensive control on inter-process communication
and network use. Immunix includes no specific
features to control communication.

The focus of the Security Enhanced Linux
[Loscocco01] project is to develop the underlying
mechanisms to support a wide range of robust
security models into the Linux kernel. The
architecture is based on Type Enforcement, but also
provides support for Multi-Level security [TSEC].
Both these models have been discussed above. The
focus of our work has been to develop a new security
model that improves on the usability of earlier
security models.

6. Issues and further work

HP-LX should be seen as part of a wider security
strategy. It provides a robust platform to protect you
against compromises of your applications and
services. However, it cannot protect you against
security errors inside your applications. For example,
suppose a user successfully authenticates to an
application and then (due to an error in the
application-level access control) is able to wrongly
access data inside the application. HP-LX cannot
protect you against this error. Thus your wider
security strategy needs to consider the security model
inherent in your application and any other elements
that might be part of the interaction between the
client and the service, such as the secure
configuration of packet filters or firewalls.

Two issues that we have not addressed in the current
version of HP-LX are NFS and distributed
containment. Support for NFS will allow us to
provide secure access to remote files. Distributed
containment will allow us to preserve compartment
attributes across multiple HP-LX machines. This

requires using a secure networking technology such
as IPSEC to authenticate and preserve the
compartment attributes on a remote machine.

7. Summary and conclusion

HP-LX provides a secure environment to protect you
against compromises of applications and services by
bugs or mis-configuration. The key idea is
containment – to contain a service to a known part of
the machine and to contain its ability to communicate
with other entities both on the machine and remote.
This prevents processes probing the network (to
propagate worms) and overwriting sensitive files
(defacing web pages).

The mechanism we introduced to implement
containment is based on compartments. Each process
has a compartment attribute associated with it. Every
time a process attempts to communicate or access a
file the kernel examines the compartment attribute
and checks the File Control Table or Communication
Control Table to see if the action is allowed.

This security model was developed using our
experience of deploying an existing security model
developed for military use [TSEC]. An important
objective was to make the new security model much
easier to use. We do this by requiring administrators
to explicitly identify files and communication
endpoints using abstractions that are already
available in the operating system. This is in contrast
to requiring the administrator to work within the
confines of an abstract security model that may not
fit well with the abstractions of the underlying
operating system.

Availability

Further details including availability of HP Secure
OS software for Linux (HP-LX) are available at:
http://www.hp.com/security/products/linux/
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