USENIX Association

Proceedings of the
5" Annual Linux
Showcase & Conference

Oakland, California, USA
November 5-10, 2001

THE ADVANCED COMI

PUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Design, Implementation and Policy Framework for a Linux Based
Temperature Sensitive Storage

Venkatesh Pallipadi
Indian Institute of Science, Bangalore
venkatesh.pallipadi@alumnus.csa.iisc.ernet.in
K Gopinath
Indian Institute of Science, Bangalore
gopi@csa.iisc.ernet.in

Abstract

Temperature Sensitive Storage (TSS) is a data stor-
age architecture that keeps track of the access fre-
quencies of data and uses this information to man-
age storage efficiently and effectively. The term tem-
perature refers to the access frequency of the data.

TSS is a hierarchical storage architecture with fre-
quently accessed data residing in a storage device
with faster access time, while less frequently ac-
cessed data placed in a device which is more storage
efficient. The hierarchy is currently a 3-tier archi-
tecture consisting of declustered RAID 1 (RAID1),
RAID 5 (RAID5) and compressed RAID 5 (cRAID5)
storage devices. The data is dynamically moved be-
tween these tiers, depending on their access frequen-
cies.

TSS, along with fast access and efficiency of storage,
also provides reliability of data by incorporating re-
dundancy in the system through the use of RAID
architecture.

Simple policies for dynamically managing the data
have been implemented as user level daemon pro-
cesses. They are independent of the low level im-
plementation of the TSS driver. They make use of
certain ioctl() calls provided by the TSS device
driver.

In this paper we discuss the design, implementa-
tion and policy framework of a Linux based TSS,
and compare its performance with static RAID sys-
tems!.

1 Introduction

With massive computerization and falling price of
storage devices, the focus has shifted from simple
data storage towards fault-tolerant, efficient and eas-
ily manageable storage devices. The increasing im-
portance of highly available web servers, database
servers and data mining is another need for such
devices.

Consider a typical web server storing some public
domain information, like software, music etc. Natu-
rally, the information on the web server will not be
equally popular, and hence will not be uniformly ac-
cessed. As web servers usually handle large amounts
of information, a desirable feature of a storage de-
vice storing such information is the efficient use of
available storage. At the same time the storage
should be reliable. i.e. it should be able to sus-
tain disk failures without bringing the system down.
This requirement is a must for highly available ap-
plication servers that should be up and running with-
out interruptions. Further, even if the system crashes,
it should be able to recover from the crash as soon
as possible and the system down time should be
minimal.

Other useful and desirable properties are the pro-
viding of an abstraction of large virtual disks that
can be split into smaller ones as needed (while mov-
ing towards the goal of attribute based storage), the
ability to mix old and new disks with migration from
older (less reliable?) (slower?) disks to newer ones
automatically and the ability to perform well on
write-dominated traffic. The last one is quite im-
portant as large caches filter out most of the reads
leaving more writes than reads in the traffic for the

storage device.

In this paper, we present a Linux based Tempera-
ture Sensitive Storage (TSS) that provides a hier-
archical storage consisting of RAID1, RAID5 and
cRAIDS5 tiers. TSS gives a unified view of a single
storage device with data migrating from one tier to
another depending on the access frequency of the
data. Thus the frequently accessed data resides in
faster storage (RAID1), while the not so frequently
accessed data slowly moves to a storage which is
not as fast but is storage efficient (RAID5) and
the least frequently accessed data moves to a highly
storage efficient but slow tier (cCRAID5). Thus the
scheme optimizes between performance and storage
efficiency. TSS implements different storage person-
alities as different RAID levels that can sustain sin-
gle disk failures without bringing the system down.
Data consistency across system crashes is taken care
of using data logging. Because of the poor perfor-
mance of partial writes in RAID5 and cRAID5, the
hierarchy provides different performance and stor-
age efficiencies while providing approximately the
same reliability across the three layers. For read-
dominated traffic, RAID1 and RAID5 do not pro-
vide the difference in performance that makes the
hierarchy useful.

Further, the dynamic nature of the data placement
in different tiers can take the advantage of locality
of reference of the data accesses by typical applica-
tions. The policy for the dynamic data migration
and maintenance of data at different tiers is kept
separate from the low level implementation of TSS.
The policies are implemented as user level daemon
process, using the ioctl() calls provided by the
TSS device. This also has the advantage of having
different, policies for different situations, depending
on the type of application and the availability of the
resources.

