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Abstract

The Pebble operating system is intended to support
complex embedded applications. This is accomplished
through two key features: (1) safe extensibility, so that
the system can be constructed from untrusted compo-
nents and reconfigured while running, and (2) low inter-
rupt latency, which ensures that the system can react
quickly to external events.

In this paper we discuss Pebble’s architecture and 
underlying technology used by Pebble, and inclu
microbenchmark performance results on three MIPS t
get systems. The performance measurements dem
strate that Pebble is a good platform for comple
embedded applications.

1 Introduction

This paper describes the Pebble operating system ar
tecture, which is designed to be used as a platform 
high-end, embedded, communicating devices co
structed from reusable software components.

A component -based approach to building applications
is becoming increasingly popular, as exemplified by th
popularity of COM, Java Beans, and CORBA. Th
advantage of software components with clean, abstr
interfaces is that they allow code to be combined a
reused in ways that were not imagined by their develo
ers, allowing the cost of development to be amortize
over more uses. 

When constructing a system from software componen
a choice has to be made as to what method will be u
to isolate the components from one another. 
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There are three basic approaches: provide no protec
between components, as exemplified by COM-bas
systems; provide software protection, as used by Ja
based systems; and provide hardware protection,
exemplified by CORBA- and RPC-based approach
Each method has its drawbacks. With no protection
misbehaved component can compromise the integrity
the system, as it has access to all data and resource
the system. Software protection typically requires th
the system be written in a special, safe programm
language, which may not be acceptable to all develo
ers. Hardware protection schemes have traditiona
exhibited poor performance, due to the cost of switchi
protection domains when performing an inter-prote
tion-domain call. However, recent work (e.g., on L
[Liedke97] and Exokernel [Kaashoek97]) has show
that commonly held assumptions about the intrinsic pe
formance cost of hardware protection schemes need
be reexamined. 

The Pebble architecture began with the idea that ope
ing system services should be implemented by a coll
tion of fine-grained, replaceable user-level componen
The techniques we have applied in order to get go
performance from operating system components a
also used by component-based applications running 
Pebble, and applications share in the performance be
fit provided by these techniques. The performanc
improvement are striking: for example, on Pebble, 
one-way inter-protection domain call takes roughly 12
machine cycles, which is within an order of magnitud
of the cost of performing a function call; an equivalen
call when running OpenBSD (on the same hardwar
takes roughly 1000-2000 machine cycles [Gabber99].

With Pebble, an application can dynamically configu
the services provided by the system, and safely lo
new, untrusted components, written in an unsafe p



gramming language, into the system while the system is
running. Moreover, old servers may be retired grace-
fully when new versions of the service are introduced
without disrupting the operation of the system. This
capability is essential for high-availability systems that
must operate continuously.

Future communication devices, such as PDA-cell phone
hybrids, set-top-boxes, and routers will require just this
type of dynamic configurability and the ability to safely
run untrusted code. We feel that the approach that we
are taking with Pebble will be valuable for building such
embedded systems.

The remainder of the paper is organized as follows.
Section 2 describes the Pebble philosophy. Section 3
contrasts software and hardware protection for compo-
nent-based applications. Section 4 discusses the technol-
ogies used to implement Pebble, including protection
domains, portals, scheduling, synchronization, device
drivers and interrupt handling. Section 5 explains how
portals are used to optimize file operations. Section 6
presents performance measurements of Pebble on three
different MIPS-based target machines. The paper con-
cludes with a survey of related work, current status and
a summary.

2 Pebble Philosophy

The Pebble architectural philosophy consists of the fol-
lowing four key ideas. When combined, they enable our
goals of providing low interrupt latency and low-cost
inter-component communication.

• The privileged-mode nucleus is as small as possible.
If something can be run at user level, it is.

The privileged-mode nucleus is only responsible for
switching between protection domains, and other than
synchronization code, is the only part of the system that
must be run with interrupts disabled. By reducing the
length of time that interrupts are disabled, we reduce the
maximum interrupt latency seen.

In a perfect world, Pebble would include only one privi-
leged-mode instruction, which would transfer control
from one protection domain to the next. By minimizing
the work done in privileged mode, we reduce both the
amount of privileged code and the time needed to per-
form its essential service.

• Each component is implemented by a separate pro-
tection domain. The cost of transferring control from
one protection domain to another should be small
enough that there is no performance-related reason
to co-locate components.

