
The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages

Santa Barbara, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

SHIFT and SMART-AHS: A Language For
Hybrid System Engineering Modeling and Simulation

Marco Antoniotti
A. Göllü

University of California, Berkeley



SHIFT and SMART-AHS: A Language For Hybrid System

Engineering Modeling and Simulation

Marco Antoniotti Aleks G�oll�u

California PATH

University of California at Berkeley

fmarcoxa,gollug@path.berkeley.edu

Abstract

shift is a new programming language, whose aim is

to facilitate the implementation of reusable simula-

tion frameworks by teams of engineers. shift incor-

porates system theoretic concepts emerging from the

�eld of Hybrid Systems analysis and modeling. The

SMART AHS framework is a collection of shift li-

braries devoted to the construction of Hybrid Sys-

tem based simulation of Automated Highways Sys-

tems. In this paper we describe how the shift sim-

ulation environment and language have impacted on

the development of the SMART AHS framework.

Our claim is that shift provides the proper level

of abstraction for engineers who face complex mod-

eling and simulation tasks, where phase changes and

continuous variables interact in subtle ways.

1 Introduction

shift is a new programming language, whose aim

is to facilitate the implementation of reusable simu-

lation frameworks by teams of engineers. shift in-

corporates system theoretic concepts emerging from

the �eld of Hybrid Systems analysis and modeling

(e.g. see [1]) into an object-oriented language en-

vironment that o�ers the proper level of abstrac-

tion for describing complex applications such as au-

tomated highway systems, air tra�c control sys-

tems, robotic systems, shop 
oors, coordinated sub-

marines and other systems whose operation cannot

be captured easily by conventional models. These

application domains share the following key charac-

teristics.

� The behavior of objects in the system have both

continuous and discrete event components;

� The systems consist of heterogeneous set of in-

teracting objects where models of individual

objects are known and the goal is the study

of the emergent behavior resulting from their

interaction; and

� A static block diagram representation is not

su�cient to specify all data dependencies

among objects since the sets interacting objects

vary over time.

Moreover the practitioners involved in these

projects are, most of the time, engineers who like

to work with their own \tools of the trade". shift

o�ers them with two of them { automata and dif-

ferential equations { well integrated into a single

environment and language.

Our work on simulation frameworks was driven by

application needs in highway automation. In the

early 90s, PATH (Partners for Advanced Transit

and Highways) proposed a speci�c control hierar-

chy for the highway automation project. The need

for a simulation environment was obvious, since we

were dealing with a complex and very large system,

which gave no hope for a closed form mathematical

analysis. Following an unsuccessful market study of

the available tools, a decision was made to internally

develop a system to simulate the PATH control ar-

chitecture for highway automation. A C based sim-

ulation system, SmartPath, was created [8]. The

project evolved and gained national attention.

Following the original proposal, the National Auto-

mated Highway System Consortium (NAHSC) was

funded and other highway automation architectures

were developed. It became evident that a general-

ized simulation framework was needed that could

facilitate the speci�cation, simulation, and evalua-

tion of di�erent highway automation architectures.

As a result SMART AHSC++ , a C++ based per-

sistent simulation framework was developed [8].



SMART AHSC++ used a set of class libraries devel-

oped in C++, SmartDB, as its object model, and

delivered a framework for further customization by

application developers. However, SMART AHSC++
had it shortcomings. It did not allow its users to

program in their \own" domain which was di�er-

ential equations and state machine representations.

It introduced arti�cial speci�cation rules and syntax

resulting from the use of a general-purpose program-

ming language. We feel that these shortcomings are

shared by most simulation libraries embedded in a

host language which does not support language ex-

tensions (like Simula, C or C++ or Java).

In parallel to our AHS work, we were involved

with several other projects, such as air tra�c man-

agement, power transmission and distribution sys-

tems, and network management systems. In system

engineering, we have observed a general shift to-

wards hierarchical control of large systems that com-

bined classical continuous feedback systems, with

more recent discrete event based control algorithms

and protocol speci�cations. This hybrid systems

paradigm has proven ideal for the speci�cation, con-

trol, and veri�cation of such complex, large, dynam-

ical systems.

