
USENIX Association

Proceedings of the
5th Annual Linux

Showcase & Conference

Oakland, California, USA
November 5–10, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Rapid Reaction Linux :
Linux with low latency and high timing accuracy

combining the ´Low Latency Patch´ with the ´UTIME Patch´,
adding some ideas

Arnd C. Heursch and Helmut Rzehak
Department of Computer Science

University of Federal Armed Forces, Munich,
Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

{heursch, rz}@informatik.unibw-muenchen.de,

http://inf33-www.informatik.unibw-muenchen.de

Abstract

Rapid Reaction Linux has been created at the Univer-
sity of German Federal Armed Forces in order to en-
hance realtime capabilities of the standard Linux kernel.
Rapid Reaction Linux combines two well known patches
to achieve this goal on the Intel x86 architecture using
processors like Intel Pentium or any newer descendant.

Rapid Reaction Linux combines the LOW LATENCY
Patch [Molnar00], provided by Ingo Molnar, which has
been found to reduce long latencies in the Linux kernel,
with the UTIME Patch [Kansas97] of Kansas University
that improves the precision of standard Linux timing ser-
vices. Rapid Reaction Linux is not related to the well
known KURT Linux [KURT98], except for the UTIME
patch, both systems are relying on.

1 Introduction

In the past year, 2000, we have seen two main ap-
proaches to lower the latencies of the Linux kernel in
order to make Linux more responsive and suitable for
time-critical applications:

• The introduction of Preemption Points into the
Linux kernel [Molnar00, Morton01].

• The approach to make all the Linux system calls and
all other kernel code preemptable, if it does not con-
tain locks [MontaVista00].

As the project, that started first, the introduction of
Preemption Points into the kernel, f.ex. by the “Low La-
tency Patch” [Molnar00], has already shown good results
to lower many long latencies [Wilshire00, Wang00].

Since time-critical tasks also need a precise time base,
it would make sense to improve the accuracy of the
Linux timing base combined with low latencies. Instead
of simply decreasing the period of the timer interrupt,
which would add the overhead of the timing routines, we
chose the UTIME Patch [Kansas97] which reprograms
the timer chip to the next foreseeable event, ported it to
Linux 2.4 and combined it with one of the low latency
patches. After adding some ideas and lines of code, we
called the result “Rapid Reaction Linux”.

In the following sections we present the measurements
we made with Linux and Linux realtime enhancements to
show which advantages “Rapid Reaction Linux” can pro-
vide. Then we speak about the code changes, we made
in the “Rapid Reaction patch” and we close examining
possible performance changes of our kernel patch.

2 Testing Linux and Linux realtime en-
hancements

The test program we use has been presented by
Phil Wilshire at the second Real Time Linux Work-
shop [Wilshire00]. A task executes f.ex. 1000 times a
nanosleep(50 ms) to sleep every time for a period
of 50 ms, Pseudo code:

for(int i = 0; i< 1000; i++)
{

get_time_stamp_from_TSC(t1);
nanosleep(50 ms)
get_time_stamp_from_TSC(t2);
time_slept = t2-t1;
delay = time_slept - 50 ms;
/* results, see Tables 1,2 */

}

The timet2-t1 is determined using the 64 bit Time
Stamp Register (TSC) of the x86 processor. This test
reveals3 problems of Standard Linux:

1. Linux has a standard lag onnanosleep() of 10
ms, i.e. 1 jiffie, whennanosleep() is called pe-
riodically, i.e. instead of a period of 50 ms, Linux
sleeps about 60 ms in the sample above. This can
be seen from our measurements, regarding column
´mean delay´ in Table 2, best to be seen in lines
A,C,D and F because of short latencies, and from
the variable ´rawdata´ in the Linux test program
given in [Wilshire00].

2. At the first time nanosleep(50 ms) is exe-
cuted, the lag is often much shorter than the ’mean
delay’ of 10 milliseconds (ms), because the start
of the first period is not synchronized to the timer
interrupt, reawakening the sleeping process. This
problem can be observed at the column ’min de-
lay’ in the lines A,B,C,D and F in Table 2. The test
program given in [Wilshire00] has been changed to
evaluate also this first measured value.

3. When running add job and writing the buffers
to the hard disk usingsync in background, caus-
ing heavy hard disk activity - as proposed in
[Wilshire00] -, Linux shows long worst case laten-
cies on the order of hundreds of milliseconds, see
lines A,B,C and F of Table 1.

Rapid Reaction Linux improves all 3 problems, see line
E of Tables 1 and 2.