Microkernel systems, such as Mach, have in the past
tended towards coarse-grained user level servers, in part
because the cost of transferring between protection
domains was high. By keeping this cost low, we enable
the factoring of the operating system, and application,
into smaller components with small performance pen-
alty.

• The operating system is built from fine-grained
replaceable components, isolated through the use of
hardware memory protection.

Most of the functionality of the operating system is
implemented by trusted user-level components. The
components can be replaced, augmented, or layered.

A noteworthy example is the scheduler: Pebble does not
handle scheduling decisions at all. The user-replacable
scheduler is responsible for all scheduling and synchro-
nization operations.

• Transferring control between protection domains is
done by a generalization of hardware interrupt han-
dling, termed portal traversal. Portal code is gener-
ated dynamically and performs portal-specific
actions.

Hardware interrupts, inter-protection domain calls, and
the Pebble equivalent of system calls are all handled by
the portal mechanism. Pebble generates specialized
code for each portal to improve run-time efficiency. The
portal mechanism provides two important features:
abstract communication facilities, which allow compo-
nents to be isolated from their configuration, and per-
connection code specialization, which enables the appli-
cation of many otherwise unavailable optimizations.
Portals are discussed in depth in Section 4.

3 Software vs. Hardware Protection

Suggesting the use of a hardware protection scheme, in
the age of Java and software protection, is a controver-
sial (perhaps heretical) proposal. However, each
approach has its applications. 

Component-based systems that use software protection
schemes are typically written in a type-safe byte-coded
language, such as Java [Gosling96] and the Limbo lan-
guage of the Inferno system [Dorward97]. Components



run in a single hardware protection domain, but the run-
time environment implements (in effect) a software pro-
tection domain. 

These systems are typically designed with the following
three goals:

1. Provide an architecture-independent distribution for-
mat for code.

2. Ensure that resources (such as memory) are returned 
to the system when no longer needed.

3. Ensure that the component does not view or modify 
data to which it has not been granted access.

In the case of Java, these goals are satisfied by (1) the
machine-independent Java byte-code, (2) the garbage
collector provided by Java run-time environments, and
(3) the run-time Java byte-code verifier.

Java byte-code offers a hardware-architecture-neutral
distribution format for software components. However,
such an architecture-neutral format could also be used
for untrusted code. Most compiler front ends generate a
machine-independent intermediate form, which is then
compiled by a machine-specific back end. Such an inter-
mediate form could be used as a distribution format for
components written in any language, trusted or
untrusted.

Software protection has problems too. Putting all soft-
ware-protected components in the same address space
makes it hard to pin down a buggy component that is not
caught by the type system or the garbage collector.

Hardware protection schemes run each component in a
separate hardware protection domain. As an example, a
traditional operating system (such as Unix) could be
thought of as a hardware-protected component-based
system, where the components are programs, and pro-
tection is provided by the operating system working in

concert with the hardware memory management unit.1

Typically, hardware schemes do not attempt to satisfy
(1), since components are distributed in the machine
language of the target hardware. (2) is satisfied by care-
ful bookkeeping: the system keeps track of the resources
assigned to each component (process), and when the
component (process) terminates, the resources are
returned to the system. (3) is implemented using hard-
ware memory protection: each component is run in a
separate address space. If a component attempts to view

or modify data outside its address space, a hardware trap
is taken and the component (process) is terminated.

By running multiple Java virtual machines on top of
hardware protection one can separate the components in
a way that makes it easier to identify buggy compo-
nents.

Software schemes are the only option when hardware
protection is unavailable, such as low-end processors
without memory management units. (The designers of
Inferno/Limbo chose a software protection scheme for
precisely that reason.)

Hardware schemes are called for when component code
is written in an unsafe language, such as C or C++.
Although Java provides many facilities unavailable in C
and C++, there are often good reasons for running code
written in an unsafe language. For example, a compo-
nent may include legacy code that would be difficult or
costly to reimplement in a safe language, or may include
hand-tuned assembler code that uses hardware specific
features. One example of the latter is an implementation
of a computation-intensive algorithm (such as an MPEG
decoder) using special hardware instructions designed to
support such tasks. 