Our experience with a multitude of such systems re-

sulted in a set of requirements for frameworks for the

design, speci�cation, control, simulation, and eval-

uation of large dynamical systems. No language,

product, or tool in the market nor in academia sat-

is�ed all requirements.

The design and implementation of a language that

addressed all the requirements required expertise

from several disciplines including computer science,

electrical engineering, and mechanical engineering.

Such a multi-disciplinary team was assembled at

PATH/UC Berkeley and a new programming lan-

guage, shift, was born.

This paper provides an overview of the concepts and

constructs of the shift language, and a discussion

of the impact on the development cycle of simu-

lation model illustrated through the SMART AHS

case study. The shift mathematical model is be-

yond the scope of this paper: we refer the interested

reader to [7] for a comprehensive exposition.

1.1 Related Work

shift is used to describe models with switched dif-

ferential equations (such as a vehicle with auto-

matic gear shift) and coordinated behaviors (such

as communicating controllers). Standard math and

simulation tools such as Matlabtm, Mathematicatm,

Mapletm or MatrixX
tm, while suitable for numer-

ical or symbolic integration of �xed sets of di�er-

ential equations, are di�cult to use in applications

with rapidly changing sets of di�erential equations

(due to the evolution of relationships among com-

ponents), complex event-triggering conditions (such

as existential queries on the state of the world), and

complex program logic (such as synchronous compo-

sitions of state machines). More traditional discrete

event simulation packages like GPSStm, while o�er-

ing a tried and tested base, lack the facilities for

writing concise hybrid systems models.

The hybrid systems approach [1] satis�es our needs

for component modeling but it lacks the capacity to

model dynamically recon�gurable interactions be-

tween components.

The Omola/Omsim [11] language has a very simi-

lar approach to hybrid system modeling as shift.

Both systems provide a modeling language with sim-

ulation semantics; both support discrete event and

continuous time behavior representation; both have

the necessary constructs for hierarchical modeling

and speci�cation reuse. However, Omola is designed

to represent statically interconnected objects. Fur-

thermore, it does not provide the means to ma-

nipulate sets and arrays of components. In shift,

these manipulations are used to express and com-

pute the evolution of the interconnections among

components as the world evolves.

Statecharts [9] and Argos [10], based on Statecharts,

are approaches for synchronous discrete event mod-

eling. Their focus is on hierarchical speci�cation

of �nite state machines. shift does not provide

explicit facilities for hierarchical behavior speci�ca-

tion; instead, it provides a sub-typing mechanism

wherein a subtype (presumably more detailed) must

present the same interface as its super-type. shift

adds continuous time semantics and dynamic recon-

�gurability of the synchronization structure. Sub-

typing and other constructs may be used to organize

components hierarchically.

Recent extensions to the DEVS [16] formalism

have introduced notions of dynamic recon�guration

[4, 13]. However, the DEVS formalism is primar-

ily aimed at discrete event simulation and the ex-

tensions for continuous evolution laws are limited.

Model speci�cation in DEVS is done with C++,

SmallTalk or Common Lisp classes that implement

the mathematical model at hand, requiring the user



to work at the host language level.

1.2 Preliminary Discussion

Our mathematical model for the discrete event se-

mantics is similar to Milner's �-calculus [12]. Both

models achieve recon�guration by a renaming of

event labels used in synchronization. The �nite

state machine part of shift implements this model.

The di�erential equation part of shift allows sys-

tems of �rst order ODE's.

The abstraction facilities in general-purpose pro-

gramming languages such as the original Simula or

C/C++, although powerful enough to encode our

models, would not allow us to write simple, concise

descriptions of our designs. The best that could be

hoped for, would be an integration at the level of

\embedded interpreters" �a la Tcl/Tk or SQL1.

shift provides both high-level system abstractions

and the 
exibility of a programming language. How-

ever, all the features that shift o�ers are carefully

designed to constrain the programming style and

to conform to the underlying mathematical model,

while avoiding frustration for the user.

