
USENIX Association

Proceedings of the
5th Annual Linux

Showcase & Conference

Oakland, California, USA
November 5–10, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Persistent Snapshot Device Driver for Linux

Suresh B Siddha

Indian Institute of Science, Bangalore, India

suresh.siddha@alumnus.csa.iisc.ernet.in

K Gopinath

Indian Institute of Science, Bangalore, India

gopi@csa.iisc.ernet.in

Abstract

Web servers and large enterprises demand online
backup capability to protect data that must be avail-
able continuously and eliminate the down-time needed
to perform conventional o�-line backups. Online
backup demand is fueled by growing data capacities
that have lengthened backup window time frames
and by the signi�cant loss in productivity that oc-
curs when servers must be taken o�ine.

Snapshots allow applications to take online backup.
This paper discusses the design and implementation

of a layered device driver in Linux for persistent
snapshots. This paper also discusses the design is-

sues involved in developing a snapshot device driver
in a clustered environment.

1 Introduction

An application such as a �le system or a database
stores data on a device. To protect against loss of
data, the device must be backed up regularly. But
one cannot keep the applications o�ine during large
backup intervals. Backup interval is typically large,
because of slow devices like tape devices. Down time
is a critical problem as it translates into lost busi-
ness for sites like e-commerce sites.

1.1 Snapshots

Snapshots add a `fourth dimension' - time - to the
disk contents as a whole. Data can be viewed in its
current state or as it was at selected instants in the

past. While one access may apply to a particular
static image of the data as of an hour ago, other
users of the data can simultaneously read even older
data sets, or read and write the current image of the
data.

A snapshot eÆciently creates logical copies of disk
partitions, which simpli�es online backup applica-
tion development. Rather than backing-up live data,
backup application access snapshot logical copies
while the server remains online and fully functional.
Snapshot copies of live data are logically equivalent
to copying a real partition, but use signi�cantly less
disk space. Before taking a snapshot, the �le sys-
tem or raw partition has to be frozen. This freezing
ensures that the data on the disk is in a consistent
state. Once the �le system or raw partition is frozen,
a snapshot can be taken. A snapshot manages any
changes to data via the snapshot save area. Before a
physical block is modi�ed, a snapshot invokes a copy
on write (COW) technique, copying the contents of
blocks that are to be modi�ed into the snapshot save
area.

After the block is copied, its physical location can
be overwritten by the changed data. After setting
up a snapshot, only the �rst write of a given block
causes a COW operation (\a COW push"). Subse-
quent writes are allowed to go directly to the real
disk. Since block copy I/O activities occur in real
time and only as blocks are changed, snapshot I/O
has a signi�cantly smaller performance impact than
alternative online backup approaches.

There are two di�erent paths to access original data
and snapshot data. Consider Figure 1 where the �le
project.tex is made of three blocks on disk: A,
B and C. When a snapshot is taken, the version of
project.tex that exists in the snapshot is identical
to the one in the original �le system. Assume that

A B C

File : project.tex File : project.tex
 Original Data Snapshot Data

 mnt point : /project
 mnt point : /backup/project

Modifies data at EOF.

C’

COW

Figure 1: Snapshot COW Mechanism

an application modi�es data at the end of the �le,
causing the contents of the block C to change. The
snapshot facility uses the COW policy that copies
the original block C to a location in snapshot save
area, creating a block C

0

. Dotted arrows in Figure
1 shows the resulting situation.

Snapshots happen at the block level. Our design
uses a layered device driver that enables snapshots
to be persistent across panics and power failures. As
this is at a device driver level, the snapshot facility
will be available to all �le systems and databases
that work on block devices directly. Journalling as
in ext3fs is an orthogonal issue as it is at the �le
system level.

Before starting the snapshot, data needs to be in
frozen state. This paper doesn't address the way
data is frozen. This is left to the applications like
�le system or database.