In Table 1 and 2, a periodical task with a period of 50
ms shall be executed. Instead of the desired period of
50 ms, all standard Linux kernels execute this task nor-
mally with an delay of 10 ms, i.e. all 60 ms. Only the
original UTIME Patch [Kansas97] for Linux 2.2.13 and
“Rapid Reaction Linux” normally execute the periodical
task with the desired period, i.e a mean delay of nearly
0 milliseconds, see Table 2. The 31 microseconds mean
delay we see in line E of Table 2 might be partly due to

the Linux scheduler, that selects the SCHEDFIFO pro-
cess among all other process. Except for Rapid Reac-
tion Linux the first period after starting the measurement
normally produces the minimum value, that can differ
up to 10 ms from the mean value, because the start of
the measurements and the firstnanosleep(50 ms) is
not synchronized to the timer interrupt. The “ping” load
in Table 2 isn’t a heavy load for the system, so the dif-
ference in between the ’maximumdelay’ and the ’mean
delay’ in Table 2 is only in between 100 and 300 mi-
croseconds. But when - as shown in Table 1 - a heavy
disk load is executed on the system as background load,
for the most Linux versions, the maximum delay mea-
sured differs from the mean delay about 100 ms. This is
due to latencies caused by non-interruptible system calls
invoked by the disk load program, probably to write the
buffers to disk (sync). Only the “Low Latency Patch”,
Line D, and Rapid Reaction Linux, Line E, that incorpo-
rates it, can reduce these latencies to the order of 5 ms
on our hardware. As “Rapid Reaction Linux” combines
the UTIME Patch, ported to 2.4, with the “Low Latency
Patch” and because it applies some changes described in
section 8.2 and 8.3, “Rapid Reaction Linux” can provide
the lowest (maximum - minimum)delay values with a
very good meandelay near 0 ms in both Tables 1 and 2.

3 Periodical Tasks in Rapid Reaction
Linux

In standard Linux the period of a periodical task has to
be a multiple of 10 milliseconds. In Table 2 we see, that
standard Linux adds 10 ms by default to the period and
in Table 4 we see - if the period is not a multiple of 10
ms - Linux rounds it up to the next 10 ms boundary. So
a periodical task is scheduled with a real period:

real period = desired period+ standard delay

wherestandard delay normally is a fixed value in be-
tween 10 up to 20 milliseconds, when there is no heavy
load on the system. In standard Linux it is not possible
to run a task with a period less than 20 ms, if you don’t
want to perform ’busy waits’ (see Table 4). A ’busy wait’
is performed in Standard Linux and in Rapid Reaction
Linux, if the sleeping period is 2 milliseconds and be-
yond and if the process is scheduled by a soft-realtime
policy, i.e. by the scheduling policies SCHEDFIFO or
SCHEDRR.

In Rapid Reaction Linux the period hasn’t to be a mul-

delay in ms Min Mean Max
delay delay delay

load: disk stress ms ms ms
A Linux 2.2.13 0.2 11.2 119.6
B A+UTIME Patch -9.8 1.7 125.2
C Linux 2.4.0-test6 0.2 10.9 103.5
D C+LowLatency 3.1 9.9 11.9

Patch C4
E C + Rapid 0.019 0.341 5.2

Reaction Patch
F C+Preemption 0.8 12.2 119.9

Patch 1.5

Table 1: Results of a task callingnanosleep() for a pe-
riod of 50 ms periodically on an AMD K6 with 400 MHz. The
columns{Min, Max, Mean} mean thedelay, i.e. the time in-
terval the kernel variant caused the soft-Realtime Process to
sleep longer than the period of 50 ms (milliseconds). Ideally
delay should be 0 ms for{Min, Max, Mean}. Shown are the
minimum and maximum times measured{Min delay , Max
delay } and the meandelay measured{Meandelay }. The
test programm ran over 1000 periods in init 5. The IDE hard
disks were not tuned using the program “hdparm”. During
all these measurements a program performed hard disk stress
[Wilshire00] in the background.

tiple of 10 ms, although the period of the Linux timer
interrupt remained unchanged at 10 milliseconds. Ta-
ble 3 shows that in Rapid Reaction Linux it is possible
to choose other periods. It is possible to schedule tasks
with a period of 3.250 ms, 4 ms, 13.350 ms, ... and the
standarddelay is only in between 20 to 30 microseconds.
The maximumdelay measured was about 400 microsec-
onds, while there was no heavy load on the system. On
our AMD K6, 400 MHz, only a X as graphical user in-
terface with some terminals was running.

Table 5 shows once more the difference between Stan-
dard Linux and Rapid Reaction Linux, but this time with
a heavy disk load, produced by the programdd and
sync operations, that write the buffers to the IDE hard
disk [Wilshire00]. Standard Linux again shows its stan-
dard delay of 10 ms as a period of 50 ms is a multiple
of 10 ms. The heavy disk load produces some very long
latencies up to 110 ms in Standard Linux.
Rapid Reaction Linux can provide a mean delay of only
300 microseconds to the periodical task. The maximum
delay measured here was about 3.3 milliseconds The
minimum delay is again at 20 microseconds, as in the
case without load for Rapid Reaction Linux (see Table
3).
The mean delay increases slightly for Standard Linux
from about 10 to 10.9 ms and for Rapid Reaction Linux

delay in ms Min Mean Max
delay delay delay

ping load ms ms ms
A Linux 2.2.13 1.7 10.0 10.1
B A+UTIME Patch -0.7 0.012 0.3
C Linux 2.4.0-test6 4.6 10.0 10.2
D C+LowLatency 8.4 10.0 10.1

Patch C4
E C + Rapid 0.020 0.031 0.141

Reaction Patch
F C+Preemption 5.3 9.99 10.2

Patch 1.5

Table 2: Results of the same measurement program as used
in Table 1. The only difference to Table 1 is that this time the
background load consists of a program generating net stress
by pinging another host [Wilshire00] during the measurements.
As we can see from the fact that the maxdelays do not differ
much from the meandelays, the “ping load” is no serious load
compared to the “disk load” of Table 1

from near 0 to 0.3 ms, because the increase of the maxi-
mum delays increases the mean, too.