As a �rst statement about the impact of shift in

the programming of complex simulations, when we

will discuss the reimplementation of SMART AHS

in shift in Section 3, we will see that the size of

the resulting \libraries" and \projects" decreased

by almost 50%, while the code could be more easily

reused.

Users of shift within the PATH project, NAHSC

and UCB reported favourably on the ease with

which their engineering models were readily trans-

lated into working simulations.

Moreover, since a shift program is a direct im-

plementation of a hybrid system speci�cation (even

though an extended one), the resulting code can be

easily manipulated and fed into the new breed of

automated veri�cation systems like Kronos [6].

Though not substantiated by a direct comparative

study, but only by an \a posteriori" examination

of the evolution of shift, SmartPATH, SMART

AHSC++ and SMART AHS, we claim that these

results justify the considerable research and imple-

mentation e�ort that went into the develoment of

these new tools.

1The shift systems provides a C API for this style of
programming.

2 SHIFT Language Overview

A shift program describes a set of interacting ob-

jects called components and grouped into component

types2. The shift type declaration construct spec-

i�es the prototypical behavior of all components of

a given type. shift supports a single inheritance

scheme which has proven su�cient for our needs.

The set of components types and their instances in

a shift program, directly describe a hybrid system

with comprises synchronizing �nite states machines

and di�erential equations.

shift additionally supports a small set of basic data

types (number and symbol) { and of constructed

types (array and set). The set of built-in types has

the following characteristics:

� Objects of type number have piecewise constant
or piecewise continuous real-valued time traces.

The latter variables have type continuous num-
ber.

� Objects of type symbol have piecewise constant
symbol-valued time traces. In shift symbols

are similar to C enumeration tags. However

they do not require a declaration.

� An object of type set(T), where T is a native

or user-de�ned type, contains a set of elements

of type T.

� An object of type array(T) contains a one-

dimensional array of elements of type T, whose
dimension is determined at creation time.

A component prototype is de�ned by the shift type
declaration. The structure of a type roughly con-

sists of

� inputs

instance variables (or simply \variables") which

can be read but not changed by the behavior

of the component and which are visible outside

the scope of the type de�nition.

� outputs

instance variables which can be read and

changed by the behavior of the component and

2Our terminology abuses words like type. Using more
standard Object Oriented terminology, we would speak of in-
stances and classes. We use the term \component" since the

control theory application domain imposes a natural part-of
metaphor on the software architecture.



which are visible outside the scope of the type

de�nition.

� states

instance variables which can be read and

changed by the behavior of the component but

that are not visible outside the scope of the type

de�nition.

� discrete modes and transitions

i.e. the de�nition of the �nite state machine

behavior of the type.

� di�erential and algebraic equations

i.e. the de�nition of the continuous behavior of

the type.

The terminology is taken from the standard Control

Theory practice and it roughly translates into the

well know concepts of private and public slots in a

class. Also, the notions of inputs and outputs are

supported by the language in order to promote a

\black box" software development style.

As an example, here is a �rst shift code frag-
ment:

type car
f

input

continuous number throttle;
output

continuous number position, velocity;

continuous number acceleration;
state

continuous number fuel level;

car car in front;
controller controller;

. . .

g

The discrete �nite state behavior and the contin-

uous behavior of a type are speci�ed in di�erent

\clauses" of a user de�nition.

The continuous behavior is speci�ed by ordinary dif-

ferential equations and algebraic de�nitions which

are grouped under the 
ow clause. Each instance

variable can be used in these equations and their

behavior is computed accordingly3. Each equation

group (appropriately called a 
ow) can be labeled

with a meaningful name. The default 
ow contains

the equations which are to be used whenever there

3Of course, only continuous number variables make sense
in a di�erential de�nition.

are no special provision for computing the value of

the variables involved.

The discrete clause de�nes the possible values for the
type's mode (i.e. the �nite state \current state")

and associates to each of them a set of di�eren-

tial equations and algebraic de�nitions or one of the


ows de�ned in the 
ow clause.