This paper is structured as follows. First, we discuss
previous work. Next, we discuss the design and im-

plementation of a layered device driver in Linux for
persistent snapshots for a single node. We then dis-
cuss the design issues involved in developing a snap-
shot device driver in a clustered environment. We
then present our implementation for a single node
system along with details of the diÆculties faced
given the device driver environment in Linux 2.2.
We then give some performance indicators and end
with conclusions and future work. Note that we of-
ten use the term disk as a synonym for a partition
but it should be clear what is being meant.

2 Previous Work

In this section, some of the existing solutions that
can be used for taking online backup will be dis-
cussed along with their advantages and disadvan-
tages.

RAID 1 Solution: Solutions like drbd also comes
under this category. In RAID 1, disks are grouped
into mirrored pairs. Two copies of the same data
are maintained on each of the disks in a mirrored
pair. Every write of the data has to be applied to
both the disks whereas a read request can be satis-
�ed from any of them. During backup, one disk can
be removed from the mirror and the data on that
disk can be backed up. Once backup is over, the disk
removed from the mirror has to be re-synchronized
with the active disk, preferably in the background.
But synchronization even in the background im-
pacts I/O performance. During backup and syn-
chronization, the disk that is removed from the mir-
ror will not be available for servicing requests from
normal applications, thus losing the redundancy ad-
vantage of RAID 1. To overcome this disadvantage,
we have to use 3-way mirroring, which results in a
large storage overhead.

Snapshots in File System: Some �le systems
like VxFS 1 [1] have a snapshot feature in their �le
system. Logically snapshots happen at �le system
level. The implementation is actually at the block
I/O level. But each �lesystem in the system has to
provide the snapshot feature to take online backup
of its disk

Clones in File system: Some �le systems such as
VxFS and WAFL 2 provide clones in their �le sys-
tem that enable online backup. When a snapshot
is created, the entire �le system is marked copy on
write. Whenever any data is about to be changed,
metadata (like inodes) that point to the data are
copied and given new data to point at. A new su-
perblock points to the old data and we now have
�le system structures that point to both old and
new data. The old data and new data along with
their �le system metadata constitute two di�erent
�le systems and therefore can be mounted at two
di�erent mount points. Backup can be taken from
the �lesystem that has the old data. This design,
however, requires major changes in the �le system.

Log-Structured Filesystem: Log-structured �le
systems (LFS) [2] use a sequential, append-only log

as their only on-disk structure. Since writes are al-
ways at the tail of the log, they are all sequential
and disk seeks can be eliminated. The data that
has to be retrieved from the disk will always be lo-
cated by traversing towards the left of tail of the log.
When the snapshot is on, the data towards the left
portion of the log tail position at checkpoint time
corresponds to snapshot data. All new writes after
the checkpoint will be written at the tail of the log
and so all the new writes will be towards right of
log tail position at checkpoint. But changes are re-
quired in �le system to retrieve snapshot data from
the log and garbage 3 collection should not be done
when the snapshot is on.

LVM For Linux: The Logical Volume Manager
(LVM) [3] adds an additional layer between the phys-
ical peripherals and the I/O interface in the kernel
to get a logical view of disks. This allows the con-
catenation of several disks (\physical volumes") to
form a storage pool (\volume group"). Recent re-
leases include support for snapshot logical volumes
where snapshots can be taken for any �le system.
However, the implementation in the 2.2 linux kernel
does not support persistent snapshots. In addition
to this, the current implementation is not clean: it
is not a separate module but hacked into the Linux
source code to get the required mapping between
the logical devices and original devices, so that the
actual request never reaches the lvm pseudo device.

3 Design Issues

This section discusses the various design issues in-
volved in development of a persistent snapshot de-
vice driver and in developing such a device driver in
a clustered environment.