lines in Tables provider of kernels
1 and 2 and kernel patches
A,C: Standard Linux kernels
B: UTIME Patch by [Kansas97]
D: Low Latency Patch C4

by [Molnar00]
E: Rapid Reaction Patch

by the authors
F: Preemption Patch 1.5

by [MontaVista00]

4 Latencies in the Standard Linux kernel

4.1 the Standard Linux Scheduler

The standard Linux scheduling algorithm, named
SCHEDOTHER, is a Round Robin scheduler. Time-
critical tasks instead should be scheduled using the
SCHEDFIFO or SCHEDRR policies, that provide
fixed priorities and are preferred to any SCHEDOTHER
process. Those processes are named Soft-Realtime Pro-
cesses hereafter.

delay in ms
E: Rapid period min mean max
Reaction delay delay delay
Linux,
no load ms ms ms ms
Busy Wait→ 2.000 -0.001 0.00086 0.080

3.250 0.018 0.020 0.110
4.000 0.017 0.020 0.126

13.350 0.017 0.031 0.208
27.500 0.009 0.021 0.112
38750 0.010 0.021 0.156
50000 0.013 0.021 0.078
53.350 0.010 0.025 0.393

Table 3: This table shows other periods of a periodical task,
that are possible in Rapid Reaction Linux, here based on the
kernel Linux 2.4.0-test6, if there is no heavy disk load on the
system. The test program ran on an AMD K6 400 Mhz in run-
level init 5 for 1000 periods for each measurement, without any
additional load program. For SCHEDFIFO tasks with a period
of 2 ms and beyond, Standard Linux and Rapid Reaction Linux
perform a Busy Wait, which produces highest accuracy, but no
other process can be executed in these 2 milliseconds.

4.2 Reasons for Latencies in the Linux kernel

Linux system calls as well as Linux kernel daemons
both execute in kernel mode and cannot be preempted.
So another process ready to run has to wait until the sys-
tem call has been finished. This causes worst case la-
tencies on the order of hundreds of milliseconds or even
more on current Intel PC’s (see lines A,B,C of Table
1). We regard an interrupt that awakens a soft realtime
process out of its interrupt service routine (ISR). In the
ISR the variablecurrent →need resched is set to
1. If the interrupt occured while the processor was in user
mode, the scheduler will be started immediately after the
ISR has been finished. If the processor was in kernel
mode, the system call is finished first, causing possibly a
long latency.

5 Low Latency Patch

Ingo Molnar [Molnar00] identified six sources of long
latencies on the order of tens up to hundreds of millisec-
onds on current hardware in the Linux kernel:

• Calls to the disk buffer cache

• Memory page management

delay in ms period min mean max
C: Linux delay delay delay
2.4.0-test6
no load ms ms ms ms
Busy Wait→ 2.000 -0.005 -0.0046 0.003

3.250 11.3 16.7 16.8
4.000 11.6 16.0 16.0

13.350 15.5 16.6 16.7
27.500 6.7 12.5 16.7
38.750 7.2 11.2 11.3
50.000 6.4 10.0 10.05
53.350 8.9 16.6 16.7

Table 4:This table shows other periods of a periodical task, on
the standard Linux 2.4.0-test6 kernel, if there is no heavy disk
load on the system. In standard Linux it is not possible to run a
task with a period less than 20 ms, except you use Busy Waiting
for SCHEDFIFO processes that only have to wait for 2 ms or
less. The standard lag of standard Linux is 10 ms. Tasks with
a period, thats not a multiple of 10 ms are delayed to the next
bigger period that is a multiple of 10 ms, plus 10 ms. F.ex a
task with a period of 50 ms is scheduled with a mean delay of
10 ms, so it is in fact scheduled with an period of 60 ms. A task
with a period of 53.350 has a mean delay of 16.6, so its in fact
scheduled with a period of about 70 ms. So, in standard Linux
it is not possible to run a task with a period less than 20 ms. The
test program ran on an AMD K6, 400 MHz, in runlevel init 5
for 1000 periods for each measurement,without any additional
load program running.

• Calls to the /proc file system

• VGA and console management

• The forking and exits of large processes

• The keyboard driver

A possibility to reduce such kernel latencies is to in-
troduces Preemption Points into the system calls of the
kernel:

if (current->need_resched)
{

current->state = TASK_RUNNING;
schedule();

}

The standard Linux kernel 2.4.3, f.ex. contains already
34 conditional preemption points for the Intel x86 archi-
tecture and 53 Preemption Points for all other architec-
tures together.

delay in ms period min mean max
load: delay delay delay
disk stress ms ms ms ms
C: Linux 50.000 0.242 10.9 110
2.4.0-test6
E: Rapid 50.000 0.018 0.3 2.9
Reaction Linux
E: Rapid 53.530 0.020 0.3 3.3
Reaction Linux

Table 5: This table compares Rapid Reaction Linux to stan-
dard Linux once more: In Rapid Reaction Linux it is due to
the UTIME patch possible to choose a frequency which isnt a
whole number. In standard Linux this is not possible. Due to
the Low Latency Patch latencies are greatly reduced in Rapid
Reaction Linux. All measurements in this table have been made
while Phil Wilshires program generated heavy disk load. This
explains why the max delay is higher as in Table 3, where there
is no load on the system. At frequencies beyond 50 ms it has
not been possible to execute a sync of our IDE-hard disk in
between.

