
A Machine-Oriented Integrated
Vulnerability Database for Automated
Vulnerability Detection and Processing

Sufatrio – Temasek Laboratories, National University of Singapore
Roland H. C. Yap – School of Computing, National University of Singapore

Liming Zhong – Quantiq International

ABSTRACT

The number of security vulnerabilities discovered in computer systems has increased explosively.
Currently, in order to keep track of security alerts, system administrators rely on vulnerability
databases such as: CERT Coordination Centre, Securityfocus BugTraq and Sans Vulnerabilities
Notes Database. Such databases are designed primarily to be read and understood by humans. Given
the speed at which an exploit becomes available once a vulnerability is known, and the frequency of
occurrence of such vulnerabilities, manual human intervention is too slow, time-consuming and may
not be effective. We propose the design of a new vulnerability database which is oriented to be
machine readable and processable rather than human oriented. This allows automated response to a
vulnerability alert rather than relying on manual intervention of system administrators. With this
approach, many kinds of automatic processing of alerts become feasible. We show the value of such
a database by constructing a prototype sample scanner for Unix systems tailored for Linux RedHat
and FreeBSD. We envisage that our work can help spur a development of far more effective
vulnerability databases to benefit a wide-ranging user community.

Introduction

A worrying trend in the age of the Internet is the
increasing incidence of cyber attacks. CERT statistics
[1] quotes 114,855 reported incidents (an incident may
involve an arbitrary number of sites, even thousands)
in the first nine months of 2003 alone. This is a large
jump from 21,756 incidents in 2000.

One of the objectives of computer security emer-
gency centers like CERT is to help disseminate vulner-
ability alerts and relevant advisory notes to the user
community in a timely fashion. However, the speed of
cyber attacks together with the complexity of adminis-
trating computer and network infrastructures today,
makes it difficult for many system administrators to
cope with such attacks. While automatic tools may be
available, there is still a need to routinely inspect any
security/vulnerability alerts in order to take the neces-
sary corrective measures.

Current sources of such alerts are designed pri-
marily for human consumption and contain large
amounts of information in natural language format. In
this paper, we will call such sources, vulnerability
databases, because they deal with collections of data
and not whether they are actually kept in a database
form or not. While a human oriented format is useful
for disseminating the full details of an alert, it also
requires a human in the chain to make use of it. This
problem is acknowledged in a CERT document [2].
Given the 5500 vulnerabilities reported in 2002, it is
estimated that a system administrator would need 229

days just to digest the information. Furthermore, usu-
ally multiple vulnerability databases need to be con-
sulted to fully deal with a vulnerability, i.e., just the
CERT entry is not sufficient. Thus, the deck is stacked
on the side of the hackers rather than the system
administrators.

Clearly, the solution would be to move away
from direct human processing towards automatic secu-
rity alert response processing. This paper proposes an
initiative to redesign vulnerability databases to be
machine oriented and amenable to automatic process-
ing. In practice, such a database would also need to
integrate vulnerabilities disclosed from multiple
sources. The dissemination of machine processable
alerts allows for automated tools to operate on an alert
immediately without requiring humans in the loop.
This would cut down the long time interval between
release of a vulnerability/advisory note and corrective
action being taken. Other automated tools do exist,
e.g., Microsoft Windows systems have Software
Update Services, however there is little which is gen-
eral purpose, publicly accessible, and open to public
or third party scrutiny and verification. We have
developed a proof-of-concept machine oriented data-
base schema using a vulnerability expression language
for describing the targets and effects of vulnerabilities.
To illustrate the use of this database, we have devel-
oped a prototype vulnerability scanning robot which
can determine existing and potential vulnerabilities
based on the database.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 47

A Machine-Oriented Integrated Vulnerability Database . . . Sufatrio, Yap, and Zhong

The creation of an effective machine oriented
vulnerability database would require the cooperation
of many parties such as CERT, BugTraq, vendors,
software developers, etc. As such, this paper is not
meant to be a standalone definitive solution. Rather the
prototype database and scanner is intended to spur the
development of machine oriented databases by the par-
ties concerned. We believe that our proof of concept
presents the key elements for further development of
machine oriented vulnerability databases. The use of a
simple vulnerability expression abstraction also sim-
plifies the integration of data from multiple sources.

Motivation and Design Goals

Figure 1 reproduced from the following CERT
report [3] describes the vulnerability exploit cycle.
The Y-axis represents the number of incidents for a
given vulnerability.

Figure 1: Vulnerability exploit cycle (CERT Coordination Center).

The graph illustrates the time lag between the
release of a vulnerability/advisory report and the
decrease of incidents following corrective measures by
users. We arg u e that current vulnerability databases,
such as CERT, Bugtraq, CVE, in their present format
are not designed to facilitate a speedy user response
because they suffer from the following limitations:

1. Much of the information in these databases, par-
ticularly the portions which relate to dealing
with a vulnerability, is only in a human readable
free-text format. While this may be necessary to
convey the full information content, it also
means that a human needs to interpret the data-
base entry. This makes it difficult to have any
form of automated machine processing of this
information. While it is possible to analyse the
natural language text, this may introduce more
problems due to ambiguities in natural language.