The garbage collection facility offered by systems such
as Java can be seen as both a blessing and a curse. On
one hand, garbage collection frees programmers (and
software testers) from ensuring that all allocated
resources are eventually freed. Storage leaks are notori-
ously hard to find, and automated garbage collection
greatly simplifies the task of writing robust code. How-
ever, when building applications that have fixed latency
requirements, garbage collectors can be more trouble
than they are worth. Because the free memory pool may
become empty at any time, any memory allocation
could trigger a collection, which makes estimating the
cost (in time) of a memory allocation a stochastic, rather
than deterministic, process. In a real-time embedded
system, the uncertainty introduced by the presence of a
garbage collector may not be worth the benefit it offers.
This is the reason why some systems, such as Inferno,
invested much effort to ensure that garbage collection
does not delay critical functions.

One final historical argument for choosing software pro-
tection over hardware protection is that the cost of trans-
ferring between components under a hardware
protection scheme is several orders of magnitude higher
than it is under a software protection scheme. In this
paper we show that the techniques used by Pebble bring
the cost of cross-component communication under a
hardware scheme to within an order of magnitude of the

1. To continue the analogy, such components can be com-
posed using Unix pipes.
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cost of a function call, which we feel makes this point
moot.

4 Pebble Technology

In this section we discuss the technology used to imple-
ment Pebble.

4.1  Protection Domains and Portals

Each component runs in its own protection domain (PD)
which consists of a set of memory pages, represented by
a page table, a portal table, which holds the addresses of
the portal code for the portals to which the component
has access. A protection domain may share both mem-
ory pages and portals with other protection domains, as
discussed below.

A parent protection domain may share its portal table
with its child. In this case, any changes to the portal
table will be reflected in both parent and child. Alter-
nately, a parent protection domain may create a child
domain with a copy of the parent’s portal table at the
time when the child was created. Note that both copying
and sharing portal tables are efficient, since portal tables
contains pointers to the actual portal code. No copying
of portal code is needed in either case.

A thread belonging to protection domain A can invoke a
service of protection domain B only if A has success-

fully opened a portal to B.1 Protection domain B, which
exports the service, controls which protection domains
may open portals to B, and hence which components
can invoke B’s service. Protection domain B may dele-
gate the execution of its access-control policy to a third
party, such as a directory server or a name-space server.

To transfer control to B, A’s thread executes a trap
instruction, which transfers control to the nucleus. The
nucleus determines which portal A wishes to invoke,
looks up the address of the associated portal code, and
transfers control to the portal code. The portal code is
responsible for saving registers, copying arguments,
changing stacks, and mapping pages shared between the
domains. The portal code then transfers control to com-
ponent B. Figure 1 shows an example of portal transfer.

When a thread passes through a portal, no scheduling
decision is made; the thread continues to run, with the
same priority, in the invoked protection domain. 

As part of a portal traversal, the portal code can manip
late the page tables of the invoking and/or invoked p
tection domains. This most commonly occurs when
thread wishes to map, for the duration of the portal inv
cation, a region of memory belonging to the invokin
protection domain into the virtual address space of t
invoked protection domain; this gives the thread a w
dow into the address space of the invoking protecti
domain while running in the invoked protection domai
When the thread returns, the window is closed. 

Such a memory window can be used to save the cos
copying data between protection domains. Variatio
include windows that remain open (to share pag
between protection domains), windows that transf
pages from the invoking domain to the invoked doma
(to implement tear-away write) and windows that tran
fer pages from the invoked domain to the invoker (
implement tear-away read)

Note that although the portal code may modify VM da
structures, only the VM manager and the portal mana
(which generates portal code) share the knowled
about these data structures. The Pebble nucleus itse
oblivious to those data structures.

Portal code may never block and may not contain loo
This is essential to ensure that the portal can be 
versed in a small, finite amount of time. If the portal ha
to block (e.g. the invoked domain’s stacks queue 
empty), then the portal code transfers control to t
scheduler, inside which the calling thread is waiting f
the resource.

An important point that has not yet been mentioned
that specialized portal code is generated, on-the-

1. “Protection domain A” here is shorthand for “the protec-
tion domain in which component A is running.”

nucleus

user-level

 A

A’s portal table

1001011

A→B portal code

 B

0101101
1110010

Figure 1. Portal Transfer. Protection domain A
invokes protection domain B via a portal transfer
Protection domain A transfers indirectly through its
portal table to the portal code specific to this
communication path. The portal code transfers contro
to protection domain B.
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when a portal is opened. This allows portal code to take
advantage of the semantics and trust relationships of the
portal. For example, if the caller trusts the callee, the
caller may allow the callee to use the caller’s stack,
rather than allocate a new one. If this level of trust does
not exist, the caller can require that the callee allocate a
new stack. Although sharing stacks decreases the level
of isolation between the caller and callee, it can improve
performance.