3.1 Design of Persistent Snapshot De-
vice Driver for a Single Node

The snapshot device driver is a layered device driver
to enable online backup of data on the disk irrespec-
tive of the �le systems existing on the disk. As de-
scribed earlier, when a snapshot of a disk is taken,
the blocks that are modi�ed during backup inter-
val are copied into the snapshot disk and a map is
maintained between the block on the original disk
and the snapshot disk. This map is the metadata of

the snapshot.

3.1.1 Consistent Persistence

To enable the snapshot to survive across panics and
power failures, we need to store the map and mod-
i�ed blocks in persistent storage. In addition, we
have to keep the map and snapshot blocks consis-
tent. i.e., whenever a COW push occurs, the update
of the map and copy of the contents of the original
block to snapshot disk has to be atomic. This atom-
icity can be achieved in two ways.

1. Ordered Writes: Here, the original block is
�rst copied to the snapshot block and then the map
block is written to the disk. Even if power fails in
between, on the next write to the same block of
the original disk, a COW push will be done as the
map for that block has not yet been updated. The
opposite order is problematic.

2. Logging: In this case, intentions are logged onto
the log disk �rst and the original disk updates can be
done in background. This is called as REDO logging
[2]. In case of a crash, when the machine comes up,
an user application scans through and replays the
log (the data is taken from the log and written to the
disk). Thus the snapshot data remains consistent.

Out of the above two methods, method 2 is more
eÆcient. This is because the original disk writes
can resume immediately after logging the transac-
tion onto the log disk. And log disk writes are more
eÆcient as they are written sequentially. Actual up-
dates of map and the snapshot block can be done in
background. Hence, the delay introduced for origi-
nal writes will be smaller in the second method. In
our implementation, we use data logging.

3.1.2 Log Format

In data logging, data is logged along with the meta-
data onto the log disk. The original disk block con-
tents that will be copied on to the snapshot disk is
logged onto the log disk along with a map that con-
tains information about the mapping of the original
and snapshot block numbers. In case of a power
crash while writing to the log, we must be able to
detect that writing to the log is not complete. So we
have to introduce an identi�er, Xid or transaction
id, that grows linearly.

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

Special Signature for start

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Special Signature for endData blocks

Figure 2: Initial Design of the Log

In logging, data is transient. We do not require the
data of the log after the data is actually written to
the data disk. To avoid problems like compaction,
we use a circular log format. One design of the log
is given in Figure 2. But there is a problem with
the use of a special signature. Since we are writing
data also, anything can be present in the data. So,
there is a possibility of mistaking some data as the
end signature. The next design is to have an initial
signature, its o�set in the log and the size of the log.
We check for the signature just at that o�set and if
it is a valid signature, we assume that the data is
completely written. However, there is still a possi-
bility that there is some old data at that o�set that
exactly matches the signature. Our �nal design[4]
reserves two entries in every block of the log disk for
identi�cation. Each block has its �rst few bytes as
(transaction id, o�set) where o�set refers to the o�-
set of the sector within the transaction. This elim-
inates the problem of data being mistaken as the
signature since the transaction id is checked only
in these places and transaction id is always unique.
Hence, the structure of the transaction log has a
transaction prologue, data followed by a transaction
epilogue as shown in Figure 3. The space allocated
to the transaction is freed only when the transaction
is committed (after the data and map are written to
the disk). When committing a given transaction, we
change the o�set value in the transaction's prologue
to some special value.