The ’Low Latency’ kernel Patch created by Ingo Mol-
nar [Molnar00] introduces about 50 additional Preemp-
tion Points into the standard Linux kernel code at po-
sitions where long latencies, f.ex. caused by long non-
interruptible system calls, occur in standard Linux as
shown above. These Points are called ´Conditional Pre-
emption Points´ since the kernel is preempted there only
if the variablecurrent →need resched is set to
1. Then in the system call at the Preemption Point the
scheduler is invoked and f.ex. a time-critical process can
get the processor. As stated in literature [Wang00] Ingo
Molnar managed to place his Preemption Points without
affecting the stability of the Linux kernel. He success-
fully reduced many special long latencies to the order
of 5 to 10 ms [LinAudio01]. The value of (maxdelay -
meandelay) in line D of Table 1 confirms this testimony.

6 Time base of the standard Linux kernel

6.1 the timer interrupt - the heart beat of a
linux system

The standard Linux Kernel programs the timer chip of
the PC to generate a timer interrupt all 10 ms. The timer
Interrupt Service Routine increments the global kernel
variableunsigned long volatile jiffies by
1 every 10 ms. All timing services of the standard linux
kernel are calculated on the basis ofjiffies . So no

timing service has a resolution higher than 10 ms. An
exception to that rule are a few busy waits for soft real-
time processes.

6.2 How do timing services work in standard
Linux ?

Let´s assume a user process wants to sleep for a
period of 50 ms, therefore it invokes the system call
nanosleep() with the right parameter. As always
when a system function requests a timing service in
Linux, the struct of a linux kernel timer is filled with the
appropriate values and put into a list of kernel timers, i.e.
a list of all events in the system to be scheduled at a fixed
time in future.

This is the kernel timer structure of the Linux 2.4.4
kernel:

struct timer_list {
struct list_head list;
unsigned long expires;
unsigned long data;
void (*function)(unsigned long);

};

The field ´expires´ gets a jiffie value in the future when
the timer shall expire. All 10 ms, when a timer inter-
rupt occurs in standard Linux, the timer ISR activates the
timer bottom half, which is executed by the scheduler.
In the bottom half the kernel timers in the kernel timer
list are checked whether the value of itsexpire -field
is less than the actualjiffies value. If so, a certain
timer has expired and the bottom half now executes the
function the pointer of the function field points to. The
data field serves as parameter given to this function. That
way, the process that callednanosleep(..) before,
is awakened after sleeping for the predefined time and
somedelay.

The standard lag onnanosleep() in the standard
Linux kernel, even for a soft realtime process, is 10 ms.
Furthermore a worst case latency on the order of hun-
dreds of milliseconds on current hardware can occur, as
show also our measurements in lines A,B,C of Table 1.

7 the UTIME Patch

Now we look at a mechanism to improve the timing
resolution of the standard Linux kernel:

By changing the value of the global kernel variable
HZ it would be possible to generate timer interrupts at a
higher rate, f.ex. all 1 ms. But this would lead to a very
high timing overhead, executing timing service routines
much more often.

The UTIME Patch [Kansas97], developed at the Uni-
versity of Kansas, takes advantage of the fact that soft re-
altime tasks may have stringent timing requirements on
the order of 100 microseconds (usec), but it is very un-
usual that there is such an requirement every 100 usec.
The solution provided by UTIME is to reprogram the
timer chip after every timer interrupt to the next foresee-
able event. If there is any task, f.ex. requiring scheduling
in 7 milliseconds (ms), the timer chip is reprogrammed
to generate an interrupt at exactly that time. If there is
not such a timing event the timer chip is reprogrammed
to generate the next timer interrupt just in 10 ms. So it´s
guaranteed that the interval in between two timer inter-
rupts is never longer than 10 ms, the period of the timer
interrupt in standard linux.

UTIME extends the global kernel variableun-
signed long volatile jiffies by a variable
calledjiffies u, that is adjusted at every timer inter-
rupt to the appropriate value in between 0 and 9999 mi-
croseconds (usec) to indicate how much time there is un-
til the variable jiffies has to be increased again. The linux
time base does not suffer from the jitter of the 8054 timer
chip on the order of microseconds, becausejiffies u
is set according to the actual value of the Time Stamp
Clock Register (TSC), which is a 64 bit processor regis-
ter in the Intel Pentium and all its descendants, also those
x86 processors made by AMD, f.ex. This register is up-
dated every clock cycle by the processor.

7.1 Porting the UTIME Patch from Linux
2.2.13 to 2.4

Since there is only a version of UTIME for Linux
2.2.13 available to download [Kansas97] we ported the
patch to the Linux 2.4.0-test6 kernel on our own.