4.2  Server Components

As part of the Pebble philosophy, system services are
provided by server components, which run in user mode
inside separate protection domains. Unlike applications,
server components may be granted limited privileges
not afforded to application components. For example,
the scheduler runs with interrupts disabled, device driv-
ers have device registers mapped into their memory
region, and the portal manager may add portals to pro-
tection domains (a protection domain can not modify its
portal table directly). 

There are many advantages for implementing services at
user level. First, from a software engineering standpoint,
we are guaranteed that a server component will use only
the exported interface of other components. Second,
because each server component is only given the privi-
leges that it needs to do its job, a programming error in
one component will not directly affect other compo-
nents. Clearly, if a critical component fails (e.g., VM)
the system as a whole will be affected—but a bug in
console device driver will not overwrite page tables.

4.3  Scheduling and Synchronization

Pebble’s scheduler implements all actions that may
change the calling thread’s state (e.g.  or

). Threads cannot block anywhere
except inside the scheduler. In particular, Pebble’s syn-
chronization primitives are managed entirely by the
user-level scheduler. When a thread running in a protec-
tion domain creates a semaphore, two portals that
invoke the scheduler (for P and V operations) are added
to the protection domain’s portal table. The thread
invokes P in order to acquire the semaphore. If the P
succeeds, the scheduler grants the calling protection
domain the semaphore and returns. If the semaphore is
held by another protection domain, the P fails, the
scheduler marks the thread as blocked, and then sched-
ules another thread. A V operation works analogously; if
the operation unblocks a thread that has higher priority
than the invoker, the scheduler can block the invoking
thread and run the newly-awakened one.

The scheduler runs with interrupts disabled, in order
simplify its implementation. Work on the use of lock
free data structures has shown that, with appropri
hardware support, it is possible to implement the da
structures used by Pebble’s scheduling and synchron
tion component without locking [Herlihy91]. Such a
implementation would allow the scheduler to run wit
interrupts enabled which would reduce interrupt laten
even further. (We have not yet implemented the sch
uler using such data structures, although we plan
investigate such an implementation in the future.)

4.4  Device Drivers and Interrupt Handling

Figure 2 depicts the interrupt handling in Pebble. Ea
hardware device in the system is associated with
semaphore that used to communicate between the in
rupt dispatcher component and the device driver comp
nent for the specific device. Typically, the device drive
will have left a thread blocked on that semaphore. 

The portal table of each protection domain contai
entries for the machine’s hardware interrupts. When 
interrupt occurs, portal1 saves the context of the cur
rently running thread, including the contents of th
entire register set. Portal1 then switches the stack
pointer to the interrupt stack and calls the interrupt d
patcher, which determines which device generated 
interrupt. The interrupt dispatcher calls the scheduler
performs a V operation on the device’s semaphore v
portal2. This portal saves only a few registers an
allows the scheduler to share the same stack as the in
rupt dispatcher. The V operation unblocks the handle
thread. If the handler thread has a higher priority th
the thread which was running at the time when the int

run blocked→
blocked ready→

nucleus

user-

 

Figure 2. Interrupt Handling. An interrupt causes a
portal call to the interrupt dispatcher, which calls the
scheduler to performs a V operation on the device’s
semaphore. The scheduler wakes up the handler thre
that waits on this semaphore. See text for explanatio
of different portal activities.

external
interrupt

dom
ain A
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interrupt
dispatcher

scheduler
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thread

portal1

portal2

portal3

V level
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rupt was received, the scheduler calls portal3 with the
identity of the handler thread. Portal3 restores the con-
text of the handler thread, including registers and stack,
and the interrupt is handled immediately. Otherwise, the
handler thread is added to the ready queue and the
scheduler selects to resume the thread which was run-
ning previously by calling portal3 with the identity of
this thread. Note that portal3 performs the actual con-
text switch. The scheduler just supplies the identity of
the next thread to run.

Note that Pebble does not rely on hardware interrupt pri-
orities in order to schedule interrupt handler threads.
The interrupt dispatcher is called promptly for all inter-
rupts, and the Pebble scheduler decides whether to run
the associated handler thread. Pebble unifies interrupt
priority with thread priority, and handles both in the
scheduler

4.5  Writing Portal Code

Portal definitions are written using a simple interface
definition language. The portal manager uses this defini-
tion to dynamically generate specialized code when a
portal is created. The interface definition specifies
which registers to save, whether to share a stack with the
receiving domain, and how to process each argument. 