3.1.3 Tree Structured Writable Snapshots

Generally snapshots are read-only. We can have
multiple snapshots taken at di�erent instances. The
snapshots at di�erent instances and Original view of
the data form a chain like structure, with original
view(also called as primary) at the head(root) of the
chain and the oldest snapshot at the tail. Assume
a chain of snapshots exist named Cn...,C1,C0 such
that C0 is the oldest and Cn the latest in the chain
followed by the `root' that we will call Cn+1. This

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

_ _ _ _ _ _ _ _ _ __ _ _

Tx_id, offset

Transaction prologue Transaction epilogueData blocks

transaction

Figure 3: Final Design of the Log

C C C C C

C C C

n+1 n k k-1 0

 k’ k’ - 1 k’ - 2

Primary

Writable Snapshot #1

Writable Snapshot #2
COW (Push)

Read (Pull)

Figure 4: Snapshot Tree

is shown in Figure 4. All the COPY-ON-WRITE
pushes resulting from writes to root, will go to the
recent snapshot which is next to the root node in
the chain. For snapshot read on some snapshot Ck

proceeds as follows. First map of the snapshot Ck

will be checked. If that has an entry for the block to
be read, then the read request will be serviced from
snapshot Ck. Otherwise the maps of the snapshots
Ck+1,Ck+2,.... taken after the snapshot Ck, will be
checked in order and if any one of them have an
entry for the block to be serviced then that block
will be read from the corresponding snapshots. If no
snapshot has that mapping, then the read request
will be serviced from the root.

Nothing prevents us from having a read-write snap-
shot. In this section, we present a design of tree
structured writable snapshots, which we have im-
plemented. The basic idea is to associate an addi-
tional snapshot to every snapshot that needs to be
mounted writable. All actual writes are then made
to this new snapshot and the snapshot chain is mod-

i�ed such that no downstream snapshot references
this one.

The �rst time a snapshot Ck is to be mounted writable,
we create a child node(Ck

0) rooted at the snapshot
referenced Ck and mount this child snapshot Ck

0 as
writable. No (downstream) snapshot (Cj) with j <

k, will depend on snapshot Ck
0 because it doesn't

occur in the path of root node(root node or pri-
mary will be the original view of data). With the
tree structured snapshot instances, there will be ad-
ditional dependencies. Snapshot removal cannot be
permitted as long as writable children exist. Read-
ing from the writable snapshot Ck

0 works just as
reading from any standard read-only snapshot does.
Writes to the snapshot Ck

0 will be directly written
in Ck

0 . Now pushes are never required to be made
downstream to snapshot Ck�1. We can have again
read-only snapshots from read-write snapshots and
from these read-only snapshots we can again have
read-write snapshots. Thus we will have a tree like
structure as shown in Figure 4.

3.2 A Clustered Persistent Snapshot De-
sign

A cluster is a group of computers (usually referred
to as nodes) connected in a way that lets them work
as a single, highly available system. In clusters, re-
sources are made highly available through redun-
dancy: redundant servers, networking, disks and
controllers. In a clustered environment, there will
be shared disks across the cluster. Each node has
direct access to the shared disk through a di�erent
interface. The number of nodes that can connect to
a disk directly depends on the number of interfaces
for that disk (typically 2-4). In our design of persis-
tent snapshot device driver for a cluster, we assume
the following components are available in the cluster
environment:

� A global lock manager that is required for se-
rializing access to metadata of the snapshots

� An external log manager for logging metadata
changes of the snapshots

� Messaging components like global atomic broad-
cast to send messages from one node to any
other node in cluster.

3.2.1 Metadata Management of Snapshots

Applications or kernel components running in a clus-
ter environment, such as a database or a cluster �le
system can ensure that read and writes to the same
block do not proceed at the same time from two
nodes in the cluster. This is ensured by taking a
cluster wide lock by the application or kernel com-
ponent.

In a clustered environment, however, there can still
be a con
ict with respect to concurrent updates to
the metadata of the snapshot device. The metadata
of a snapshot is its map, which gives information
about the mapping of original and snapshot blocks.

For example, suppose the application issues a write
(blkno1) on node A, that takes time from t0 to
t1, and node B issues write (blkno1) or write

(blkno2) that takes time from t2 to t3. The con-
straint t1 <= t2, say, has to be satis�ed if the write
from B is to blkno1, otherwise there is none. This
assumes that a correct application will ensure that
writes on same block cannot come simultaneously
from two di�erent nodes in the cluster. Now con-
sider how the snapshot device driver must behave.
At the �rst write from node A, it does allocate a
new block and push the old data there. The prob-
lem is about snapshot device driver (SDD) instance
at node B that needs to know if a block has already
been COW pushed.