The di�erential equations are speci�ed by systems

of �rst order ODE of the form x0 = f(x; u), where

x is a single variable and u is a vector of \other"

variables. The algebraic de�nitions cannot contain

circular dependencies. Such dependencies are de-

tected at run-time, and an error is signaled by the

run-time system.

As an example (continuing the \car" example):

type car
f

. . .


ow

default f
position' = velocity;

velocity' = acceleration;
g

discrete

accelerating f acceleration = 3; g,
cruising f velocity = 30; g,
brake f acceleration = -5; g;

g

Notice that the cruising state rede�nes velocity,

which becomes algebraically de�ned (as a constant

in this case) instead of di�erentially de�ned (as the

integral of the acceleration).

Transitions between discrete modes are de�ned in
the transition clause, as in the following example.

type car

f
. . .
transition

accelerating -> cruising fg
when velocity >= 30,
cruising -> braking fg
when position(car in front) - position < 5;

g

The example uses the state variable car in front

containing a reference to another car, whose relative

position is used in deciding when to apply brakes.

Transitions are labeled by a (possibly empty) set of



event labels. These labels allow transitions to syn-

chronize with each other. Moreover, transitions may

be guarded by boolean expressions { introduced by

the when keyword { and may trigger a set of actions

grouped in a do clause. These actions reset4 (i.e. as-
sign) the values of variables, may create new compo-

nents and may reconnect their inputs and outputs.

Suppose that we wish the car to brake when a road-
side controller signals an emergency. This can be
speci�ed with the transition

type car

f
. . .

cruising -> braking fcontroller:emergencyg
when position(car in front) - position < 5;

g

The de�nition of the controller type includes an ex-

ported event, emergency, and a transition that trig-
gers it.

type controller

f
export emergency, . . . ;

discrete normal, panic mode, . . . ;

transition

normal -> panic mode femergencyg
when some critical condition;

. . .
g

shift allows the system modeler to specify very
complex patterns of synchronous composition of �-
nite state automata. The transition guards may
contain existential quanti�ers that query the state
of sets of components (possibly all existing compo-
nents). For example, let cars be the set of all the
components of the car type and let the road consist
of a single lane. Then, the variable car in front is
updated as follows.

type car

f
. . .

transition

cruising -> cruising fg
when exists c in cars :

position(c) > position
and position(car in front) > position(c)

do f
car in front := c;

4The terminology, once again is borrowed from the �eld
of hybrid system studies.

g,
. . .

g

The initializations of a newly-created component of
some type are de�ned in the setup clause. For ex-
ample, each component of type car may add itself
to the set cars when it is created.

type car

f
. . .
setup

do f
cars := cars + f self g;

g;
g

In practice a shift program would not use this ex-

act code unless cars were a small set. A more e�-

cient mechanism requires maintaining multiple sets

of cars associated with lanes and highway segments.

2.1 SHIFT Support Environment

shift has many more features which we do not dis-

cuss here in further detail since they are outside the

scope of the paper5. We now brie
y comment on the

shift support environment and implementation.

shift programs are translated directly into C by

the shic compiler. The resulting C �le is then

linked with the shift runtime library in order to

produce an executable (a �le conventionally end-

ing with .sim). The runtime library takes care

of the implementation of the high level data struc-

tures used by shift (e.g. sets) and makes provisions

to integrate the di�erential equations via standard

Runge-Kutta algorithms. There are no special op-

timizations that are done by the compiler6. The

only requirement imposed on the system is that the

behavior of the run-time which essentially interprets

the set of �nite state machines and di�erential equa-

tions complies with underlying mathematicalmodel.

5Among them: single inheritance, complex set and array

formers �a la SETL [14], garbage collection (using Boehm's
conservative GC [5]), a foreign function interface facility and

a C API which allows an experienced programmer to control
shift simulations from C and C++ programs.

6As a matter of fact, many constructs and compilation
policies could be optimized away by some rather simple data


ow analysis. However, this has not been so far the emphasis
of our work.