2. Different response centers use different termi-
nologies and conventions in describing one vul-
nerability, which may confuse the users of the

information. For instance, some databases put
the affected systems according to vendor’s ver-
sion (e.g., RedHat Linux 8.0). A different vul-
nerability might refer to the Linux kernel ver-
sion instead.

3. There is a conflicting and fluctuating standard
among response centers which actively pro-
mote their own methods and standards, thus
causing frequent shifting and switching among
different proposed standards.

Our philosophy is that vulnerabilities should be
expressible in an explicit form in terms of data (or a
description) rather than an implicit form like code to
process a vulnerability. Hence the data can be stored in a
database (or any data description language, i.e., XML).
Our database is designed with the following goals:

• The database is designed so that it can be con-
solidated from multiple sources, in which each
vulnerability entry includes the origin of infor-
mation, environment of which it can cause an
impact, its consequence, as well as additional
useful information.

• The pre-requisites and the consequence of a
vulnerability are described using an abstraction
which we call a vulnerability expression. The
vulnerability expression allows a precise for-
mulation of the nature of the vulnerability and
is machine processable. The vulnerability
expressions are not specific to a particular sys-
tem but rather tailorable to the specific system
using another mapping, e.g., a configuration
file may be mapped separately to its pathname
for the particular system being tested.

• The structure of the database should allow easy
retrieval both by user and automated-tools via SQL.

We also want to have an automatic scanner
which can use the database to do the following:

• Check whether a given vulnerability exists on a
local system;

48 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Sufatrio, Yap, and Zhong A Machine-Oriented Integrated Vulnerability Database . . .

• Scan local system for all possible vulnerabilities;
• Notify the existence of potential vulnerability on

the local system should certain environmental
factors such as system services which are cur-
rently off get activated;

• Analyze relationship between different vulnera-
bilities, e.g., whether one vulnerability can be
exploited to lead to another.

Related Work

There have been a number of popular tools that
scan for any presence of vulnerability or configuration
weaknesses in a system. Some notable examples are:
COPS [4], SATAN [5] and Nessus [6]. These tools are
code-based scanning applications where the logic of
vulnerability checking is embedded tightly in the scan-
ner ’s code. This means that including a new check for
a vulnerability entry requires one to update the scan-
ner ’s code, its sub-component(s), or its configuration
file. In contrast, our system uses a generic scanner
which makes use of vulnerability descriptions stored
separately in a vulnerability database. While a code-
based solution is generally more powerful, it requires
that code/plug-ins be written. There are trust and veri-
fication issues which we discuss later in this section.

There is some existing work which reorganizes
and integrates information in existing vulnerability
databases into one that is more of a ‘‘real database.’’
NIST has developed ICAT [7], a searchable index of
vulnerability entries leading the users to various vul-
nerability resources and patch information. Similarly,
Purdue University maintains a web-based search sys-
tem called ‘‘Public Cooperative Vulnerability Data-
base’’ [8]. These databases are, however, designed
mainly for vulnerability search based on categorized
attribute values, and not for automated applications.

Krsul [9] proposes a comprehensive taxonomy of
vulnerabilities for possible further processing or auto-
mated manipulation. A database is also proposed. It is
hard to compare the database since no specific appli-
cations were co-designed with it.

Windows Update [10] is a Microsoft online tool
for automatically updating Windows operating systems
and Microsoft applications with recent patches. It illus-
trates some important issues with automatic tools. Win-
dows Update (and its more automatic cousin, Windows
Software Update Services [11]) are closed systems. We
propose an open system which can cater for heteroge-
neous environments. Windows Update has a ‘‘black-
box update model’’ which allows easy and seemingly
automatic patch update, yet the non-transparency of the
system leads to the following issues:

1. Privacy and Trust issues: As there is no open
specification or possible inspection on the scan-
ner, no complete trust can be put on the scan-
ner. This is the case with any code based sys-
tem. It is difficult to determine if the scanner is

performing the correct actions while preserving
local system security policy. Since the update
system is hosted on the vendor’s server, there is
no guarantee that local information will not
leak to an external source thus breaching local
system privacy. In contrast, our system is open
to inspection. The database can also be
deployed locally or organization-wide as dis-
cussed in the deployment section.

2. Non-standard vulnerability checking: Win-
dows Update behaves more as a vendor patch
update mechanism rather than standardized vul-
nerability entry checking. Thus, little coverage
is given back to users in terms of standard vul-
nerability report information. This might be too
limiting for system administrator who, for
example, wants to ensure that his systems are
up-to-date against recent vulnerability reports
regardless whether patches for the vulnerability
are available or not.