The simplest (and lowest performance) solution is to
have a single metadata area with some cluster wide
lock on it. Node B, then, takes this lock, reads the
translation table, sees that blkno1 is already pushed,
and allows the write to succeed. Or, it sees that
blkno2 is not yet pushed, and updates SDD meta-
data for block allocation and does a COW push.
This solution is slow because each write from each
node is totally serialized on a single lock. One of the
alternatives is to divide the block allocation area,
with each piece having a di�erent lock so that there
is more concurrency. This still serializes writes to a
set of blocks that are controlled by the same lock.

3.2.2 Logging

All the changes to the snapshot metadata have to
be logged to the log disk before writing anything to
the disk. When a node X fails, some other node that
shares the log disk with X can replay the log of X.

When all nodes in the group fail, and some nodes
come up, the �rst node that comes up can check all
the log disks that it shares with other nodes in that
group and replay the logs that are dirty.

3.2.3 Membership updates in the Cluster

If A, B, and C are all registered members of a group
and C unregisters, A and B will receive a member-
ship update with only A and B. This message is
identical to the message that would be generated if
C failed. To distinguish these two events, we assume
that the client uses the broadcast4messaging facility
to announce its intention to leave the group. When
a node leaves the group intentionally, this is not a
big issue. When a node fails, a global atomic broad-
cast facility sends a membership update to every
other node in the list. One of the remaining nodes
(we can select the node with the smallest id) that
shares the log disk with the failed node, replays the
log of the failed node. Similarly, if a node joins the
group, the new node has to be synchronized with
the rest of the nodes in the group.

3.2.4 Performance

The update of metadata of snapshots is done by tak-
ing a clusterwide lock using a global lock manager.
This global lock manager sends and receives mes-
sages on a network when transferring access rights
of the locks between nodes. Each of the message
involves some �xed overhead that is independent of
the size of the message. If the data associated with a
lock can `piggy-back' on the message used to trans-
fer an access right, there is a potential bene�t in
performance. Thus we can divide the map into sec-
tions of upto. say, 64K, with each section protected
by a cluster lock.

To increase the performance of disk writes when the
snapshot is on, we can cache snapshot maps and
snapshot blocks. The following methods can be used
for better performance:

Method A - Each node that does a COW push
�rst takes a clustered wide lock and logs the trans-
action onto the log disk. Then it broadcasts the up-
dated map information along with the original disk
block to all the nodes. Each node updates its map
and caches the original block. Whenever a node
tries to read a snapshot block (for backup), it will

check in its local cache for its map. If there is a map-
ping and the original block is in the cache, then that
is used. If the original block is not in the cache, the
node broadcasts a message requesting the snapshot
block. Nodes that have this block in their cache will
respond to this message. If no node responds to this
message, it means that the block is already written
to the snapshot disk and can be read from the disk.
If there is no mapping for that block, then the node
can take a cluster wide lock on the map section and
read the block from the original disk. Similarly, if
the map section is not in the cache, then the node
can broadcast a request for it. If no node responds
to that request, the map section can again be read
from the snapshot disk.
Advantages If a block is already COW pushed,
there is no need to take a cluster wide lock on the
snapshot map section to check whether to do a COW
push. Similarly, a snapshot-read need not take a
cluster wide lock to read the snapshot block if it is
already COW pushed. This method performs bet-
ter when large number of nodes in the cluster do a
large number of disk writes in a small, concentrated
portion of the original disk.
DisadvantagesWe need one broadcast message for
each COW and one broadcast message, if the map-
section is not in cache, and one more broadcast mes-
sage for snapshot block if it is not in the cache.