Simple arguments (e.g., integers) are not processed at
all; more complex argument types may require more
work. For example, an argument may specify the
address of a memory window that should be mapped
into the receiver’s address space, or a capability (see
section 4.7) that must be transformed before being
transferred. On one hand, in order to be efficient, such
transformation code may need to have access to private
data structures of a trusted server (e.g., the virtual mem-
ory system or the capability system); on the other hand,
the trusted servers should be allowed to keep their inter-
nal data representations private. 

The solution we plan to implement is to allow trusted
services to register argument transformation code tem-
plates with the portal manager. When the portal manager
instantiates a portal that uses such an argument, the code
template is used when generating the portal. This tech-
nique allows portal code to be both efficient (by inlining
code that transforms arguments) and encapsulated (by
allowing servers to keep their internal representations
private). Although portal code that runs in kernel mode
has access to server-specific data structures, these data
structures cannot be accessed by other servers. 

4.6  Short-Circuit Portals

In some cases the amount of work done is so small t
the portal code itself can implement the service. 
short-circuit portal is one that does not actually transf
the invoking thread to a new protection domain, b
instead performs the requested action inline, in the p
tal code. Examples include simple “system calls” to g
the current thread’s ID and obtain the time of day. T
TLB miss handler (which is in software on the MIP
architecture, the current platform for Pebble) is al
implemented as a short-circuit portal. 

4.7  Capabilities

Pebble’s design includes support for capabilities,
abstract tokens that represent access rights. The cap
ity manager, a trusted user-level server, keeps track
the capabilities available to each protection doma
Additionally, it registers a capability argument type an
associated transformation code with the portal manag
When a capability is passed through a portal, the po
code adds the capability to the receiving protecti
domain’s capability list, and transforms the sending pr
tection domain’s external representation of the capab
ity to that of the receiving domain. We plan t
implement the standard capability operations (e.g., re
cation, use-once, non-transferability, reduction 
strength, etc.).

5 Portal Example

Portals can be used to model not only code, but a
data; a set of portals can be used to represent an o
file descriptor. In Pebble, an open call creates three por-
tals in the invoking protection domain, one each f
read, write, and seek on the corresponding file. A read
call transfers directly to the appropriate routine, so 
run-time demultiplexing is needed to determine the ty
of the underlying object; the appropriate code (for a di
file, socket, etc.) will be invoked. Additionally, a pointe
to its control block can be embedded in the portal co
and passed directly to the service routine, so no run-ti
validation of the file pointer needs to be done. Becau
the portal code can not be modified by the client, t
server can trust that the control block pointer passed t
is valid, and can access the particular file immediate
There is no need for a separate file descriptor table; 
data normally associated with the tables is found in t
dynamically generated portal code. 
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We measured the operation of Pebble for several micro-
benchmarks on three different test hardware platforms,
named LOW, MID and HIGH, which represent low-,
medium- and high-end embedded system configura-
tions, as described in Table 1. All three platforms
included MIPS processors from QED (RM5230 and
RM7000) and IDT (R5000). All motherboards were
manufactured by Algorithmics, a developer of systems
for embedded applications. 

The LOW platform is representative of low-cost hand-
held devices, which have a single-level cache hierarchy
and smaller memory. The MID platform is representa-
tive of more powerful appliances, such as a set-top box,
which contain a more powerful processor, two-level
cache hierarchy and larger memory. The HIGH platform
is representative of high-end systems, which contain
top-of-the-line processors with larger caches (Note that
it is inevitable that over time the HIGH platform will
come to be considered MID and the MID platform
LOW.).

The L1 cache in all targets can be accessed in a single
machine cycle, and does not cause any pipeline delay.
Access to higher levels of the memory hierarchy causes
a delay, which is depicted in Table 1.

6.1  Basic Operations

Table 2 depicts the time to perform several primitive
operations on the three test platforms. We present the
results in machine cycles and not in absolute time, since
we believe that these measurements will remain the
same (in machine cycles) for faster processors with sim-
ilar memory hierarchy. The reported times are the aver-
age of 10,000 repetitions.