There are several subtleties involved in the in-

teraction between the RK integration routine

and the guard evaluation code. Languages like

Omola/Omsim that support only a static set of dif-

ferential equations can perform compile-time opti-

mizations to select integration step sizes. In shift

since the dependencies among the components can

change at run-time, it is not possible to optimize in-

tegration step-sizes with respect to guard-crossings.

shift applications so far have been primarily in

non-sti� systems, hence a �xed-step RK integration

algorithm had the best performance. We recognize

that this is still an open research �eld.

The executable �le can be run is two ways: by start-

ing a command line monitor or by connecting the

simulation with a Tcl/Tk graphical user interface

in a client/server fashion7 (see Figure 1 for a screen

shot).

Both the command line monitor and the graphical

environment allow the user to control the running

simulation. Typical operations include

� data inspection

� stepping by time click and by \simulated time"

� stopping and resumption of execution in corre-

spondence of discrete transitions.

These operations support the simulation modeler

\at the right level" of abstraction and allow her/him

to quickly determine whether there are logical prob-

lems in the code.

3 Developing Simulation Frame-

works in SHIFT: The SMART

AHS Case

We used shift to develop a specialized framework

(SMART AHS) for the construction of simulation

models of highways. The overall design principles

were �rst described in [15]. The objectives of the

SMART AHS framework are listed hereafter.

7The choice to use a client server architecture for the GUI
was based on two considerations. (1) The development of the

GUI could progress rather independently of the development
on the shift compiler and runtime. (2) It was recognized
since the early design stages that shift simulations could re-
quire huge memory spaces: hence the necessity to being able

to run simulation remotely on powerful workstation while in-
teracting with them on a local { and less powerful { machine.

1. To provide researchers with a standardized tool

which can be used for evaluation of simulation

results under di�erent policies.

2. To allow the quick construction of alternative

simulation models.

3. To allow the simulation of models at di�erent

granularity levels.

4. To be able to handle medium to large scale sim-

ulations.

In Sections 3.1 and 3.2 we describe the SMARTAHS

architecture and discuss the lessons learned in its

deployment as one of the standard tools used by the

National Automated Highway System Consortium

(NAHSC).

3.1 SMART AHS Architecture

The SMARTAHS framework is roughly divided into

two parts. The �rst is a \static" part which contains

highway type de�nitions used to compose di�erent

highway layouts. The second part contains di�erent

vehicle models used for diverse simulations.

The highway types comprise Lane, Section, Seg-

ment, Barrier, Block andWeather. These types and

their structure constitute a data description lan-

guage for highways.

The vehicle types are centered around a container

type called AutomatedVehicle. Its most immediate

sub-components are Controller, VehicleModel and

VREP (Vehicle Roadway Environment Processor).

Figure 2 contains a schematic representation of the

AutomatedVehicle shift code.

This architecture meets the requirements by allow-

ing the system modeler to plug in di�erent con-

trollers and vehicle dynamic models. Researchers

at PATH have successfully developed two classes of

models for highly detailed vehicle dynamics simula-

tion and for high volume highway simulations with

complex vehicle maneuvers.

The detailed simulationmodel describes a vehicle at

the level of gear shifting and engine dynamics. The

model is realistic and based on real data collected

by General Motor researchers.

The \high volume" simulation model uses a sim-

pli�ed vehicle dynamics model (there is no need

to simulate the engine dynamics when computing


ows over stretches of highway) and a controller



Figure 1: A screen shot of the Tcl/Tk shift environment. The simulation being run models a food

processing manufacturing line.

which is devoted to maintain safety parameters (e.g.

distance from the vehicle in front) and to perform

merge maneuvers on entrance and exit ramps.