Section 2 of this paper discusses the previous work
done in this area. The major design issues are dis-
cussed in Section 3 and Section 4 gives some details
about TSS implementation. Section 5 reports the
results of the trace driven execution on our exper-
imental setup, followed by conclusions and future
work in Section 6.

2 Previous Work

Linux 2.2.5 also has an implementation for RAIDO,
RAID1 and RAID5. This is the multiple device
driver (md). This design claims to be a device as
it occupies a major number but the actual imple-
mentation is a hack in 11_rw_block() code. md
does mapping of requests from the md device to the
actual device so the actual request never reaches the
md device[1].

Another approach to the efficient storage manage-
ment is Hierarchical Storage Management (HSM).
It is a scheme that uses secondary storage (disks)
and tertiary storage (tapes) for data storage and re-
trieval. This design does not apply to our system as
we only consider disks.

Work on TSS was carried out on Solaris by M. Nitin
[3] (RAID1+5) and Suresh N[4] (also cRAID5). A
study of the issues in moving TSS to Linux and a
prototype implementation was carried out by Pankaj
Risbood[5]. The combined work has been reported
in [2].

3 Design of TSS

3.1 Pseudo Device Driver Approach

The TSS functionality can be implemented at ei-
ther the application level, file system level or de-
vice driver level. Considering the relative advan-
tages and disadvantages (see [2] for further details),
we have chosen to implement our TSS at the device
driver level, as a pseudo device driver. The TSS
device driver will export the view of a single de-
vice while actually implementing TSS internally on
a number of devices.

3.2 High Level Design

Figure 1 shows the overview of the TSS device. The
TSS device can be divided into a lower level pseudo
device driver and a set of user level routines. The
pseudo device driver consists of:

e RAID1, RAID5 and cRAIDS5 - The driver
code that handles the requests to correspond-
ing RAID devices.

e Integrated Device - The driver code that
provides a unified view of the multiple RAID
device types under it. It also takes care of
victimization (RAID1 to RAIDS5 for example)
and promotion (RAID5 to RAID1 for exam-
ple) of stripes.

e Data logging - Data logging is used to keep
data consistent across crashes. This is done
by using an additional partition for logging,
synchronously logging each request before do-
ing any writes to the data disks, and syn-
chronously committing the log entry after the
write is complete in all the data disks.

e Metadata Persistence - For the data to
be consistent in the TSS device, the meta-
data about the logical stripes, their mapping
to the physical stripes, information about the
compressed stripes etc, needs to be persistent
across reboots. This is taken care of by using
a separate private partition, which is used to
hold the metadata of the T'SS device.

¢ Performance Measurement Driver (ganak)

- To keep track of the number of accesses and
the time taken by the access of TSS device
driver, one more pseudo device driver (ganak)
has been developed. This gets requests from
user level routines, maintains some counters,
and in turn does the read/write on the TSS
driver.

The user level routines for the TSS device support:

e Device Configuration - These are a set
of routines which are used to configure the
TSS device. They can be used to specify both
general device information and the personality
specific information. The configuration infor-
mation is parsed using lex and ioctl() calls
used to communicate the configuration infor-
mation to the TSS device driver.

e Policy Enforcement - The management
of stripes at different RAID levels depending
on the temperature is done by the Policy En-
forcement routines. These routines run as a
daemon process at user level. They collect
the information about the stripes using suit-
able ioctl() calls, analyse the information

[Integrated Device } [LOG} |
info !

[RAID 1 ‘ RAID 5 | cRAID 5} [Privatﬂ

Underlying Device Driver

o O

- derlyi é
ardware

Figure 1: TSS High Level Design

and take decisions for dynamic stripe manage-
ment, by suitably promoting / victimizing the
stripes.

e Application/Test Programs - Some user
level routines (as application programs) are
available to test the functionality of the TSS
device. These include routines to read the
trace and apply requests to the TSS device.
These again use the read () /write () /ioct1()
interface of the TSS device.