3. No control over the scanner: Users need to
trust that Windows Update works as it is sup-
posed to. The importance of this issue is high-
lighted by a recent incident of Swen-style Tro-
jan horse which posed as a legitimate update
[12]. While this example is a social-engineering
style attack, it illustrates the fact that the Win-
dows Update mechanism can itself be a vulner-
ability. In our system, as the database contains a
machine readable description, all steps of the
scanner can be verified.

Some related concerns of the Windows Update
mechanism is discussed in an article by Berlind [13].
We arg u e that any automatic update or alert processing
mechanism should be based on an open model which
can be independently verified. In addition, it should be
possible for the user to bypass the automatic system in
cases where the security policy may not allow the exe-
cution of foreign code or connection to external hosts.
Morover, the administrator/user should be able to deter-
mine the consequences of a patch or alert on his system.

Movtraq: A New Vulnerability Database

The integrated vulnerability database which we
have called Movtraq (Machine Oriented Vulnerability
and Tracking) database is designed to be compiled
from multiple source vulnerability databases and is
usable directly by an automatic scanner (see Figure 2).

Design Considerations
The main challenge in designing the new data-

base is to determine what the actual contents of each
vulnerability entry should be. For our proof-of-con-
cept, we have focused on what the database should
contain rather than on a general database schema. The
data fields corresponding to a vulnerability fall into
three general categories: general information and ref-
erences; vulnerability factors and its environmental
requirements; and impact of vulnerability.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 49

A Machine-Oriented Integrated Vulnerability Database . . . Sufatrio, Yap, and Zhong

General Information Fields

The general information portion mostly contains
references to several public vulnerability databases
such as CERT, Bugtraq, etc. The purpose of these
fields is to give the user a reference to the original
source of information to obtain additional information.
This is mainly for human consumption.

Vulnerability
Analyzer

Integrated
Database

Local System
Configuration

Collector

User
Interface

Vulnerability Scanner Robot

...

Existing
Databases

C
on

ve
rs

io
n

+
In

te
gr

at
io

n

Figure 2: Vulnerability database and scanner.

Vulnerability Factors and Environmental Require-
ments

The second category, vulnerability factors and
environment data, provides the main content of
machine processable vulnerability information. A vul-
nerability has to exist within a context, hence it is
described in terms of its original source factor and
associated environmental factors. By ‘‘original source
factor,’’ we mean the system component(s) (applica-
tion or operating system) where the vulnerability orig-
inates. ‘‘Environmental factors’’ refers to settings/con-
figuration or services in the local system which make
the system subject to the vulnerability.

We distinguish between two kinds of vulnerabili-
ties:

• vulnerability which currently exists on the sys-
tem; and

• vulnerability which potentially exists on the
system.

There are a number of different combinations of
original source and environment factors:

Case 1: Vulnerability factors: match & Environment
factors: match

We will get this result when a particular vulnera-
bility’s original source exists on the local system and
the settings of local system match all the environment
factors. In this case, we will conclude that the vulnera-
bility exists on the system.

Case 2: Vulnerability factors: match & Environment
factors: no match

This occurs when we can detect the origin of the
vulnerability on the local system, however the settings
of the local system does not match the environment
factors. So the vulnerability is not applicable but it has

the potential to affect the system if the environment
changes. For example, consider the case of ‘‘Apache
We b Server Chunk Handling Vulnerability’’ [14]. Even
if apache is installed, we will not be affected by the
vulnerability as long as we do not provide http services.

Although this second case appears to be an
exception, it is actually not uncommon as a full instal-
lation of the operating system and application pro-
grams may have been done. Hence, many installed
components in the system may not usually be in use.

Case 3: Vulnerability factors: no match & Environ-
ment factors: match

In this case, the vulnerability would appear to be
not applicable. However, there is a subtle issue. Con-
sider the case of OpenSSL (an open source implemen-
tation of the SSL protocol) which had several stack
overflow vulnerabilities which are exploitable [15].
OpenSSL may not be installed as an individual compo-
nent, so even if there is a database entry for the
OpenSSL vulnerability, this would return a negative
result in terms of vulnerability data factors. However,
OpenSSL is commonly included in applications such as
Apache, Sendmail, Bind, Linux and Unix based sys-
tems. Thus, it is necessary to check for the existence of
such applications which may indicate that such an
OpenSSL vulnerability exists even if OpenSSL is itself
not detected. This highlights that one may need several
database entries corresponding to a vulnerability given
some of these indirect potential factors.

Case 4: Vulnerability factors: no match & Environ-
ment factors: no match

The vulnerability does not exist on the local sys-
tem.