All of the operations reported in Table 2 are simple
communication or synchronization building blocks.
Their performance suggests that higher-level operations
will be efficient as well.

The reported operations are:

• s-c portal: the time of the get_asid() short-cir-
cuit portal, which returns the identity of the calling
domain. This is the equivalent of the UNIX null sys-
tem call. A short-circuit portal performs the action
and returns to the caller immediately without a con-
text switch.

• ipc:1 the time for one leg of an IPC between two
domains, which is implemented by a portal traversal.
The portal passes four integer parameters in the
machine registers. No parameter manipulation is
performed by the portal code. The portal allocates a
new stack in the target domain and frees the stack on
return. The reported time in Table 2 is one leg time
(half of the total time). Additional measurements

LOW MID HIGH

board P4032 P5064 P5064

processor RM5230 R5000 RM7000

processor 
speed 
(MHz)

133 Mhz 166 MHz 200 MHz

pipeline single single dual

L1 cache

2-way

16 KB I + 
16 KB D

2-way

32 KB I + 
32 KB D

4-way
16 KB I + 
16 KB D

L2 cache —
off-chip 

direct-map 
1 MB

on-chip
4-way

256 KB

L2 access 
(cycles)

— 10 3

L3 cache — —
off-chip 

direct map
2 MB

L3 access 
(cycles)

— — 17

main 
memory

16 MB 64 MB 64 MB

memory 
access 

(cycles)
40 26 41

Table 1. Test hardware. We ran our tests on three
platforms that represent three points in the embedd
system hardware spectrum. The platforms share
common CPU architecture, and vary in cache size a
architecture and processor speed.

1. The acronym ipc traditionally refers to an inter-process
communication. By serendipity, we can also use ipc to rep-
resent an inter-protection domain call; in Pebble, the two
are equivalent.



(reported in [Gabber99]) show that the per-leg time
is constant for a chain of IPCs through a sequence of
domains.

• yield: measures the thread yield operation, in which
the current thread calls the scheduler and requests to
run the next thread with a higher or same priority.
We present four measurements, for one, two, four
and eight threads (yield1, yield2, yield4, and yield8,
respectively). There is one active thread in each
domain. The reported time in the table is a single
context switch time (total time / total number of
yields by all threads). 

• sem: measures the time to pass a token around a ring
of n threads, each running in a separate domain.
Each thread shares one semaphore with its left
neighbor and one semaphore with its right neigh-
bour. The thread waits on its left neighbor. Once this
semaphore is released, the thread releases its right
semaphore and repeats the process. We present four
measurements, for one, two, four and eight threads
(sem1, sem2, sem4, and sem8, respectively). There
is one active thread in each domain. The reported
time is the time to pass the token once, which is the
time for a single pair of semaphore acquire/release.

The results reported in Table 2 indicate that the perfor-
mance degrades with the number of active threads,
which is expected due to more frequent cache misses.
Performance degrades most with LOW platform, since
it has no L2 cache, and least with HIGH platform, which
has a large L3 cache that is large enough to hold the
entire working set of the test.

Note that the HIGH platform is not significantly faster
than the LOW and MID platforms for s-c portal, ipc
and sem1 tests, although it has a dual-issue pipeline and
much larger caches. This is because these tests do not
cause much L1 cache misses, and the portal code is
dominated by sequences of load and store instructions
that cannot be executed in parallel.

6.2  Interrupt Latency

When an interrupt is generated, there are two factors
that control the delay before the interrupt is handled.
First, there can be a delay before the system is notified
that an interrupt has been received, if the processor is
running with interrupts disabled. Second, there may be a
delay between the time the interrupt is delivered and the
time the device is serviced. The sum of these two delay
components is the interrupt latency.

The first delay component, L, is bounded (below) by the
length of path through the system where interrupts are

disabled.1 In particular, L is determined by the portal
code and by the scheduler, which are the only fre-
quently-used portions of the system that run with inter-
rupts disabled.

The value of L is the time reported in Table 2 for s-c
portal, ipc and yield1-yield8. It is half the time reported
for sem1-sem8, since these times are for a pair of sema-
phore operations.

The second delay component, C, is bounded (below) by
the minimum amount of time required to deliver the
interrupt to the interrupt handler. Thus the interrupt
latency will range from [C,C+L], provided that interrupt
handling does not generate many additional cache
misses, such as in the MID and HIGH platforms.

Table 3 shows the interrupt response time of Pebble
when the system is performing different background
tasks. We present the median and 99th percentile
response time of 10,000 repetitions.