Augmentations to Method A - We can keep
additional information in the map: the node that
has COW pushed the block along with the snap-
shot block number where it is copied. For example,
if some node A does a COW push of block x, x's map
information contains A also and the snapshot block
is in A's cache. Later, if some node B tries to read x

when it is not in its cache, it gets the node number
from the map and contacts that node (in this case,
node A). If map is not in its cache, it broadcasts
a message for it. Node B now requests node A for
snapshot block x. If A has it in its cache, it can re-
ply with that block. Otherwise, we can do the read
of the snapshot block x in 2 ways.
1. Node A reads block x and sends it to node B
2. Node B reads block x and broadcasts that it has
block x so that all other nodes can update the node
information for the map-entry of snapshot block x

Advantages The broadcast messages in method
A become unicast messages when map or snapshot
block is not in cache. This method is useful if many
nodes are write to the original disk, but the writes
are not concentrated in one region.
Disadvantages The map size increases as we in-
corporate node information also in the maps. This

results in an increase in the number of locks that are
used to serialize access to di�erent sections of maps.

Method B - To do a write, a node x takes a clus-
ter lock for the map section and logs its COW push
onto the log disk. Whenever some other node y asks
for a lock on the map section, node x transfers the
log along with the lock to y. After transferring the
log, x logs an entry in its log disk that the log has
been transferred to y. If x fails, y need not replay
the log as x's log has already been transferred to y's
log disk.
Advantages There are no broadcast messages.
This method is useful if only a few nodes in the
cluster write to the original disk.
Disadvantages A node has to take a cluster wide
lock on the snapshot map section to check whether
to do a COW push, even if the block is already
COW pushed. Similarly, a snapshot-read needs a
cluster wide lock to read the snapshot block even
if it is already COW pushed. When a cluster wide
lock is transferred from one node to another node,
the dirty log has to be transferred also.

4 Implementation Details

A persistent snapshot device driver has been imple-
mented for Linux-2.2.5 kernel for a single node.

4.1 Block Drivers in Linux

Whenever the bu�er cache cannot satisfy a read re-
quest or pending writes must be
ushed to disk, the
driver will be called to perform the data transfer.
Since struct file operations does not carry any
entry point other than read and write, an additional
structure, blk dev struct is used to deliver data
transfer requests. The de�nition of the structure as
found in the Linux 2.2 kernel [5] is as follows.

struct blk_dev_struct {

request_fn_proc *request_fn;

...

/*queue function*/

queue_proc *queue;

/*request queue*/

struct request *current_request;

struct request plug;

...

};

When the kernel needs to spawn an I/O operation, it
calls the blk dev[dev major].request fn, where
device major is the major number of the device.
ll rw block() is used to request a number of bu�ers
from the block device or to write a number of bu�ers
into the block device. ll rw block() queues the re-
quest structure into the corresponding device queue.
The device queue can be mentioned by the queue
function of the device. Since there are only a �xed
number of request structures, if ll rw block() does
not �nd any free request structures, it blocks till it
gets a free request structure.

Plug: A plug request in blk dev struct is used
to \plug" the device. A device is plugged to force
the transfer to start only after we have put all the
requests on the list. The request function, corre-
sponding to the major number of the block device,
is not called until the plug is removed. This allows
clustering of adjacent blocks to speed up disk trans-
fers.

4.2 The Pseudo Device Driver

4.2.1 Problems in writing a layered device

driver in Linux

� Request function of a Pseudo device: request fn

for a device can be called from process context
or interrupt context [5]. It is invoked from
process context when the request function is
not already running, i.e., when device queue is
empty. At the end of the �rst request, if there
are some pending requests in the queue, then
it is the responsibility of interrupt handler to
call request fn. When writing a request fn

for a pseudo device, one have to take care that
it will not block (as blocking routines cannot
be called from interrupt context [6]). Hence
a request fn cannot call blocking routines
like ll rw block(). This problem has been
solved by making request fn of our pseudo
device use a loop that serves all the requests
in the device queue one by one. Hence the
request fn will always be invoked from the
process context and we can use blocking rou-
tines also.