Vulnerability Impact (Consequences)

The third category of data concerns the impact of
vulnerability, which describes the possible conse-
quences of a vulnerability if it is successfully exploited.
In our database, this is stored as a vulnerability descrip-
tion expression which is machine processable and
describes the vulnerability impact in a precise and con-
cise form. There is no need to use any taxonomy or
qualitative impact factor (e.g., critical, high, medium,

50 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Sufatrio, Yap, and Zhong A Machine-Oriented Integrated Vulnerability Database . . .

low) which is not precise and may not make sense in
the context of a particular system. It also enables check-
ing of the relationship between different vulnerabilities
and whether they can affect one another.
Database Structure

As we have argued, the exact structure of the
database is not so important. Rather, it is the content
and having it in a more precise machine processable
format. In our proof-of-concept design, the database
has seven main entities namely:

Service_ID

App_ID

OS_ID

CERT_ID

Env_Spec_ID

CVE_ID

Bug_ID

CERT Description

CVE Description

Bugtraq Description

EX
TE

R
N

AL
 S

O
U

R
C

E
S

Vulnerability
Specs identified by Environment

Specs
contains

Exploit

Vulnerability described by

include include

OS

Application

Services

Vul_ID

Vul_Spec_ID

Figure 3: Vulnerability database structure.

• Vulnerability Entity – names the vulnerability
and links it to the specification of the vulnera-
bility and environment.

• Vulnerability Specifications Entity – collects
the vulnerability factors and the impact.

• Environment Specifications Entity – collects
the environmental factors.

• Operating System Entity – vulnerability require-
ments originating from the operating system.

• Application Entity – vulnerability requirements
specific to an application.

• Services Entity – vulnerability requirements
specific to a service.

• Exploit Entity – details of exploits and impact.

An entity relationship diagram which gives an
overview of the relationship between these data items
is given in Figure 3.

We will briefly mention some of the key fields
from an integration and machine processable perspec-
tive. We have mainly omitted fields in the general
information category which are present in the database
for human consumption.

• Vulnerability Entity – a textual description for
the vulnerability, identifiers such as CERT ID,

BugTraq ID, CVE ID and also other keys corre-
sponding to other tables.

• Vulnerability Specifications Entity – vulnera-
bility consequences*, hardware requirements,
name of vulnerable application/service*. A ser-
vice could be a daemon.

• Environment Specifications Entity – existence
of required user/application or service object*
which may be exploitable, existence of a file
object*, remote exploitation flag, application/ser-
vices environment, hardware requirements.

• Application/Services Entity – name of appli-
cation/service, application/service ID, vulnera-
ble versions, hardware requirements. Services
have additional fields like protocols, port num-
bers, etc.

• Operating System Entity – similar to applica-
tion entity but for the operating system.

• Exploit Entity – actual exploit (could be a
URL, filename, etc.), privileges needed*, con-
sequences of using the exploit*.

The fields which have been labeled by (*) make
use of the vulnerability description expressions or vul-
nerability target objects from the next section. Note that
some fields which have a similar function occur a few
times in a different context, e.g., hardware requirements
may be different for the application and environment,
there are two different consequences – one from the
vulnerability and one from using a specific exploit.

Integrating the Data

One of the difficulties with dealing with secu-
rity/vulnerability alerts is the need to integrate the infor-
mation from multiple sources. Our prototype database

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 51

A Machine-Oriented Integrated Vulnerability Database . . . Sufatrio, Yap, and Zhong

is no exception and was built by integrating data from
multiple vulnerability sources such as CERT, BugTraq,
CVE, vendors and software developer sites. Ideally, one
would prefer a single source for the vulnerability infor-
mation (even if it is only in text form). However, the
reality is that due to the distributed handling and speed
of dealing with vulnerabilities, one has to accept that
integration may be required.

The following example, which is the ‘‘OpenSSL
SSLv2 Malformed Client Key Remote Buffer Over-
flow Vulnerability,’’ illustrates the need for integra-
tion. It has a CVE ID of CAN-2002-0656 [15].

BugTraq from SecurityFocus provides:
BugTraq ID: 5363
Application environment: Apache v1.0 - 1.3.26
OS environment: Linux, Microsoft Windows
Proof of concept exploit: available
Minimum user rights for exploit: u#R1

CERT vulnerability advisory provides:
CERT ID: CA-2002-23
Vulnerable application version:

OpenSSL prior to 0.9.6
Vulnerability impact: @G u#S

Vendor/software information:
From OpenSSL (www.openssl.org) we get the
vulnerable application range as: 0.9.1c - 0.9.5a.
From apache documentation we know that usually
the user is root.

In general, determining the complete environ-
mental requirements and the consequences of the vul-
nerability from the textual descriptions can be a
tedious and time consuming process. This is one ratio-
nale for a better system such as the one described here.

Vulnerability Description Expressions

The main machine oriented data fields in the
database belong to three categories: system compo-
nents of the vulnerability; environment factors of the
vulnerability; and consequences of the vulnerability.

The first category for various system compo-
nents is usually specified as versions of the operating
systems and applications. This can be straightfor-
wardly encoded in the database. The other two cate-
gories require a machine friendly specification.

After studying 943 vulnerability notes from
CERT advisory database, we found that most of the
information for these two categories can be described
effectively using the vulnerability description expres-
sion described below. These expressions are inspired
by the rule language in KuangPlus system [16].

An expression is written with the syntax:
〈VulnerabilityExpression〉 = 〈TargetObject〉 |
〈Action〉〈TargetObject〉

1This is a vulnerability description expression to describe
the impact, see the next section.