The interrupt latency is measured by computing the dif-
ference between the time that an interrupt was generated

operation LOW MID HIGH

s-c portal 44 45 41

ipc 118 117 119

yield1 667 423 348

yield2 661 425 346

yield4 1593 549 346

yield8 1628 549 452

sem1 543 549 524

sem2 775 781 720

sem4 1872 942 720

sem8 1878 1198 857

Table 2. Basic operations time (cycles). These
measurements give an estimate of the performance of
Pebble on basic communication operations.

1. Length, in this context, refers to the amount of time it takes
to process the instruction sequence. Intuitively, it can be
expected to be roughly proportional to the length, in
instructions, of the code path.



and the time that a user thread that waited for this inter-
rupt actually woke up. To accomplish this, we have the
measurement thread sleep for some (randomly chosen)
duration, and compare the time it is woken up with the
time it expected to be woken up. The difference between
the two is the interrupt latency.

This test is very precise; each of the test platforms
include a high-resolution timer that is incremented
every second processor cycle and the ability to schedule
timer interrupts with the same granularity. The code
fragment Figure 3 shows the inner loop of the measure-
ment thread.

The rand() function generates a uniformly distributed
random number in the range [MIN, MAX]. The
hrtime() function returns the current high-resolution
time. The hrsleep() routine waits until the specified
time.

In order to estimate interrupt latencies under various
loads, we run the measurement thread concurrently with
a background task that repeatedly performs a specific
operation. Different operations exercise different inter-
rupt-disabled paths of the system, and hence will have
different interrupt latency characteristics. The back-
ground threads we tested were:

• idle: a background thread that spins in a tight loop
on a particular variable in user mode. The idle task
can be preempted at any time. The value reported for
this case is an estimate of C, the lower bound of the
interrupt latency.

• s-c portal: a background task that calls the
get_asid() routine repetitively. Get_asid()
is implemented by a short-circuit portal. The back-
ground thread is identical to the s-c portal program
from Table 2. Interrupts are disabled while executing
this portal.

• ipc: a background thread that repeatedly performs an
IPC to the protection domain in which the measure-
ment thread is running. The portal code associated
with this portal is minimal, just transferring control,
and call itself returns immediately. The background
thread is identical to the ipc program from Table 2.
Interrupts are disabled during each leg of the IPC
(call and return), and are enabled when executing in
the caller and called domains.

• yield: a background thread that repeatedly calls the
scheduler to yield control. This thread is identical to
the yield1 program from Table 2. As there is one
active thread in the system, the scheduler just returns
to the calling thread. Interrupts are disabled during
the portal call to the scheduler, inside the scheduler,
and during the portal return to the thread.

• sem: a pair of background threads, which pass a
token back and forth. Each thread runs in separate
protection domain. This test is identical to the sem2
program from Table 2. Interrupts are disabled during
the semaphore operations.

Table 3 indicates that the interrupt latency is bounded by
the sum of a platform-specific constant plus a time

Figure 3. Measurement Thread. The code of the
inner loop of the interrupt latency measurement
thread.

for (i = 0; i < N; i++) {
delay = rand(MIN, MAX);
start = hrtime();
hrsleep(delay);
latency = hrtime() - start - delay;

}

background LOW MID HIGH

idle

median 1200 1294 1224

99th % 1298 1296 1228

max. 2164 1322 1322

s-c 
portal

median 1170 1176 1240

99th % 1240 1200 1262

max. 2026 1202 1266

ipc

median 1152 1224 1274

99th % 1240 1290 1340

max. 2088 1300 1342

yield

median 1210 1346 1404

99th % 1474 1580 1584

max. 2282 1584 1588

sem

median 2302

3024

3996

1492 1400

99th % 1712 1596

max. 1722 1604

est. interrupt latency 
lower bound (C)

9.0µs 7.8µs 6.1µs

Table 3. Interrupt latency (cycles). The time, in
cycles, between the expected delivery of an interrupt
and when it is received.
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which is proportional to the longest interrupt-disabled
path in the background task. The platform-specific con-
stant is the minimal interrupt response time (C), which
is the median value of the idle test. The measurements
in Table 2 are the upper bound of the duration of the cor-
responding interrupt-disabled paths.

Note that the median and the 99th percentile of the idle
test on all platforms are very close. This indicates that
the interrupts are served immediately.