3.1.1 Micro Simulation of Houston Metro

Katy Corridor

The \high volume model" was developed to gather

data for a project sponsored by the Houston Metro

Transportation Authority. The project asked eval-

uation data for a preliminary design of a stretch

of highway with three entry ramps and three exit

ramps. The main objective of the study was to

evaluate the congestion build up at the three en-

try ramps under di�erent demand volumes with au-

tonomous and highly automated vehicles8. Other

parameters which were under study include the re-

quired length of the entry ramps to ensure comple-

tion of merge maneuvers. A more detailed descrip-

8The term \autonomous" is here intended in the following
sense: a vehicle/driverwhich takes decisions based only on its
sensor input and on certain assumptions on the behavior of

nearby vehicles. The high automation characteristic can be
thought of as modern Adaptive Cruise Control technology.

tion of the experiment and of its results is contained

in [2, 3].

Most of the work done to develop the simulation

went into the construction of a Controller module

which would obey a distributed protocol for cruising

and merging into existing tra�c. A code fragment

for the Controller is shown in Figure 3.

The GUI environment was used to visualize the re-

sults of the simulation in order to spot problematic

areas of the protocol.

We tested four cases on a matrix given by high and

low tra�c demand and by enforcing two di�erent

vehicle tracking policies. The tra�c demands levels

can be summarized as follows:

low ca. 2000 vehicles/hour injected in the highway

system.

high ca. 4000 vehicles/hour injected in the high-

way system.

In each case each of the vehicles was simulated by

instantiating a full blown AutomatedVechicle con-



AutomatedVehicle

x

y

p Controller VehicleModelVREP

lane

throttle

brake

steering

accel.

Figure 2: Schematic Block Diagram of AutomatedVehicle shift code.

tainer, and each instance obeyed the protocol im-

plemented in the Controller. The overall speed of

the simulation, depending on the size of the input

data was always between 4 and 9 times of simulated

physical time9.

3.2 Discussion and Evaluation of the
SMART AHS Framework

The construction of the SMART AHS framework

and of applications based on it, has given us an

insight on how to conduct the development of an

harmonious set of libraries. This was a requirement

of the overall project and our aim. We consider our

experience so far successful and we credit this suc-

cess to two main characteristics of the shift and

SMART AHS framework.

� shift provides a sound and restricted mathe-

matical model (Hybrid Systems) which can be

successfully mastered by an engineer in a rather

short period of time. The tools provided (dif-

ferential equations and �nite state automata)

are the \right" ones for the kind of models we

were targeting.

� shift and SMART AHS code is signi�cantly

more compact. The shift implementation of

SMART AHS consists of 3,300 lines of shift

code and 2,000 lines of C legacy code10, plus

about 5,000 lines for the full shift runtime11.

The Houston-Metro case study consisted of

9However, the slow down is due mainly to the current im-
plementation of sets in shift. New tests will be performed
with a new implementation which will improve on the mem-
ory usage of the internal data structures.

10Mostly, I/O routines for the uploading of the engine
model data.

11Which includes all the necessary development hooks,
GUI hooks, C API and Foreign Function Interface.

3,800 additional lines of shift code. The pre-

decessor of SMART AHS (SMART AHSC++)

consisted over 20,000 lines of C++ code, with-

out the code for the distributed merging con-

troller and the highway building

� The SMART AHS framework has a very small

set of \how-to-use" rules that a programmer

needs to know about. As a result new users can

immediately become more productive in appli-

cation development. Based on our experience

with the previous incarnations of SMARTAHS,

frameworks based on C/C++ usually have too

many \how-to-use" rules that are not enforced

by any compiler and result in unpredictable

run-time errors if not followed properly.

Of course these remarks can be taken as a simple

recipe for \good engineering practice", yet we claim

that the overall design of the tools did pay o� con-

siderably.

The entire simulation study of the Houston Katy

Corridor was built from scratch (i.e. the highway

layout, the vehicle dynamics models, the merge and

cruise protocol and the actual simulation runs) in

less that three work weeks.