An action is written prefixed by ‘@’. Table 1 illus-
trates the actions and the types of the corresponding
target objects.

Syntax Semantics

@G 〈u|g〉 Gain 〈user object u | group object g 〉
@R|W 〈f|m〉 Read|Write 〈file object f | memory

object m〉
@A 〈f|m〉 Access (read and write) 〈file object f

| memory object m〉
@C 〈f〉 Create 〈file object f〉

@K 〈f|m〉 Corrupt 〈file object f | memory
object m〉

@X 〈f|c〉 Execute 〈file object f | code object c〉
@S|I 〈n|a〉 Crash | Disrupt 〈node object n |

application object a〉
@D 〈n|a|s〉 Deny 〈node object n | application

object a | service object s〉
@U 〈r〉 Use 〈resource object r〉
@E 〈r〉 Exhaust 〈resource object r〉

Table 1: Actions in vulnerability description expres-
sions.

Rather than giving a formal definition of target
objects, we have listed examples of target objects in Ta-
ble 6. In Table 6 the following prefixes are used: ‘%’ is
used to denote an actual value; ‘#’ is used to denote a
symbolic value; and ‘&’ is used for expressing users/
groups associated with an application/service.

As our proof-of-concept implementation is for Unix
systems, the examples and objects are also Unix based.
Vu l n e r a b i l i t i e s for other operating systems may require
extension to the types of target objects and actions.
Examples using Vulnerability Expressions

The following examples use the expressions to
describe various vulnerability consequences.2

• @D n#N: Denial of Service for the whole net-
work (Ref: Cisco IOS Interface Blocked by
IPv4 Packet CERT ID VU#411332).

• @G u#S: Gain superuser rights. (Ref: Linux
Kernel Privileged Process Hijacking Vulnera-
bility, Bugtraq ID: 7112).

• @G u#R : Gain Remote user right (Ref:
Apache htpasswd Password Entropy Weakness,
Bugtraq ID: 8707).

• @S a#mailman; @D a#mailman: Crash mail-
man application, and deny its service. (Ref:
Red Hat Linux GNU Mailman Remote Denial
Of Service Vulnerability, Bugtraq ID: 10147).

• @R f%/etc/passwd : Read file /etc/passwd.
• @X f#*(4777) : Execute a file with setuid per-

mission.

The following are examples of portions of the
machine oriented fields in the database for several vul-
nerabilities:

2For simplicity, multiple expressions are separated by
semicolon.

52 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Sufatrio, Yap, and Zhong A Machine-Oriented Integrated Vulnerability Database . . .

Syntax Semantics

〈u〉: User Objects

u#R Remote user
u#L Local user
u#S Super user
u#* All users
u#P Physical user

u%100 User with UID 100
u%nobody User ‘nobody’ on the system

u#U User whose privilege is beyond
that of the current user

u&App User running corresponding
application process

u&Svc User running corresponding ser-
vice (i.e., daemon)

u&Kernel User who can access or control
the OS kernel

〈g〉: Group Objects

g#* All groups
g&〈App|Svc〉 Group of the corresponding

application process/service
g%50 Group with GID 50
g%sys Group ‘sys’ on the system

〈f〉: File Objects

f#* All files
f#passwd Pathname corresponding to the

passwd file
f#shell Pathname corresponding to

shell files, e.g., ‘‘/bin/bash’’
f#system Pathname corresponding to sys-

tem files in the OS

Syntax Semantics

f#*(4777) All files with permission 4777
f#F Files beyond current user access

rights
f%/etc/passwd The file ‘‘/etc/passwd’’

f&App File associated to the running
application process

〈m〉: Memory Object

m#M Memory area beyond the cur-
rent user’s access right

〈n〉: Node Objects

n#S Scanned node where an applica-
tion program is installed and/or
related service is running

n#L Nodes in local area network
n#N Network

n%IP Node at IP address (may be a
range)

〈a|s〉: Application/Service Objects

a#AppName Application Name
s#SvcName Service Name

〈r〉: Resource Objects

r#M Memory
r#CPU CPU

r#B Network Bandwidth
r#D Disk Space

〈c〉: Code Object

c#(〈u〉) Piece of code with the execu-
tion privilege of the user object
u, e.g., privilege escalation

Table 2: Objects in vulnerability description expressions.