We had to adapt the UTIME patch to the Linux 2.4
kernel, some of the changes we mention here:

• Linux 2.2 and Linux 2.4 contain a complex man-
agement for time-critical tasks, containing a vector
with six lists of events to execute at specified times.
This structure is probably faster, but possibly not
realtime-compliant [KURT98], so we used the older
but realtime compliant “old timer list” used in Linux
2.0 and 2.2.

• Linux 2.2 contains a kernel variable “lostticks”,
which serves to store the jiffies for the time in be-
tween the timer interrupt occurs and the timer bot-
tom half updates the time basis. This variable has
been erased for the x86 platform in Linux 2.4 and
replaced by the difference “jiffies-walljiffies”, con-
taining the new variable “walljiffies”. We adapted
the UTIME patch to these changes.

• Many other slight changes were necessary.

8 Rapid Reaction Linux

8.1 UTIME and Low Latency patch forming
Rapid Reaction Linux

Rapid Reaction Linux combines the ’Low Latency
Patch’ with the ’UTIME Patch’ to be able to serve time-
critical soft realtime tasks in a better way.

Why did we decide to combine just these 2 patches ?

• Due to our measurements - compare line A,C,D
and F of Table 1 - and the study of literature
[Wilshire00, LinAudio01] we got the impression
that Ingo Molnars ’Low Latency Patch’ reduces ker-
nel latencies best at the moment. Incorporating the
´Low Latency Patch´ solves problem 3) of section
2, i.e. reduces many long latencies.

• Since the Low Latency Patch seems to be able to
reduce many known worst case latencies to the or-
der of tens of milliseconds on current PC systems, it
is worth to improve the resolution of Linux timing
services beyond 10 milliseconds, too. That´s what
the UTIME patch does, without generating much
overhead, when there are no time-critical tasks to
process. So we ported the UTIME patch from the
Linux 2.2 kernel to Linux 2.4

• The code changes of the ´Low Latency´ Patch are
somehow orthogonal to the changes the UTIME
patch mades, because both patches aim at different
goals. So the two patches don´t interfere.

There are two further changes we made to the kernel
code, worth mentioning, presented in the two following
subsections. These changes also lead to the better results
of Rapid Reaction Linux in line E of Table 1 and 2, com-
pared to a combination of the best values of line B, the
UTIME Patch, and line D, the Low Latency Patch.

8.2 improving UTIME kernel timers oneshot
behaviour

Since Rapid Reaction Linux incorporates the UTIME
Patch,nanosleep() has no standard lag of 10 ms, i.e.
problem 1) of section 2 is solved. But we had still to
solve problem 2), that the firstnanosleep(50 ms)
often ends up to 10 ms too soon, because of the out-
dated system time. To solve this problem it is neces-
sary to have the linux time base actually updated be-
fore adding the period, the process wants to sleep, to
the actual time. Regardingnanosleep() we called
the UTIME functionupdate jiffies u() to update
the system time before starting the sleeping period.up-
date jiffies u() uses the TSC register of the pro-
cessor. That way we could avoid also the first jitter of
nanosleep() , see the ´0.019 ms´ as minimum delay
and the mean delay of ´0.341 ms´ of Rapid Reaction
Linux in line E of Table 1,f.ex. compared to ’-9.8 ms’
of the UTIME Patch in line B.

The following code shows the changes made to the
code of the UTIME function
schedule timeout utime(..) , called by
nanosleep() :

/* Rapid Reaction Linux begin
update jiffies_u and jiffies

to the actual time */
update_jiffies_u();
/* Rapid Reaction Linux end */

expire = *timeout + jiffies;
expire_u = *timeout_u + jiffies_u;

/* UTIME: */
expire += expire_u/USEC_PER_JIFFIES;
expire_u = expire_u%USEC_PER_JIFFIES;

init_timer(&timer);
timer.expires = expire;
timer.usec = expire_u; // UTIME
timer.data = (unsigned long) current;
timer.function = process_timeout;

add_timer(&timer);
schedule();

del_timer(&timer);

process timeout is a function, that is started in
the timer bottom-half, that has been triggered by a timer
interrupt.process timeout serves to awake the pro-
cess, put to sleep before by callingnanosleep() , after
the timer interrupt has come at the predefined time. The
data of the process to awake has been stored in the field
timer.data , see code above.

8.3 introduction of soft realtime timers

Being able to program timer interrupts more precise
than 10 ms to trigger a time-critical event, f.ex. to awake
a soft realtime process, it is reasonable that the scheduler
is started as soon as possible after the Interrupt service
routine (ISR) is done. To achieve this goal we added
the field ’timer.need resched ’ to the kernel timer
structure. In Rapid Reaction Linux this field will be set to
1, every time a Soft-Realtime process wants to sleep for a
precise time interval. When the affiliated timer interrupt
occurs, the variablecurrent →need resched is set
to 1 in the ISR to reschedule as soon as possible making
possibly use of a Conditional Preemption Point.