The merge simulation case study is being followed

by more complex studies regarding

� emissions evaluation,

� coordination protocols involving radio commu-

nications,

� \platooning" of cars on automated highways,

and

� detailed physical simulation of crash and \near-

miss" situations for safety analysis.



type Controller

f
output

continuous number acceleration;

. . .
state

Vehicle the vehicle, side lane vehicle;

continuous number same lane accel;
number nominal speed;

. . .

discrete

cruisefcruise lawg;
yield fyield lawg;

. . .

ow

default f
same lane accel =

track acceleration(same lane rel speed, xDot(the vehicle), nominal speed);

g;
cruise law f

acceleration = same lane accel;

g;
yield law f

acceleration = min(same lane accel, side lane accel)

g;
. . .
transition

cruise -> yield

when rear gxp(the vehicle) >= L gap visible range(junction)
and exists mp in merging vehicles(junction) :

((rear gxp(mp) >= front gxp(the vehicle))

and (rear gxp(mp) <= front gxp(the vehicle) + lateral sensor range)
and (xDot(the vehicle) <= xDot(mp) + yield rel speed threshold))

do f
side lane vehicle := mp;

g,
. . .

g

Figure 3: A fragment of the Controller code. The fragment shows the transition that takes the (instance of)

the Controller of the vehicle from the cruise to the yield state. The condition upon which this transition is

allowed is expressed in the when clause. The variables su�xed by gxp and gyp represent positions. The

accessor xDot(the vehicle) is integrated to the current speed of the vehicle.

When the transition has taken place, the integration will use a modi�ed set of equations to produce the value

for the acceleration parameter, whose computation eventually relies on a C function (track acceleration).

These projects simply extend the framework or

change the simulation granularity, con�rming our

claim that the level of abstraction provided by shift

and SMART AHS is the proper one. Other shift

applications developed within UCB Mechanical En-

gineering and Electrical Engineering departments

also con�rm that the model/simulate/analyze cy-

cle improves considerably when compared to more

traditional approaches applied to similar problems.

3.2.1 Preliminary Cost Analysis

The overall shift design and development took

about 18 months for a core group, averaging six

people (though the complete list of people who ac-

tually contributed is much longer). The �rst version

of shift became available in September of 1996 and

it did not include many of the features that were in-

troduced later, during the winter of 1996/97. Cur-



rently there are �ve projects directly funded by ei-

ther PATH or the NAHSC that are using shift and

SMART AHS. These projects directly involve about

20 people for the development and the interpreta-

tion of the simulation results. New projects will be

added to this list as the FY 98, as the NAHSC ex-

pands and redirects its e�orts.

The cost for the Houston case study turned out to be

in the order of 3 men/month. Subsequent projects

(emission control simulation, platooning and coor-

dination) reused much of the overall structure devel-

oped in the �rst place for the Houston Case Study

and showed a faster turnaround of the simulation

results.

SHIFT is used in other application domains such

as autonomous underwater vehicles, and air tra�c

management simulations. However, our group has

not undertaken a formal project tracking e�ort in

order to evaluate the overall impact of the technol-

ogy outside California PATH.

4 Conclusion

In this paper we presented shift: a new program-

ming language based on theoretic concepts emerging

from the �eld of hybrid systems. We have claimed

that shift o�ers the proper level of abstraction for

describing complex applications such as automated

highway systems, air tra�c control systems, robotic

shop 
oors, coordinated submarines and other sys-

tems whose operation cannot be captured easily by

conventional models.

To support our claim we have described our experi-

ence with the SMARTAHS framework for the simu-

lation of complex highway systems. Our experience

indicates that shift and SMART AHS do achieve

the objectives that were at the base of its design.

In particular, shift is currently enjoying a growing

popularity and is being used as a teaching tool in

various courses in the Electrical Engineer Depart-

ment of UC Berkeley.

Future work on shift will include the following

items:

� further research on the interaction between the

integration and guard crossing algorithms;

� parallelization and distribution of the run-time

system;

� integration with automated veri�cation sys-

tems such as Kronos [6].

As already mentioned, at this point we cannot pro-

vide a direct comparative study of the \simulation

development costs" for shift and SMART AHS

with respect to a more traditional approach based

on standardized libraries. Setting up such a study

would require a considerable e�ort in itself and the

identi�cation of a proper set of tools to compare

shift and SMARTAHS against. However, the feed-

back we gathered from the users of shift makes us

very con�dent that the results would tip the balance

in its direction.