3.3 Data Layout

The underlying storage is organized in RAID5 fash-
ion as shown in figure 2. The storage consist of a
set, of columns which may be separate disks or par-
titions of a disk. The smallest column limits the
size of the TSS device. Each column is divided into
contiguous regions called stripe units. A stripe is
comprised of one stripe unit from each column. If
there are N columns the number of data stripe units
is N-1 and one stripe unit is kept for parity. We de-
fine the polarity of the stripe as the index of the

Translation columns

Table
al D3] [D4] []
d =S R 0 3 I . .
Radh] D4 || [DI] > mirror stripes
Raidy [[— [—
D6 [D7] |D§]
| | !
I I !
| | !
I I !
| | | |
| | | |
[I A A
[L
[
[
[
1 / Compressed Stripe
CRaid_|
1 Parity Column
Inv |
(| DataColumn

Compressed stripes

index table [Unused entry

Figure 2: Data Layout

column that contains the parity information. The
stripes on the actual storage devices are the phys-
ical stripes and they provide the backing store for
the logical stripes which the TSS device exports to
the upper layers.

The logical stripe to physical stripe mapping is main-
tained by a Maptable. Any logical stripe can be
mapped to a -

1. Invalid stripe - The logical stripe is not backed
by any physical stripe. At device creation time
all stripes will be of this type.

2. RAID1 physical stripe - The logical stripe
is mapped to two physical stripes. The two
physical stripes must have different polarity
otherwise the failure of one disk (other than
the parity disk) makes the data irrecoverable.
The parity stripe units in case of RAID1 are
left unused; this leads to a wastage of space
which is 1/N the fraction of RAID1 storage of
the total storage capacity of the device. But
this makes for a simpler design.

3. RAIDS5 stripe - The logical stripe needs only
one physical stripe.

4. cRAIDS stripe - The physical stripe that backs

a logical stripe is not a full stripe but a part
of it. Hence the unit of allocation has to be at
a sub stripe level.

If a logical stripe is backed by a cRAID5 stripe
the maptable gives the index into the compres-
sion table where information of the backing
physical stripe is stored. The compression ta-
ble gives the physical stripe that contains the
backing store for the logical stripe, the actual
size after compression, and the offset of the
allocation unit in the physical stripe.

The free stripe information is stored in a bitmap
format in bitmap table. As the cRAID5 physical
stripe is smaller than a RAIDS5 physical stripe due
to the use of compression, the bitmaps also should
at the sub-stripe granularity. i.e., if the full physical
stripe is allocated in terms of equal sub-parts (say,
a maximum of 4) for the cRAID5 storage, then a bit
in the bitmap table corresponds to 1/4t" of a stripe.

3.4 RAID1 and RAIDS5

The design of RAID1 and RAID5 modules in TSS
uses many data abstractions along with appropriate
data structures. The structures and detailed design
have been given in detail in [2].

3.5 cRAIDS5

The design of cRAID5 follows the RAID5 design
framework, with the compression / decompression
added in the data handling at the stripe level. The
mapping between the logical stripe to the physical
sub-stripe is done through a compression table look-

up.

Some of the issues in the design of cRAID5 device
are:

e For the cRAID5 device, the physical stripe
also needs to be locked when the write on
stripe is in progress, so that a write of some
other unrelated logical stripe, residing in the
same stripe due to compression, should not
affect the parity information of the physical
stripe.

e The compression algorithm to be used should
not be memory and CPU time intensive. Com-

pression and decompression occur inside the
kernel so we cannot use any algorithm that
uses floating point arithmetic (as the Linux
kernel does not save floating point registers
during mode switch).

e During a write to a compressed stripe, the new
compressed length is usually different. This
has to be properly handled by moving the phys-
ical stripe to some other suitable physical lo-
cation, and then freeing the current physical
location.

e No algorithm can promise good compression
on all data. Sometimes there may not be any
compression possible and such cases have to
be handled properly. Presently, such stripes
are stored with no compression with the stripe
length in the compression table indicating a
full stripe. This information is used during
future reads/writes of the stripe. This can be
extended (in future versions of TSS) to cover
the cases where the resulting compression ra-
tio is not worth the effort involved in com-
pression and decompression (as specified by
an user).

3.6 Integrated Device

The design of the integrated T'SS device follows the
RAID device design framework in [2], upto the stripe
level I/0. After this level, the map table is used and
the corresponding RAID device stripe I/0O is then
called.