In the Linux kernel functionadd timer() we
added support for the Soft Realtime processes and
threads. Ifadd timer() is not called out of an in-
terrupt service routine or out of a bottom half - in
these two casesin interrupt() would be 1 -, then
it is checked whether the calling process is running
with Soft-Realtime priority. If so, we set the field
timer →need resched to 1. We added this field to
the timer structure to be able to express that a special
timer interrupt is generated to schedule a time-critical
process.

void add_timer(struct timer_list * timer)
{

unsigned long flags;
struct timer_list *p;

/* Rapid Reaction Linux begin */
/* initialize */
timer->need_resched = 0;
if(!in_interrupt())
{

if(current->policy &
(SCHED_RR | SCHED_FIFO))

{

timer->need_resched = 1;
}

}
/* Rapid Reaction Linux end */

p = &timer_head;
spin_lock_irqsave(&timerlist_lock, flags);
do
{

p = p->next;
} while ((timer->expires>p->expires) ||

((timer->expires==p->expires) &&
(timer->usec>p->usec)));

timer->next = p;
timer->prev = p->prev;
p->prev = timer;
timer->prev->next = timer;
spin_unlock_irqrestore(

&timerlist_lock, flags);
if (timer->prev==&timer_head)
{

reload_timer(timer->expires,
timer->usec);

}
}

The UTIME Patch uses directly after a timer inter-
rupt the following function to find out, how many mi-
croseconds later from now on - maximal 10000 usecs
later of course - the next timer interrupt shall come.
Here we introduced a global kernel variable named
need resched next timer isr , that is set to 1, if
the next timer interrupt serves to schedule a soft real-
time process or thread, i.e iftimer →need resched
equals 1. The reason why this global variable is needed
is that we don´t know at the interrupt service routine the
timer structure that triggered this timer interrupt. But it
is important to know in the ISR, that the actual timer in-
terrupt has been triggered to f.ex. awake a soft realtime
process.

extern inline unsigned long
time2next_event(void)

{
unsigned long timer_jiffies;
unsigned long timer_jiffies_u;
struct timer_list *next_timer;

/* skip all the expired timers...*/
/* if get_unexpired_timer returns null
* then the next timer boundary
* is a jiffies interrupt */
need_resched_next_timer_isr = 0;
next_timer = get_unexpired_timer();
if (!next_timer)
{

timer_jiffies = jiffies + 1;
timer_jiffies_u = 0;

}
else
{

timer_jiffies = next_timer->expires;
timer_jiffies_u = next_timer->usec;
/* Rapid Reaction Linux begin
need_resched_next_timer_isr:
global kernel variable*/
need_resched_next_timer_isr =

next_timer->need_resched;
/* Rapid Reaction Linux end */

}

if (timer_jiffies == jiffies)
{

return (timer_jiffies_u -
jiffies_u);

}
else
{

/* aim for the HZ boundary */
/* Rapid Reaction Linux begin */
need_resched_next_timer_isr = 0;
/* Rapid Reaction Linux end */
return (USEC_PER_JIFFIES -

jiffies_u);
}

}

During the Interrupt Service Routine of the timer
interrupt we find out - in cases the timer inter-
rupt serves a soft real time task - that the variable
need resched next timer isr equals 1. We set
it back to 0 and we setcurrent →need resched =
1 to invoke the scheduler as soon as possible. That´s
what all our changes aimed at, because having set
current →need resched = 1 in the timer ISR we
are able to use all the conditional preemption points, the
’Low Latency Patch’ introduced into Linux, to reduce
kernel latency times, caused by long term system calls
that normally cannot be preempted.

void utime_do_timer_oneshot
(struct pt_regs *regs)

{
update_jiffies_u();

/* Rapid Reaction Linux begin */
if(need_resched_next_timer_isr)
{

need_resched_next_timer_isr = 0;
current->need_resched = 1;

}
/* Rapid Reaction Linux end */

load_timer();
mark_bh(TIMER_BH);
if (jiffies_intr) {

orig_do_timer(regs);
}

}

9 Examining performance changes

9.1 The Rhealstone Real-Time Benchmark on
Linux 2.4

The Rhealstone Benchmark is a well known bench-
mark for Real-Time operating systems. It has been de-
veloped in 1989 [Kar89, Kar90]. It belongs to the class
of ´fine grained´ benchmarks that measure the average
duration of often used basic operations of an operating
system with respect to responsiveness, interrupt capabil-
ity and data throughput. Using some programs of the
Rhealstone Benchmark we try to examine, whether the
Rapid Reaction Patch or its components affect the per-
formance of the standard Linux kernel.

To set up the Rhealstone Benchmark we looked
at [Kar89, Kar90] to implement the programs in
Linux. Later on we compared our programs and
results to [DEC98]. All benchmark programs use
the scheduling policy SCHEDFIFO and the processes
are locked into memory. In some newer Linux
kernels like the kernel 2.4.5, schedyield() does not
work sufficiently for SCHEDFIFO, i.e. for soft-
realtime processes. We replaced the intended call of
sched yield() in some benchmark programs by
callingsched setscheduler() with a different pri-
ority, but always with the policy SCHEDFIFO. For the
same reason it did not make sense to measure the ´Task or
Context Switch Time´ We did not measure the ´Deadlock
Breaking Time´ either, because Standard Linux does not
possess an implementation of semaphors with ´priority
inheritance´ [Yod01], which is inevitable for this bench-
mark program to make sense. So we must admit that
our benchmark programs are only similar to the bench-
mark programs of the original Rhealstone Benchmark
[Kar90], not identical. We didn´t apply the formula of
the Rhealstone Benchmark to unify all the results up to
one single value, because we measured only a part of the
benchmark. Every measurement has been repeated for 7
million times, thereafter the average values of the mea-
sured times have been calculated. Since the underlying
hardware influences the measurement results, all mea-
surements in the Tables 6 and 7 have been performed on

the same system, on an AMD K6 with a processor fre-
quency of 400 MHz, at the runlevel ´init 1´.