� Performance penalty: For a layered device driver
all the bu�ers will be �rst queued to pseudo

device queue and, in request fn, it will be
put into the underlying device queue. Pro-
cessing time for each bu�er is now the delay
of passing through two device queues.

� Dynamic introduction of modules: If we want
to dynamically push a pseudo device on top
of a real device, then the requests going to
the real device have to be diverted to pass
through the pseudo device. For example, for
snapshots, the pseudo layer is required only
when the snapshot is on for some extra work
like COW push and logging. However, the in-
troduction of dynamic layer is not easy in the
current device driver interface framework in
Linux. One solution (though not clean) for in-
troduction of a dynamic layer is to interchange
request fn and queue function of the original
device with the pseudo device.

For example, if we are taking the snapshot
of a SCSI device, before start of the snapshot
(before introduction of the pseudo layer) SCSI
major number will point to its own request fn

and queue function. Once the snapshot is
on, SCSI major number will point to pseudo
devices request fn and queue function and
the pseudo device major number will point to
the SCSI device request fn and queue func-
tion. We can thus introduce the pseudo de-
vice layer. But this is not a good solution.
ll rw block() does di�erent types of opti-
mization's for di�erent types of devices [5]. So,
in this method ll rw block() code has to do
all those optimization's for the original device
major number if there is no pseudo layer and
same optimization's has to be done for pseudo
major number if there is a pseudo layer. Such
an implementation will again become some-
what similar to implementation of LVM as ex-
plained in section 2 and thus will not be a sim-
ple, separate module and has to be (hacked!)
integrated into the kernel.

This problem has been solved by having a
pseudo layer always on top of the original de-
vice driver layer. When ever snapshots are
on, the required work such as COW push and
logging will be e�ected by the driver. If there
is no snapshot, the pseudo request function
simply transfers the requests from the pseudo
device to the original device.

4.2.2 Pseudocode of Driver

We have implemented the Persistent Snapshot Driver
Driver (PSDD) in Linux 2.2.5-15 as a separate mod-
ule [7]. As discussed earlier, the pseudo layer will
always exist, independent of whether the snapshot
is on or o�. The following pseudo code explains the
request fn of the pseudo device that implements
snapshots.

psdd_request() {

while (1) {

get the request from the pseudo device queue;

if request is snapshot block read {

if mapping exists for this block

read the block from the snapshot disk;

else

read the block from the original disk;

continue;

}

if request is original block read {

read the block from the original disk;

continue;

}

if request is a write request {

if mapping exists for this block

write the block to the disk;

else {

read the block from disk;

copy to the snapshot disk;

update the map;

write the block to the disk;

}

}

}

}

4.2.3 Snapshot Disk Layout

The snapshot disk layout is shown in Figure 5. We
use the �rst few blocks in the snapshot disk for log-
ging. To get the full bene�t of logging, this log
should be on some other disk. The maps for all the
existing snapshots use a set of blocks reserved at the
end of the snapshot disk to copy the original blocks.
Each map contains information about the parent in
the tree structured snapshots.

Log Portion Map Map Map Snapshot Blocks
1 2 n

Indicates Parent in the Tree Structured snapshots

Figure 5: Snapshot Disk Layout

4.3 Changes to Linux Kernel 2.2.5

Even if the device driver framework is desired to be
followed strictly, there are some places in ll rw block

() which need modi�cation. Otherwise, deadlocks
may occur and performance may be impacted.

� Deadlock may occur as for each request struc-
ture in pseudo device queue request fn of
pseudo device will create (one or more) re-
quest structures that will be queued to the
underlying device queue. If all the request
structures are used up for the pseudo device
queue, none of them can be processed as pro-
cessing them in the underlying device requires
some request structures. ll rw block() code
has been modi�ed so that the pseudo device
queue can occupy only half of the maximum
slots in the request structures array.