5 Acknowledgments

We wish to thank all the people at California PATH

and elsewhere, especially A. Deshpande, F. Eska�,

A. Girault, M. Kourjanski, J. Misener, V. Murgier,

L. Semenzato, J. Sousa, P. Varaiya, D. Weismann,

S. Yovine, and the National Automated Highway

System Consortium

6 Availability

Of course, shift and SMART AHS can be down-

loaded for free under a UCB-style license from our

home pages

� http://www.path.berkeley.edu/

� http://www.path.berkeley.edu/shift

� http://www.path.berkeley.edu/smart-ahs

and our ftp site

� ftp.path.berkeley.edu:pub/PATH/SHIFT

� ftp.path.berkeley.edu:pub/PATH/SMART-AHS

References

[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and

P. Ho. Hybrid Automata: An Algorithmic Ap-

proach to the Speci�cation and Veri�cation of Hy-

brid Systems. In R. L. Grossman, A. Nerode, A. P.



Ravn, and H. Rischel, editors, Hybrid Systems, vol-
ume 736 of Lecture Notes in Computer Science,

pages 209{229. Springer-Verlag, 1993.

[2] M. Antoniotti, A. Deshpande, and A. Girault. Mi-

crosimulation analysis of automated vehicles on

multiple merge junction highways. In Proceedings
of the IEEE Conference on Systems, Man, and Cy-

bernetics (SMC97). IEEE, October 1997.

[3] M. Antoniotti, A. Deshpande, and A. Girault. Mi-
crosimulation analysis of multiple merge junctions

under autonomous ahs operation. In Proceedings of
the IEEE Conference on Intelligent Transportation

Systems (ITSC97). IEEE, November 1997.

[4] F. Barros. Dynamic Structure Discrete Event Sys-
tem Speci�cation Formalism. Transactions of the

Society for Computer Simulation, 1:35{46, 1996.

[5] H. Boehm and M. Weiser. Garbage Collection in
an Uncooperative Environment. Software Practice

and Experience, pages 807{820, September 1988.

[6] C. Daws, A. Olivero, S. Tripakis, and S. Yovine.

The tool kronos. In Hybrid Systems III, Veri�ca-

tion and Control, volume 1066 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

[7] A. Deshpande, A. G�oll�u, and P. Varaiya. A For-

malism and a Programming Language for Dynamic
Networks of Hybrid Automata. In Hybrid Systems

IV. Springer-Verlag, 1997.

[8] F. Eska�, D. Khorramabadi, and P. Varaiya. An

Automated Highway System Simulator. Trans-

portation Research Journal, part C, 3(1), 1995.

[9] D. Harel. Statecharts: A Visual Approach To Com-

plex Systems. Science of Computer Programming,

8(3):231{275, 1987.

[10] F. Maraninchi. The Argos Language: Graphical

Representation of Automata and Description of Re-
active Systems. In Proceedings of the IEEE Inter-

national Conference on Visual Languages. IEEE,

1991.

[11] S. E. Mattson and M. Anderson. The Ideas Behind

Omola. In Proceedings of the IEEE Symposium on

Computer Aided Control System Design, CADCS

1992. IEEE, March 1992.

[12] R. Milner, J. Parrow, and D. Walker. A calculus of

mobile processes, I and II. Information and Com-

putation, 100(1):1{77, September 1992.

[13] H. Praehofer, F. Auernig, and G. Resinger. An En-
vironment for DEVS-based Multiformalisms Simu-

lation in Common Lisp/CLOS. Discrete Event Dy-

namic Systems: Theory and Application, 3(2):119{
149, 1993.

[14] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and
E. Schonberg. Programming with Sets. An Intro-

duction to SETL. Springer-Verlag, 1986.

[15] P. Varaiya. Smart Cars on Smart Roads: Prob-
lems of Control. IEEE Transactions on Automatic

Control, 38(2):195{207, February 1993.

[16] B. Zeigler. Multifaceted Modeling and Discrete

Event Simulation. Academic Press, London, Or-
lando, 1984.