• Preemption Time
This is the average time a high priority process
needs to preempt a process of lower priority, if the
second one executes code in user space and does
not hold any locks. In the benchmark program the
lower priority process just executes a loop. Herein
included is the time the scheduler uses to find out
which process to execute next.

• Intertask Message Passing Time (System V)
This is the average time, that passes in between one
process sends a message of nonzero length to an-
other process and the other process gets the mes-
sage. We measured this time using the System V
Message Queues implemented in Linux.

• Semaphor Shuffle Time (System V)
This means the average time in between a process
requests a semaphor, that is actually helt by an-
other process of lower priority, until it obtains the
semaphor. The time the process of lower priority
runs until it releases the semaphor is not included
in the measurement. So here the implementation of
the semaphors is measured. We measured the Sys-
tem V semaphores for processes, that Linux offers.
Since the Rhealstone benchmark does not measure
interthread-communication, we did not measure the
POSIX semaphores implemented in the libpthread-
library to be used with threads only.

• Interrupt Response Time (IRT)
average time in between an extern peripheral device
generates an interrupt and the first command of the
Interrupt service routine (ISR) as first reaction to the
interrupt. This time is not only affected by the op-
erating system, but also by the hardware used.

The original benchmark measures the ILT - the in-
terrupt latency time -, the time in between the CPU
gets an interrupt and the first execution of the first
line of the interrupt handler.

Our measurement uses the parallel port to generate
an interrupt. The measurement program writes a 1
to the highest bit of the output port of the paral-
lel port. A wire leads the electrical signal out of
that bit into the interrupt entrance of the parallel
port. Generating an interrupt this way, the interrupt
is synchronized to the kernel-thread performing the
outb() call to trigger the interrupt. Nevertheless
the values of the IRT shown in Table 7 are reason-
able and similar to those of other measurements we
made.

Intertask
Version Preemption Message

Time Passing
Time

[usec] [usec]
A Linux 2.2.13 1.5 3.1

B A+UTIME 1.6 3.4
Patch

C Linux 2.4.0-test6 1.1 3.4

G Linux 2.4.9 1.1 3.4

D C+Low Latency 1.1 3.5
Patch C4

E C+Rapid 1.2 3.6
Reaction Patch

Table 6: Results of some of the RHEALSTONE Benchmark
programs, measured on an AMD K6, 400 MHz processor on
different versions of the Linux kernel, measured in the modus
´init 1´, linked with the compiler option -O2 to optimize. Every
measurement has been repeated for 7 million times.

9.2 RHEALSTONE Benchmark Measure-
ments, interpretation of the results

We obtained the results shown in Tables 6 and 7 from
the measurements of our Rhealstone benchmark pro-
grams measured at the runlevel ’init 1’ (all times in mi-
croseconds)

Of course, these benchmark programs only measure a
few often used execution paths in the kernel.

The fine grained benchmark programs don´t show sig-
nificant different results on the different versions of the
Linux 2.4 kernel. The Preemption Time shows smaller
values for all Linux 2.4 kernels compared to the 2.2 ker-
nels. This may be due to the fact, that the Linux sched-
uler efficiency for SCHEDFIFO processes has been im-
proved in Linux 2.4. In Table 6 we can see, that “Rapid
Reaction Linux” has an overhead of about 0.05 to 0.1 mi-
croseconds at the Preemption Time, but the value is still
smaller than the values of the Linux 2.2 kernels. For the
Intertask Message Passing Time it shows up to 0.2 mi-
croseconds of overhead. In Table 7 the “semaphor shuffle
time” of Rapid Reaction Linux is nearly the same as for
Linux 2.2.13, and better than Linux 2.4.0-test6. As Rapid
Reaction Linux in line F is based on Linux 2.4.0-test6,
we can say it decreases the Semaphor Shuffle Time, al-
though its value is higher than the one of Linux 2.4.9.

Version Semaphor Interrupt
Shuffle Response
Time Time
[usec] [usec]

A Linux 2.2.13 5.6 3.5

B A+UTIME 5.2 3.5
Patch

C Linux 2.4.0-test6 6.8 3.5

G Linux 2.4.9 5.3 3.5

D C+Low Latency 6.8 3.6
Patch C4

E C+Rapid 5.8 3.6
Reaction Patch

Table 7: Results of some of the RHEALSTONE Benchmark
programs, the measurement conditions were the same as spec-
ified in the caption of Table 6

When we port “Rapid Reaction Linux” to Linux 2.4.9 in
future, we will see whether it will decrease the value of
2.4.9, too. In our opinion - although the values of Rapid
Reaction Linux tend to be a little bit higher than in Linux
2.4, - they can be compared to those of Linux 2.2 and
they are no reason to fear a major performance loss in
“Rapid Reaction Linux”.