� Performance will be a�ected because the ker-
nel will use plug to gather requests for the
pseudo device but this will add to the delay
in processing the requests. For a pseudo de-
vice, clustering of requests is not required, so
the ll rw block() code has been modi�ed so
that plugging is avoided for the pseudo device.

5 Performance

To improve the performance of the original disk
writes, the map block and snapshot blocks corre-
sponding to a COW transaction are cached in bu�er
cache. These blocks can be cached till the log is
completely full. In our case, we
ush the cached
snapshot disk blocks if the log disk is full or if the
system free memory falls below certain limit. This

Ordered With

Writes Logging

Without 0.256 ms 0.263 ms
Snapshots

With 0.121 s 0.068 s
Snapshots

Table 1: Snapshot Performance

limit can be a input parameter. ll rw block() code
has been changed to calculate the time taken for disk
writes. Field b dev id in struct bu�er head is used
for this performance calculation. Table 1 shows the
delays introduced for the original disk writes by the
pseudo layer with and without snapshots and with
ordered writes and with logging. Disk writes that
result in COW pushes were selected in evaluating
performance. Access patterns of the data in all the
methods are almost similar. The delays for origi-
nal disk writes due to snapshots with logging are
much smaller compared to snapshots with ordered
writes, since log writes are fast (as they are sequen-
tial writes). The delay time has been averaged over
30 block writes.

6 Conclusions and Future Work

6.1 Conclusions

Data Backup - especially for disaster recovery or to
return to an earlier uncorrupted view of the data
- can be achieved through snapshots. The design
of a persistent snapshot device driver and its imple-
mentation details in Linux have been presented. We
also have discussed the design options in a clustered
environment.

6.2 Future Work

� The device driver which we have implemented
assumes that block size of original disk and
snapshot disk is the same. The device driver
can be extended for di�erences in block sizes
of original disk and snapshot disk.

� Deletion and renaming of snapshots has to be
implemented.

� In the current implementation, the �rst few
blocks of the snapshot disk are used for log-
ging. To get the full advantage of logging, a
separate disk can be used for logging.

� Port the snapshot device driver to Linux 2.4
and release the snapshot device driver as open
source to the Linux community for general use
and future enhancements.

� The implementation of a clustered driver has
to be undertaken. The algorithms needs to be
formally veri�ed and performance evaluated
by simulation or other means.

Acknowledgments: We thank Dilip Ranade, Ver-
itas Software Corp., Pune for suggesting that we
look into this area and Radha Shelat, also of Ver-
itas, for her help and interest. Financial support
from Veritas Software, Pune is also gratefully ac-
knowledged.

References

[1] Snapshots in VxFS. http://www.veritas.com.

[2] Uresh Vahalia. Unix Internals. Prentice Hall,
1996.

[3] Logical Volume Manager for Linux.
http://linux.msede.com/lvm/.

[4] K Gopinath, Nitin Muppalaneni, N Suresh Ku-
mar and Pankaj Risbood. A 3-tier RAID Stor-

age System with RAID1, RAID5 and compressed

RAID5 for Linux. 2000 USENIX Annual Tech-
nical Conference, June 21-23, 2000 - San Diego,
California.

[5] The Linux Kernel Sources version 2.2.5.

[6] Alessandro Rubini. Linux Device Drivers.
O'REILLY, Feb 1998.

[7] Beck et al. Linux Kernel Internals. Addison-
Wesley, 1998.

1VxFS is a journalling �le system from Veritas Software.
2Write Any-where File Layout(WAFL) is a �le system

from NetApp.
3In LFS garbage collection is done by a process, allowing

the log to wrap around.
4Message sent to each and every node in a group of cluster,

which has registered for certain service, like snapshot service.