• MySQL Password Handler Buffer Overflow
Vulnerability:
CVE_ID: CAN-2003-0780
Bugtraq_ID: 8590
Vul_Con: @X C#(u%mysql); @G u%mysql; @G u#L
Vul_OS: null
Vul_App: Various Mysql versions
Env_User: u#L
Env_File: null
Env_Rem: No
Exploit: No
Env_OS: null
Env_App: Mysql

• Linux Kernel IOPERM System Call IO Port
Access Vulnerability:
CVE_ID: CAN-2003-0246
Bugtraq_ID: 7600
Vul_Con: @A f#F
Vul_OS: Various Linux distributions
Vul_App: null
Env_User: u#L

Env_File: null
Env_Rem: No
Exploit: No
Env_OS: Linux kernel 2.4.0 - 2.4.21, 2.5.0 - 2.5.69
Env_App: null

• Linux 2.4 Kernel execve Race Condition Vul-
nerability:
CVE_ID: CAN-2003-0462
Bugtraq_ID: 8042
Vul_Con: @A f#F; @X c#(u#S); @G u#S
Vul_OS: Various Linux distributions
Vul_App: null
Env_User: u#L
Env_File: f#*(4111)
Env_Rem: No
Exploit: Yes
Env_OS: Linux Kernel 2.4.0 - 2.4.21
Env_App: null

• Multiple Vulnerabilities In OpenSSL:
CVE_ID: CAN-2002-0656
Bugtraq_ID: 5363

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 53

A Machine-Oriented Integrated Vulnerability Database . . . Sufatrio, Yap, and Zhong

Vul_Con: @X c#(u&App); @G u#L
Vul_OS: null
Vul_App: Various Apache versions and
OpenSSL-based applications
Env_User: u#R
Env_File: null
Env_Rem: Yes
Exploit: Yes
Env_OS: null
Env_App: Corresponding service provided

by the vulnerable application
Translation Issues

From our experiments in translating text-based
vulnerabilities into vulnerability expressions, we
encountered the following issues:

• The vulnerability description in the database
sources is sometimes rather vague. Some exam-
ples are: ‘‘could expose sensitive information to
local attackers’’ (Bugtraq ID 8233), ‘‘gain
access to sensitive information’’ (Bugtraq ID
9558), or ‘‘leads to unauthorized access to
attacker-specified resources’’ (Bugtraq ID
9778). We require a more specific consequence
which either means describing it in a catch-all
fashion or much more work is required to
understand the vulnerability.

1. Apache Mod_Auth_Any Remote Command
Execution Vulnerability

Application version check: positive
Service port check: negative
Conclusion: source application is detected,
default port required is not open,
potential vulnerability exists but does not
affect current system configuration

2. Sun One/iPlanet Web Server Vulnerability
to DOS

Application version check: n/a
Conclusion: source application not detected,
safe from vulnerability

3. Linux Kernel IOPERM System Call
IO Port Access Vulnerability

OS version check: positive
OS environment check: positive
Conclusion: vulnerability detected!

4. MySQL Password Handler Buffer Overflow
Vulnerability

Application version check: positive
OS environment check: skipped
Conclusion: vulnerability detected!

Listing 1: Sample scanner log.

• Our vulnerability expression language is
designed to capture general expressions at the
OS level. It does not express various applica-
tion specific descriptions, such as: ‘‘to access
variables outside the Safe compartment’’ (Perl,
Bugtraq ID 6111), or ‘‘could compromise the
private keys of ElGamal signing key implemen-
tation’’ (GnuPG, Bugtraq ID 9115). To deal
with such consequences, these are approximated

by translation into the closest vulnerability
expressions capturable by our language. In the
two examples above, we can rewrite them into:
access of memory and files beyond the current
user ’s right, respectively.

• Some vulnerability entries, particularly those of
CAN(didate) type, are listed as ‘‘unknown con-
sequence’’ (e.g., Bugtraq ID 10428). Hence, we
either have to ignore such entries for the
moment, or use a special form to indicate
unknown consequences.

Movtraq Scanning Robot

To demonstrate the use of the Movtraq database,
we have implemented a prototype automatic vulnera-
bility scanner (called the Movtraq scanning robot).
The robot runs on two different versions of Unix: Red-
hat Linux and FreeBSD. This is to demonstrate a
degree of platform independence.

The overall structure of the robot together with
the database is depicted in Figure 2. The integrated
Movtraq database is stored in MySql. The scanner
consists of a local system configuration collector
which collects information about applications, operat-
ing system (which processes are running, which ports
are open, hardware details, etc.) and services on the
system. Software versions are obtained by using the
rpm utility on Redhat and pkg_info utility on FreeBSD.
The scanner is written in Perl and queries the MySql
Movtraq database using SQL.

The robot has three basic scanning options:
• Vulnerability checking: checks if the system is

vulnerable to the vulnerabilities specified in the
database (a Case 1 vulnerability).

54 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Sufatrio, Yap, and Zhong A Machine-Oriented Integrated Vulnerability Database . . .

• Potential vulnerability checking: checks for
software vulnerability which exists but the sys-
tem is not currently vulnerable due to environ-
mental reasons (a Case 2 vulnerability). This
can be useful since it may be the case that the
system can become vulnerable later, e.g., if a
service which was off is turned on.

• Vu l n e r a b i l i t y with exploit checking: enhances
vulnerability checking to see if the listed exploits
are directly applicable – this adds the constraints
of the exploits into the checking process.

An abbreviated sample log from running the
scanner illustrates how application, version and envi-
ronmental checking is performed; see Listing 1. Only
some of the pertinent checks from the log are shown
to illustrate the following points:

• Example 1: apache vulnerability exists but
environment check fails since the required port
is not open.