10 Availability

We will continue to develop Rapid Reaction Linux to
perform time-critical operations more promptly and effi-
ciently.

The kernel patch for Rapid Reaction Linux shall be
licensed under the terms of GPL. For the standard Linux
kernel 2.4.0-test6 the patch is available for download on
our homepage:

http://inf33-www.informatik.
unibw-muenchen.de/research/

rrlinux/rapid.html

11 Summary

Our measurements and the measurements of many
others show that the “Low Latency Patch” [Molnar00]
can reduce many long latencies from the order of 100 ms
to the order of 5 to 10 ms. Having a Linux kernel with
reduced latencies it is even more interesting to have also
an accurate time basis.

Therefore we ported the UTIME Patch [Kansas97]
from Linux 2.2 to Linux 2.4 and combined it with the
“Low Latency Patch”. We improved the accuracy of
the UTIME timers and introduced “soft realtime timers”.
The resulting Linux kernel patch we called Rapid Reac-
tion Linux. In our measurements it shows a very good
timing accuracy when executing periodical tasks.

Standard Linux shows a standard lag of 10 ms for peri-
odical tasks, Rapid Reaction Linux does not. In standard
Linux the first period of the task is often shorter than the
following periods, in Rapid Reaction Linux the first pe-
riod has the correct length like all the following periods.
Standard Linux can’t schedule periods in between 2 and
20 ms, Rapid Reaction Linux can.

Standard Linux schedules tasks with periods which are
not a multiple of 10 ms, - the period of the timer inter-
rupt -, with a delay in between 10 and 20 ms - not includ-
ing possible latencies - to round up their period to a 10
ms boundary. Rapid Reaction Linux can schedule these
periods - without rounding their period - , with a mean
delay on the order of tens of microseconds. So Rapid
Reaction Linux is best suited for periodical tasks and/or
for waiting only once an desired amount of time.

A guarantee about the value of the longest latency in
the Linux kernel - with or without the kernel patch of
Rapid Reaction Linux - can’t be given at the present stage
of development - in our opinion -, because nobody can
test all paths of the Linux kernel code and their mutual
interferences.

Concerning the latencies the “Low Latency Patch” in-
corporated in Rapid Reaction Linux reduces many long
latencies from the order of 100 ms to the order of 5 ms
to 10 ms on current hardware. So the higher timing ac-
curacy is disturbed much less by latencies induced by
Linux system calls or kernel threads. This is an impor-
tant reason for the higher timing accuracy to make sense.

We will continue to develop Rapid Reaction Linux to
better the services it can provide for time-critical tasks.

References

[Wilshire00] Phil Wilshire, Real-Time Linux: Testing
and Evaluation, Workshop on Real Time Operating
Systems and Applications and second Real Time
Linux Workshop, Florida, USA, (2000)
http://www.thinkingnerds.com/
projects/rtos-ws/
presentations.html

[Wang00] Yu-Chung Wang and Kwei-Jay Lin,Some
Discussion on the Low Latency Patch for Linux,
Workshop on Real Time Operating Systems and
Applications and second Real Time Linux Work-
shop, Florida, USA, Download: see [Wilshire00],
(2000)

[Molnar00] Ingo Molnar, Linux Low Latency Patch for
multimedia applications,
http://people.redhat.com/mingo
/lowlatency-patches/

[Kansas97] Kansas University, UTIME Patch -
Micro-Second Resolution Timers for Linux,
http://www.ittc.ukans.edu/utime/

[KURT98] KURT-Linux, Kansas University Real-Time
Linux,
http://www.ittc.ukans.edu/kurt/

[MontaVista00] Montavista, Preemption-Patch for the
Linux Kernel
http://www.linuxdevices.com/
articles/AT4185744181.html ,
ftp://ftp.mvista.com/pub/Real-Time

[Srinivasan98] Balaji Srinivasan,A Firm Real-Time
System Implementaion using Commercial
Off-The-Shelf Hardware and Free Software,
Master’s thesis, University of Kansas (1998),
http://www.ittc.ukans.edu/kurt/

[Kar89] R. P. Kar and K. Porter, ”Rhealstone:
A Real-Time Benchmarking Proposal,” Dr.
Dobbs Journal, vol. 14, pp. 14–24, Feb. 1989,
http://www.ddj.com/articles/
search/search.cgi?q=Rhealstone

[Kar90] Kar, R., Implementing the Rhealstone Real-
Time Benchmark, Dr.Dobb´s Journal, April, 1990

[DEC98] Digital Equipment Corporation, Maynard,
Massachusetts, Performance Evaluation: DIGI-
TAL UNIX Real-Time Systems, revised July 1998,
http://citeseer.nj.nec.com/
274569.html

[Yod01] Victor Yodaiken, The dan-
gers of priority inheritance, Draft
http://www.cs.nmt.edu/˜yodaiken/
articles/priority.ps , 2001

[Morton01] Andrew Mortons Low Latency Patches,
University of Wollongong, Australia, 2001,
http://www.uow.edu.au/˜andrewm/
linux/schedlat.html

[LinAudio01] The Home of the Linux Audio
Development Mailing List, FAQ,
http://www.linuxdj.com/audio/
lad/faq.php3#latency