The maximal interrupt latency on the MID and HIGH
platforms is very close to the 99th percentile on these
platforms, which indicates that the system performance
is highly predictable. However, the maximal interrupt
latency on the LOW platform is up to 60% higher than
than the 99% percentile latency. This is the result of the
small cache size of LOW, which result in excessive
cache misses due to infrequent background events, such
as the timer interrupt.

In the case of the LOW and MID platforms, the s-c por-
tal and ipc tests had a slightly lower median interrupt
latency than the idle test, but they differ by less than 5%.
This may be caused by a better cache hit rate.

We see that the interrupt latencies for the MID and
HIGH systems are quite close, and much lower than
those for LOW. Although the cache architectures of the
two differ, both MID and HIGH appear to have more
effective caches than LOW. The L1 cache of MID is
twice the size of the L1 cache of LOW, and although the
L1 cache of HIGH is the same size as that of LOW, it is
4-way set associative. In addition, the L2 cache of
HIGH can be accessed in only three cycles. Thus an L1
miss on HIGH is not as painful as it would be on MID or
LOW.

6.3  Summary

In this section we have shown microbenchmark results
for Pebble that indicate that the cost of hardware protec-
tion of both components and system services is very low
(as summarized in Table 2) and that interrupt latency on
Pebble is quite low, with a lower bound of 1200-1300
cycles (6.1µs to 9.0µs) depending on the target architec-
ture. 

7 Related Work

Traditional microkernels, such as Mach, Chorus, and
Windows NT leave much more of the operating sys-
tem’s code running in privileged mode than does Peb-
ble. In fact, the trend has been to run more of the system

in privileged mode as time goes by—the current relea
of NT includes the window system in the privileged
mode kernel.

By moving services into the privileged mode kernel 
reduce communication overhead, operating syst
designers are, in essence, giving up on the microker
approach. Recent work has focused on finding and fi
ing the performance bottlenecks of microkerne
approach, which has required rethinking its basic arch
tecture. 

Liedtke, in his work on L4, has espoused the philosop
of a minimal privileged mode kernel that includes on
support for IPC and key VM primitives [Liedtke97]
Pebble goes one step further than L4, removing VM 
well (except for TLB fault handling, which is done in
software on MIPS).

The Exokernel [Kaashoek97] attempts to “extermina
all OS abstractions,” leaving the privileged mode kern
in charge of protecting resources, but leaving abstr
tion of resources to user level application code. As w
the Exokernel approach, Pebble moves the implemen
tion of operating system abstractions to user level, b
instead of leaving the development of OS abstractions
application writers, Pebble provides a set of OS abstr
tions, implemented by user level OS components. P
ble OS components can be added or replaced, allow
alternate OS abstractions to coexist or override t
default set.

Pebble was inspired by the SPACE project [Probert9
which was in turn inspired by the Clouds proje
[Dasgupta92]. Many of the concepts and much of t
terminology of the project come from these system
e.g., SPACE provided us with the idea of cross-doma
communication as a generalization of interrupt ha
dling.

Pebble applies techniques developed by Bershad e
[Bershad89], Massalin [Massalin92], and Pu et a
[Pu95] to improve the performance of IPC. Bershad
results showed that IPC data size tends to be very sm
(which fits into registers) or large (which is passed b
sharing memory pages). Massalin’s work on the Synth
sis project, and, more recently, work by Pu et al. on t
Synthetix project, studied the use of generating spec
ized code to improve performance.

8 Status

The Pebble nucleus and a small set of services (sch
uler, portal manager, interrupt dispatcher, and minim
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VM) and devices (console, clock, and ethernet driver)
currently runs on the MIPS processor. Work on imple-
menting networking support (TCP/IP), file system sup-
port, and a port to the x86 is underway.

9 Summary

The Pebble architecture provides for an efficient operat-
ing system that is easy to modify and debug. Pebble pro-
vides hardware protection for running components
written in any language. Components communicate via
portals and run in user mode with interrupts enabled.
Through the use of portals, which are specialized to the
specific interrupt or communication they are to handle,
Pebble is able to “compile out” run-time decisions and
lead to better performance than typical operating system
implementations. In addition, a portal can be configured
to save and restore only a subset of the machine state,
depending on the calling conventions of, and the level of
trust between, the client and server. Additionally, the
low interrupt latency provided by the Pebble architec-
ture makes it well-suited for embedded applications.
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