Some issues in the design of integrated TSS device
are:

e Initially all the stripes will be invalid. When-
ever some READ/WRITE happens to a par-
ticular stripe, it should move to RAID1 or
RAIDS5 stripe depending on the availability of
the free stripes. If enough free stripes are not
available, then some victimization should be
done to create the space.

e To promote from RAID5 to RAID1, a free
stripe of different polarity should be used. Oth-
erwise, a failure of one disk will lead to the
data loss.

e To avoid data inconsistency during promotion
/ victimization, the changes have to be or-

dered. For example, during a RAID5 promo-
tion, we have to find a suitable free stripe,
copy the data, change the mapping and then
the type in the map table in this order.

e If there is no free stripe to victimize a RAID5
stripe to cRAID5, one can victimize it onto
the same stripe itself. But this can lead to in-
consistent data in case there is a crash during
such a victimization. A similar situation arises
when we promote cRAIDS5 stripe in the same
physical stripe. To avoid such situations, one
stripe is marked as reserved and used in above
mentioned situations. Thus when there is no
other free stripe during a RAID5 victimiza-
tion, we move the compressed data to the re-
served stripe, mark the stripe as cRAID5 and
then reclaim the previous physical stripe as
the new reserved stripe, in this order.

3.7 Failure Handling

As TSS uses the RAID storage in all the 3 tiers, it
can provide fault tolerance against a single disk fail-
ure. If an I/O on any one of the underlying devices
fail, then TSS device should switch to the degraded
mode, and avoid all the I/Os to the particular de-
vice, and use the redundancy in TSS device instead
to handle the I/Os. If more than one of the un-
derlying disks fail then the TSS device should exit
gracefully.

Further, when the degraded disk is replaced by a
working disk, the new disk has to be synched with
the other disks.

In TSS, when any I/O on a particular device gives
soft, errors, that device should to be noted. If this
happens regularly, then the device has to be marked
as bad and all I/O to the disk is to be avoided, until
the device is reconfigured.

Currently work is in progress on providing suitable
failure handling mechanisms for TSS.

3.8 The Logging Option in TSS

Data logging consists of logging the data along with
the stripe information in a log device synchronously
and then writing to the actual device. After the
actual write is complete, a commit of the transaction

Transaction

/2 N
Tx_id, offset

I Transaction Prologue
ﬁ Data Block

Transaction Epilogue

Figure 3: Design of the log

is done on the log device. The design of the log is
depicted in figure 3.

Some of the issues in logging are:

e Should the data logging be only targeting the
data consistency or try to improve performance,
by delaying the writes to the disks, similar to
a log structured file system. The former ap-
proach was chosen in TSS, mainly due to its
simplicity and ease of addition into the exist-
ing TSS device driver.

e At what level should the logging be incorpo-
rated in the existing TSS device driver? The
possible options were at request level, at stripe
level and at physical block level. Considering
the advantages and the disadvantages of the
three approaches, the stripe level logging was
chosen as a suitable method for TSS.

e When should the recovery process be initi-
ated? An ioctl() was provided to trigger
the recovery mechanism, which can be called
through an application program, in case of
crash of the TSS device.

e If the recovery is done in a straight forward
manner, using the normal stripe write mech-
anisms, there is a possibility of data corrup-
tion. This case arises due to the use of Read-
Modify-Write (RMW) cycles in a RAID5 de-

vice. The problem: if a part of a write is com-
mitted before the crash, it will leave the stripe
in an inconsistent state. If a RMW cycle is
used during recovery, then some inconsistent
data may be read and used during the recov-
ery that would result in permanent inconsis-
tent data on the disk.

This problem can be solved, if reconstructing
writes are used in place of RMW cycles during
the recovery. In reconstructing writes, data is
reconstructed from the whole stripe; partially
committed data will not affect the recovery
and the final data will be consistent.

e What should be done in case of failures in ac-
cessing the log device? Logging is used for
crash recovery but any redundancy in the log
device to avoid the failure of the device is likely
to be costly.

3.9 Policy Framework

Policies and mechanisms for the migrations of the
stripes are separated, with various mechanisms for
migrations provided by the low level TSS driver in
the kernel. The policies are imposed over the TSS
device, by separate user level programs, that run
as daemons, with suitable permissions. These pol-
icy routines communicate with the low level mech-
anisms through the ioct1() calls.

The low level TSS device does take some policy deci-
sions in extreme situations such as when there is no
free stripe for a particular I/O operation. These pol-
icy decisions at the kernel level cannot be avoided,
as there may be no policy running at the user level
forcing the kernel to take the decisions.