• Example 2: no vulnerability since application
is not installed.

• Example 3: an OS vulnerability so only OS
checking is used.

• Example 4: vulnerability inherent to MySQL
version, OS environment checking is skipped
as it is not required.

Vulnerability Chaining Analysis
An interesting use of the scanner is that it can be

used to test if existing vulnerabilities can be combined
together (chaining) to create more vulnerabilities. This
mimics what a hacker might do to take advantage of
indirect weaknesses on the system.

Consider the following example which is typical
of a privilege escalation attack. Suppose the system
has the following two vulnerabilities:
Name: Buffer Management Vulnerability

in OpenSSH
Vul_ID: 57
CVE_ID: CAN-2003-0693 Bugtraq_ID: 8628
Vul_Con: @G u#L
Vul_OS: null Vul_App: Openssh apps
Env_Usr: u#R Env_File: null
Env_Rem: Yes Exploit: No
Env_OS: null
Env_App: Service provided by the vulnerable app

Name: Linux 2.4 Kernel execve Race
Condition Vulnerability

Vul_ID: 48
CVE_ID: CAN-2003-0462 Bugtraq_ID: 8042
Vul_Con: @G u#S
Vul_OS: Linux Vul_App: null
Env_Usr: u#L Env_File: f#*(4111)
Env_Rem: No Exploit: Yes
Env_OS: Linux kernel 2.4.0 - 2.4.21
Env_App: null

In this example, the scanner discovers that both
vulnerability 48 and 57 are present. From Vul_ID: 57

a remote user (u#R) can gain local rights (@G u#L),
and this chains onto Vul_ID: 48 which has a local
environment requirement (local user: u#L and setuid
executable file:f#*(4111)). Thus it discovers that a
remote user may be able to exploit the two vulnerabili-
ties to gain local root access.

Chaining analysis illustrates the benefit of a machine
oriented approach and the use of vulnerability expressions
to analyse relationships between vulnerabilities.

Operating System and Local Configuration Map-
ping

Because environmental and application vulnera-
bility data are expressed as vulnerability expressions,
these abstractions may need to be further refined. In
the context of a particular local system configuration,
operating system distribution, etc., additional localiza-
tion may be needed to map the abstractions to concrete
objects. One may choose to have additional databases
to do this mapping from vulnerability target objects to
the actual objects on the system. Our robot prototype
does not do this since it has been tested only on Red-
Hat and FreeBSD.

Deployment Strategies for vtraq

The prototype Movtraq system is sufficiently
useful to be deployed in a number of ways. Some of
the potential scenarios depicted in Figure 4 are:

• Scenario 1: Local vulnerability database, local
client. Here, each local machine hosts its own
database. The Movtraq database is meant to
have been downloaded (securely) from another
server. This has the advantage that the database
is local and thus all operations can be done
locally. The disadvantage is that an up-to-date
database has to be maintained from every host.

• Scenario 2: Org a n i z a t i o n - w i d e database, local
client. This simply extends scenario 1 to an orga-
nizational context where there is an organization-
wide database server. Where multiple machines
have exactly the same configuration, one may
choose to only check on a subset of the machines.

• Scenario 3: Internet-based database, local
client. Lastly, like in automatic update systems,
a database server somewhere on the internet
serves as the database repository.

Internet

Scenario 2

Scenario 3

Scenario 1

Figure 4: Deployment Options for movtraq.

These strategies are suitable for our Movtraq
proof-of-concept system but one could have more

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 55

A Machine-Oriented Integrated Vulnerability Database . . . Sufatrio, Yap, and Zhong

general systems. For example, one could have a scan-
ner which is partially local and partially remote. This
may be useful in an organizational context where any
system configuration changes are registered with a
separate non-local configuration database. Any secu-
rity alerts are then checked externally against this con-
figuration database.

Discussion

We believe that there is a real need for vulnera-
bility databases which integrate the necessary pieces
of information for evaluating the impact of any new
vulnerability and allows the appropriate action to be
taken automatically. Furthermore, in order to be
timely, we argue that the vulnerability evaluation
process should not be dependent on having humans
process alerts. This does not mean that we advocate
not having humans at all in the loop but rather that the
loop should not be dependent on the speed of a human
response. Thus, it is important that there be a not only
human readable vulnerability database but also one
which is geared for automatic processing by machines.
As far as we are aware, the existing systems for dis-
seminating alerts are still primarily human oriented as
are the key source databases.

We have demonstrated a proof-of-concept data-
base which allows effective integration of data from
multiple sources and can be used directly by an auto-
matic vulnerability scanner. In the workshop report on
security vulnerability databases [17], it was remarked
that some of the difficult issues are to do with terminol-
ogy and the schema of the database. Our database
design uses both abstraction and separation of exploits
from vulnerabilities – both of which are highlighted in
the report. In particular, the use of abstraction, which for
us is how the database caters for automated analysis and
machine processing, simplifies the issue of terminology
and taxonomy. This is a plus point since these are often
controversial from a textual description viewpoint.