The TSS device driver maintains temperature and
access fields for each stripe. Temperature field ac-
cumulates the accesses over a period of time. Ac-
cess field indicates whether the stripe has been ac-
cessed in the recent past. The aging is the process
of increasing the temperature of all recently accessed
stripes, depending on its access field. Uptodate field
also indicates whether the stripe has been accessed
in recent past and is used by degrade process which
reduces the stripe temperature using exponential
degradation. We need separate access and uptodate
field, as the aging and degradation can happen at
different frequencies. Temperature of a stripe is re-
set during the migration of that stripe.

Following are the different mechanisms provided by
the TSS driver that can be used by policy routines.

e Get/Set the temperature of a particular stripe
e Reset temperatures of all the stripes

e Do an aging on the stripes

e Do a temperature degradation on the stripes

e Get the number of stripes of each kind of per-
sonality

e Get the maximum temperature of any kind of
personality

e Victimize / promote a particular stripe, from
a particular RAID level.

e Victimize / promote the best possible stripe,
from a particular RAID level.

It is important to note that the information pro-
vided by the kernel about the stripes in the above
mechanisms are as of that particular instant and
may not be true at a later point in time when the
user level application may use the information. There
is no lock held in the kernel across requests. This
approach was chosen as the policy enforcement is
more to optimize the performance and not a strict
guideline.

The advantages of having the policies separate from
the low level device driver are the following;:

e Different policies can be implemented depend-
ing on the kind of application and the hard-
ware.

e None, one or more policies can be running at
the same time.

Following are the policies that were implemented on
the TSS device:

1. Watermark Policy - In this policy, there
are lower and upper watermarks fixed on the
three kinds of stripe personalities. Periodic
checks are done to check whether the num-
ber of stripes of all the personalities conform
to the corresponding watermarks. If not, mi-
grations of the stripes are performed, so as to
conform to the watermarks.

This policy is simple to implement but has the
disadvantage of being static. It does the mi-
grations of the stripes based on temperature.

2. Five Minute Rule - The Five Minute Rule
is a way of organizing hierarchical memory,
using the performance and the cost consider-
ations, as proposed in [8]. The idea originally
proposed for organizing memory hierarchy can
be modified and applied to the TSS device as
well. Adapting the original formulal[§],

(Cache-Cost _ Mem_Cost) % Obj_Bytes

Byte Byte
Obj_Access_Per_Sec_Cost

that gives the time interval in memory before
demotion to disk if there are no accesses in
that interval, for the hierarchical TSS device,
we get the time interval for RAID levels A and
B as

RAIDA_Cost RAIDB_Cost .
(Tois — Toic) * Obj_Bytes

(RAIDA_acc/s_cost — RAIDB_acc/s_cost)

The acc/s_cost for individual RAID devices
can be got from the simulations and used here.
The frequency values determined as above can
be used by the policy routine managing the
device and can trigger migrations depending
on these frequencies.

4 TImplementation

TSS is currently implemented on the Linux-2.2.5
kernel. The following optimizations / improvements
has been done on the basic TSS device driver.

e One of the performance bottlenecks of TSS
is the latency due to the synchronous writes
over the underlying devices. These writes can
be made asynchronous and any failures in the
asynchronous writes can be handled by using
the existing data logging for the writes. With
this modification to the TSS, the cleanup af-
ter the completion of asynchronous writes are
carried out by a separate cleanup thread.

These asynchronous writes soon ran into prob-
lems of deadlock. The possible reasons for this
deadlock could be:

- Too many asynchronous I/Os consume all
available kernel memory and no kernel mem-
ory is available for SCSI cmd blocks, etc.

- A large number of asynchronous requests
may be generated, which the lower level SCSI
device may not be able to handle.

- A large increase in the request queue size,
which the underlying SCSI device may not be
able to handle.

- Some mysterious bug in TSS code itself!

A simple workaround for the problem has been
to limit the number of asynchronous I/Os is-
sued by the TSS device. A maximum of 8

asynchronous requests avoids this deadlock prob-

lem.

The major delays in disk I/O are queuing de-
lay, rotational delay and seek time. Two dif-
ferent optimizations have been investigated to
reduce the seek time during the RAID1 I/Os.
One approach places the two physical stripes
of the single logical stripe, next to each other,
if possible. This can be advantageous in case
of full stripe writes, as a write has to go through
both of the physical stripes. An alternative
approach for RAID1 stripe placement is to put
the two physical RAID1 stripes halfway apart
in the disk. This can reduce the seek time,
as during the reads only one of the physical
stripes needs to be accessed. These optimiza-
tions have to be enabled separately with com-
pile time parameters.

The recent versions of the Linux kernels have
fast parity calculation routines built-in. Linux-
2.2.5 has an optimized assembly code for the
parity calculations that has been used in the
implementation of TSS device. Linux 2.2.12
or later kernels have optimized these routines
further (using xmm registers), and could be
used in future versions of TSS.

During RAID1 reads, only one of the physical
stripes will be accessed. The TSS device has
an option to route the read requests to any
of the two stripes to balance the load on the
disks. A set of counters, one corresponding to
each device, is maintained and is incremented
every time a read is performed on that disk.
This information is used during future read
requests and read requests are balanced across
the devices. This again has to be enabled with
a compile time option.

4.1 Changes to Kernel 2.2.5

Even though the device driver framework of the
Linux has been attempted to be strictly followed,
a few changes have been necessary in the kernel[1]:

e Linux does clustering only for drivers compiled
in the kernel and not for loadable modules.
TSS relies on clustering to gain performance,
otherwise all the stripe I/Os will be partial
ones. So we need to enable clustering for the
TSS driver in 11_rw_block() code.

e Each request structure that gets queued to
the TSS device queue will result in requests
queued in the underlying device queues. If all
the request slots are consumed by the TSS de-
vice, then it will lead to deadlock, as process-
ing these requests requires free request struc-
ture which are not there. To avoid such dead-
lock, the number of request structures that
can be used by the TSS device is set to half
of the total possible request structures in the
system.

5 Performance Evaluation

5.1 ganak Device Driver

The performance of the TSS device can be mea-
sured with a stream of I/Os on it. This can be
done through the read()/write() system call to
the TSS device. However, the problem with this
approach is that the measure can be skewed, as it
includes user-kernel mode change costs and is also
dependent heavily on the system load.

One way to avoid the above problem is to measure
the performance at the kernel level rather than at
the user level. One more pseudo device driver sits on
top of the TSS device driver, and send I/O requests
to the TSS driver, and measure the time taken for
the requests. The time measure granularity is in
jiffies (10ms).

5.2 Benchmark Data

For our performance evaluation of the Linux TSS
system, a subset of HP disk traces [10] have been
used. It contains disk accesses generated by HP-
UX file systems on a system not running scientific
applications.

Further, in order to reduce the time taken to execute
a trace through the system, Trace Compaction (as in
[3]) has been done. Trace compaction reduces the
time between the accesses by a factor of 1000. It
was found in [3] that the trace compaction has little
impact on the results but speeds up the performance
evaluation process. Also, a part of the actual trace
containing about 70,000 accesses was used for the
trace simulation.

5.3 Experimental Set-up

Performance measures have been taken on a system
anant with Linux-2.2.5 kernel and Red Hat Linux
release 6.0. The machine is a Pentium 75MHz with
32MB RAM. The 3 SCSI Disks, 1.2GB capacity
each (model - Quantum Fireball 1280S), were con-
nected using 10Mbps SCSI bus with Adaptec con-

troller (Model - Adaptec AHA-2940 SCSI host adapter)

and used to configure different devices for the TSS
device. Experiments were done when the system
was on light load (load avg < 1).

5.4 Experimental Results and Analysis

5.4.1 Synchronous and Asynchronous writes

The effect of asynchronous writes on the perfor-
mance of TSS device can be seen by comparing
the RAID1, RAID5 and cRAID5 performance with
synchronous and asynchronous writes (with max 8
async writes at a time). This results are summa-
rized in Table 1.

The results indicate a significant improvement in
performance of TSS, due to asynchronous writes
in case of RAID1 and a moderate improvement in
case of RAID5 and cRAID5. This improvement
is achieved due to the reduction of waiting time
through the use of asynchronous writes. In case
of asynchronous writes, we have a separate thread

Type of | Avg. write time | Avg. I/O time
Device | per block (ms) | per block (ms)
sync async | sync | async

writes writes | writes | writes

RAID1 17.23 8.79 | 12.66 7.43
RAID5 21.98 19.32 | 14.87 | 13.47
cRAID5 | 94.87 74.36 | 65.90 | 54.00

Table 1: Effect of asynchronous writes on the per-
formance of TSS (trace data from 6 [/var])

running, which does the cleanup for each of the re-
quest. The time taken by this cleanup operation is
not included in the results, as they happen asyn-
chronously and they do not form a part of response
time for the requests.