The database described here is meant to be a
proof-of-concept system and is not necessarily com-
prehensive. However, the prototype scanner demon-
strates that we capture the essential elements of a
machine-oriented database. As this prototype was
designed for Unix systems, for other operating sys-
tems, such as Microsoft Windows, both the database
and vulnerability expressions may need to be
enhanced. However, the fundamental concepts in the
design should still be applicable.

Finally, our proposal also addresses a number of
important practical issues:

• Integration of Vulnerability Information: An
integrated database is ideal but may not be
practical given that many separate parties are
involved in putting together the requisite infor-
mation. However, it is fairly simple as an addi-
tional step to put out the information in the kind

of machine oriented form we have advocated
and also to concentrate on the relevant data
from a machine perspective. In our prototype,
we have only built a small integrated database
since it is rather time consuming to do so man-
ually from scratch using the existing data
sources. However, once vulnerability informa-
tion is disseminated in the right format, integra-
tion becomes significantly easier.

• Verifiable Vulnerability Processing: It is cer-
tainly the case that any automatic update or
scanning system would be welcome by system
administrators. However, unless one can deal
with the privacy and trust issues, there are sig-
nificant downsides to the use of such systems.
Again, an integrated machine oriented database
such as Movtraq allows decoupling of the infor-
mation from the processing and as it is simply a
database, it can be subject to verification.

Further work would involve convenient GUIs,
fully featured implementation, Windows compatibil-
ity, and a more sophisticated vulnerability model.

Acknowledgments

We acknowledge the support of the ‘‘Defence
Science and Technology Agency’’ and ‘‘Temasek Lab-
oratories".

Author Information

Sufatrio holds a B.Sc. from University of
Indonesia and a MSc from National University of Sin-
gapore. He is currently a Ph.D. student in the School
of Computing and an associate scientist in Temasek
Laboratories, National University of Singapore. His
interests include intrusion detection systems and infra-
structure for secure program execution. He can be
reached electronically at tslsufat@nus.edu.sg .

Roland H. C. Yap obtained his Ph.D. from the
Monash University. He is currently an associate pro-
fessor in the School of Computing, National Univer-
sity of Singapore. His interests include systems secu-
rity, operating systems, programming languages and
distributed systems. He can be reached electronically
at ryap@comp.nus.edu.sg .

Liming Zhong graduated from National Univer-
sity of Singapore in 2004. Currently he is working as
an IT security specialist in Quantiq International Sin-
gapore. His interests cover intrusion detection sys-
tems, network and system forensic analysis. Reach
him electronically at rick@Quantiqint.com .

Bibliography

[1] CERT Coordination Center, CERT/CC Statistics
1988-2003, http://www.cert.org/stats/cert_stats.
html , 2003.

[2] CERT Coordination Center, CERT/CC Overview
Incident and Vulnerability Trends, http://www.

56 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Sufatrio, Yap, and Zhong A Machine-Oriented Integrated Vulnerability Database . . .

cert.org/present/cert-overview-trends/module-2 .
pdf , 2003.

[3] Lipson, H. F., Tracking and Tracing Cyber-
Attacks: Technical Challenges and Global Policy
Issues, CERT Coordination Center, available at
http://www.cert.org/archive/pdf/02sr009.pdf ,
2002.

[4] Farmer, D. and E. H. Spafford, ‘‘The COPS
Security Checker System,’’ Summer USENIX
Conference, 1990.

[5] http://www.fish.com/satan .
[6] http://www.nessus.org .
[7] http://icat.nist.gov/icat.cfm .
[8] https://cirdb.cerias.purdue.edu/coopvdb/public .
[9] Krsul, I., Software Vulnerability Analysis, Ph.D.

Thesis, Purdue University, COAST technical
report 98-09, 1998.

[10] http://windowsupdate.microsoft.com .
[11] http://www.microsoft.com/windowsserversys-

tem/sus/default.mspx .
[12] Keizer, G. ‘‘Trojan Horse Poses as Windows XP

Update,’’ Te c h We b News, http://www.information
week.com/story/show-Article.jhtml?articleID=
17300290 , 2004.

[13] Berlind, D., ‘‘Why Windows Update Desperately
Needs an Update,’’ ZDNet Technical Update, http://
techupdate.zdnet.com/techupdate/stories/main/0,
14179,2914519,00.html , 2003.

[14] http://www.cert.org/advisories/CA-2002-17.html .
[15] http://cve.mitre.org/cgi-bin/cvename.cgi?name=

CAN-2002-0656i .
[16] Howard, J., Kuangplus: A General Computer

Vulnerability Checker, M.IS. Thesis, Australian
Defence Force Academy, 1999.

[17] Meunier P. C. and E. H. Spafford, Final Report
of the Second Workshop on Research with Secu-
rity Vulnerability Databases, CERIAS TR 99/06,
1999.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 57

58 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