All of the following trace runs have been taken with
async writes enabled in TSS.

5.4.2 RAIDI1 physical stripe placement

Two different physical stripe allocation polices have
been tried out on a RAID1 device. One policy allo-
cates successive physical stripes for a logical RAID1
stripe, if possible. Another policy allocates physi-
cal stripes of a logical stripe separated be some dis-
tance, if possible. The performance of TSS under
the two policies is summarized in Table 2.

The results show that allocating the physical stripes
apart performs better. This can be due to the fact
that, with physical stripes away from one another,
the successive logical stripes can be successive phys-
ical stripes also. Due to this the clustering can
happen across the stripes at the lower level drivers
(SCSI) both during reads and writes.

All of the following trace runs have been taken with
two RAID1 stripes allocated half-way across on the
physical devices.

5.4.3 Performance results of TSS device

Performance results of TSS with different configu-
rations is summarized in Table 3. Trace runs of
TSS was also done with different policies and the
results summarized in Table 4. Note that we are
not comparing our results with the existing RAID

Type of | Type of Avg. time
Device I/0 per block (ms)
cont. | fixed dist.
placement | placement
RAID1 READ 5.42 4.94
WRITE 8.79 8.45
Avg. 1/0 7.43 7.04
Table 2: Effect of physical stripe placement on

RAID1 device TSS (trace data from 6 [/var])

in Linux, as our main aim here is to consider the ad-
vantages/disadvantages of TSS with/without poli-
cies and not comparing the different static RAID
systems.

From Table 3 we find that the access times in RAIDO
is the least, and cRAIDS5 is the highest. This re-
sult is on the expected lines. Notable result here is
RAID5 to RAIDI ratio in terms of access time is
around 2 and in terms of space is 0.5. cRAID5 ac-
cess time is around four to five times that of RAIDS,
and uses around 60% of the space used by RAID5.

RAIDO is just 1.2 times faster than RAID1, mainly
because RAIDO does not have the benefit of asyn-
chronous writes in it. RAID1 performance matches
with that of RAIDO, even with additional redun-
dancy and logging features in it.

RAID5 access times is nearly twice that of RAID1.
This can be attributed to:

e RMW cycles for short writes

e RAID5 has an additional parity calculation
time compared to RAIDI.

e Due to asynchronous writes, there is no time
spent waiting for the disks to complete the
writes. So, the additional write request in case
of RAID1 does not reduce performance.

cRAID5 access times is much higher than RAID5.
This can be attributed to:

e Compression / Decompression of the whole
stripe needed even for small data requests.

e cRAID5 involves lot of copying from buffer
cache to page cache, during compression / de-
compression. This is due to the fact that the

page cache and buffer cache are separate in
Linux-2.2.5.

These comparative figures gives good indications for
setting the policy parameters in an integrated TSS
device. On the basis of performance, the RAID1 and
RAID5 parts should have around the same number
of stripes and cRAID5 a smaller number of stripes.
This also can vary depending on other things like
available free space in the device.

The trace runs with watermark policy was carried
out with the following watermarks:

RAIDI1 - Lower Watermark 20-30%, Upper 50-60%
RAIDS5 - Lower Watermark 25-35%, Upper 55-65%
cRAID5 - Lower Watermark 5-10%, Upper 20-25%

The trace run with the five minute rule[8] was done
with RAID1-RAID5 transition frequency as 20 sec-
onds and RAID5-cRAIDS5 transition frequency as
350 seconds. The actual values got from five-minute
rule formula have not been used in case of trace runs,
as the execution does not happen in real time but
compacted in time. So the actual RAID1-RAID5
and RAID5-cRAIDS transition frequencies from five-
minute rule had to be reduced by a large factor.

TSS with watermarks has access time more than
that of normal RAID5. This is mainly due to the
static nature of watermark policy. If all watermarks
are conforming, and no new blocks are accessed,
then it does not do any more migrations, and the
temperatures of the stripes are not used at all. This
can result in a severe performance penalty.

TSS with five-minute rule has access time in be-
tween that of RAID1 and RAID5. This improve-
ment in performance compared to watermarks is
mainly due to dynamic stripe placements that hap-
pen on a continuous manner depending on the tem-
perature.

6 Conclusions and Future Work

6.1 Conclusions

e TSS can provide storage with the required fea-
tures of efficiency of storage, speed and relia-
bility.

Disk No. | Percentage | Type of Read Time Write Time I/O Time Space
of Writes Device | per Blk (ms) | per Blk (ms) | per Blk (ms) | overhead
5 (/usr) 59.83 RAIDO 4.40 7.17 6.70 100%
RAID1 5.89 8.95 8.44 250%
RAID5 4.94 20.91 18.22 125%
cRAID5 29.74 106.81 93.84 87.2%
6 (/var) 83.17 RAIDO 4.30 6.98 5.90 100%
RAID1 4.94 8.45 7.04 250%
RAID5 4.76 19.32 13.47 125%
cRAID5 23.70 74.36 54.00 87.5%
Table 3: Performance of RAID devices through TSS
Disk No. | Percentage Type of Read Time Write Time I/0 Time Space
of Writes Device per Blk (ms) | per Blk (ms) | per Blk (ms) | overhead 2
5 (/usr) 59.83 TSS with 6.41 28.03 24.39 205%
watermarks
TSS with 6.06 13.35 12.12 237%
5 min rule
6 (/var) 83.17 TSS with 7.7 26.32 18.87 190%
watermarks
TSS with 5.43 14.53 10.87 225%
5 min rule

6.2

Table 4: Performance of TSS device with policies

open source to the Linux community for gen-
eral use and future enhancements.

e Performance of TSS device with simple poli-
cies is in between RAID1 and RAID5 perfor-
mance. More intelligent policies, like one us-
ing predictions, are likely to achieve better re-

sults. Acknowledgments: We thank John Carmichael,

then at Veritas Software Corp., for suggesting that
we look into this area, Fred van den Bosch of Veritas
for his help and interest and John Wilkes of HP Labs
for providing the traces used in our experiments.
Financial support from Veritas Software, Pune is
also gratefully acknowledged.

e The Linux device driver interface is not yet
very suitable for implementing a layered de-
vices. Even with the module interface, we had
to make changes in the kernel for our module
to run.

Future Work

References
e Implementation of the failure handling rou-

tines in the TSS device. [1] The Linux Kernel Sources version 2.2.5.

e More intelligent policies such as predictions
can be implemented, using information about
past disk accesses.

[2] K Gopinath, Nitin Muppalaneni, N Suresh Ku-
mar and Pankaj Risbood. A 3-tier RAID
Storage System with RAID1, RAIDS and com-
pressed RAIDS for Linuz. 2000 USENIX An-
nual Technical Conference, FREENIX Track,
June 21-23, 2000 - San Diego, California.

e Extend the design of TSS in a networked or
SAN environment.

e Port TSS onto linux 2.4 and release TSS as

[3] Nitin Muppalaneni. Adaptive Hierarchical
RAID. Master’s thesis, Indian Institute of Sci-
ence, 1998.

[4] Suresh Kumar Nelluru. Temperature Sensitive
Storage. Master’s thesis, Indian Institute of Sci-
ence, 1998.

[5] Pankaj Risbood Temperature Sensitive Storage
for Linuz. Master’s thesis, Indian Institute of
Science, 1999.

[6] A. Rubini. Linuxz Device Drivers. O’Reilly,
1998.

[7] Michael Beck et al. Linuz Kernel Internals.
Addison-Wesley, 1998.

[8] Jim Gray and Andreas Reuter. Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[9] R N Williams. An Extremely Fast Ziv-Lempel
Data Compression Algorithm Data Compres-
sion Conference 1991 (DCC’91), 8-11 April,
1991, Snowbird, Utah, pp. 362-371, IEEE.

[10] Chris Ruemmler and John Wilkes. UNIX Disk
Access Patterns. Proceedings of the Winter
1993 USENIX Conference, San Diego, CA, Jan-
uary 1993.

IStatic RAID systems here refer to the standard RAID1
and RAID5 systems.

2The space consumed by integrated TSS varies dynami-
cally and the figures provided here are the space consumed
at the end of the trace run

