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Designing a Data Center
Instrumentation System

Bob Drzyzgula – Federal Reserve Board

ABSTRACT

This paper describes the author’s efforts in designing an external, out-of-band hardware
monitoring and control system for use with microcomputer-based server, storage and
communications systems deployed in a data center environment. This system, when complete, will
consist of a collection of microcontroller-based monitoring nodes, one per monitored device. Each
of these intelligent monitoring nodes will be able to keep track of several temperatures, power
supply voltages, fan speeds, and various indicators of system activity. In addition, they will have
the ability to control a monitored system under the direction of an administrator sitting at a web
browser. As of this writing, much of the initial research and architectural planning is complete.
One prototype board has been built and shown to function as expected, and most of the required
development tools and licenses have been procured. The hardware design for the first
pilot/production board is largely complete. It is expected that these first boards will be built and
assembled by late 2000, and software development for this project will extend into 2001.

Context and Motivation

Origins

The Automation and Research Computing Sec-
tion (ARC), part of the Division of Research and
Statistics (R&S) at the Federal Reserve Board (FRB),
runs a reasonably extensive computer network for the
staffs of R&S and of the Division of Monetary Affairs
(MA). There are a total of about three hundred fifty
persons in the user community. This ‘‘R&S/MA
Research Computing Network’’ consists of more than
five hundred computers and over one hundred other
network addressable devices – switches, routers, print-
ers, etc.

This network was installed in 1987, and con-
sisted then primarily of Sun 3 servers which were scat-
tered throughout the office areas in the supported divi-
sions. Most users had VT220-type terminals on their
desks, while a few researchers had their own Sun
workstations. Over time, most desktop devices were
upgraded to X terminals, but the servers – which were
regularly upgraded and steadily increased in number –
remained located in the end-users’ office space.

Change

In 1997, the Board’s central IT division replaced
an aging mainframe and disk farm with newer models
which took up a miniscule amount of space compared
to the previous system. The then-barren raised-floor
space was made available to ‘‘client divisions’’ as a
place to put all the servers that were scattered hither
and yon. R&S obtained space and resources sufficient
to support thirty-five nineteen inch machine racks.

In response to this and other challenges, a com-
plete re-design and and re-implementation of the
research network was begun, a project which included
the migration of all servers to the newly acquired data

center space. This plan was carried out over a two-
year period and was completed in mid-1999.

Repercussions

With this change, however, some of the remote
diagnostic and control capability inherent in the previ-
ous design had been lost. Many times the telephone
had been a very effective system monitoring tool –
users, strategically placed near servers, were often
very effective in providing notification of problems
such as noisily failing fans and disk drives, even with-
out much in the way of training. Also, if a system was
so sick that it would not respond to the network, these
users were often able to reset that system on request.
This was especially useful on weekends when support
staff were answering calls from home. The data center,
however, being a secure ‘‘glass house’’ environment,
was off limits to the users and thus this was no longer
an option.

The new environment also resulted in some new
types of problems. For example, we learned that,
while one can equip a storage system with redundant
power supplies, this is of limited use if there are no
automatic mechanisms in place to provide notification
of a failure of one of the supplies. We also learned that
the white noise in a data center, together with glass
rack doors, can do a remarkably good job of masking
even the piercing sound of a piezo-electric alarm two
rows away. Finally, the ability to monitor AC power
was lost when a new building engineer declared stan-
dalone UPSs a fire hazard – the Fire Department
needed a way to shut down the entire data center with
a single switch, and the distributed UPSs made this
problematic. A large, data center-wide UPS was
installed in the sub-basement, but the ability to moni-
tor individual circuit loads and power conditions was
lost.
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It became apparent that something needed to be
done in order to gain better status information.

Looking for solutions

To recover our lost capabilities, we determined
that a network-accessible instrumentation (or hard-
ware monitoring and control) system was needed.
While it is tempting to try to build a single system that
addresses every problem, there are many advantages
to breaking the problem up into a number of smaller
bits that could be addressed individually.

The No-brainer Stuff

On this basis, we saw three areas which would
have high immediate impact, were reasonably inex-
pensive and easy or at least straightforward to do, and
which addressed areas which resulted in severe sup-
port difficulties. These three areas were serial console
access, power control and graphical console access.

Serial Console Access

Several of the devices installed in these racks
had serial consoles to which it was fairly straightfor-
ward to provide remote access; the large number of
serial ports, however, posed difficulties.

Sun SPARC servers

All of the production Sun servers, about 60 in
total, are built from Sun Microelectronics mother-
boards – either the quad-processor UltraAXmp or the
uniprocessor UltraAXi. One particular issue with
regard to Sun SPARC machines and their serial con-
sole is that, by default, these systems will halt when an
RS-232 break signal is detected.

As most people who work with Suns know, when
one connects a serial console cable to the Sun, the
resulting noise on the port often will generate a break
condition. While the Sun’s halt-on-break behavior can
be disabled in the Open Boot PROM, this comes at the
cost of not being able to halt a system when required.
By contrast, our goal was to be able to connect and
disconnect terminals at will and still maintain the abil-
ity to halt the system from the console. To solve this
problem, a special ‘‘non-aborting’’ console cable from
NuData – now part of MicroWarehouse [44] – was
installed on each Sun server.1

CMD RAID Controllers

All of the RAID subsystems are again integrated
in-house. We have approximately fifty RAID boxes in
production, split between the SPARC and NT servers.
The controller used in these subsystems is the CMD
[14] CRD-5440. All configuration of this controller is

1This device, – NuData part number NUD4273 – is a short
console cable, one end of which contains circuitry to ensure
that a break signal is never generated at the Sun’s console
port except when one is clearly being generated at the termi-
nal end of the cable. Inspection of the circuit in this device
reveals that it is actually fairly complex. It contains fifteen
resistors, eight diodes, three transistors, one op amp and five
capacitors – one of them a large 1000uF electrolytic.

done via a serial console connection on the back of the
unit; the host knows not that it has a RAID controller
attached.
Serial port cabling infrastructure

The first implementation of a system to connect
to these serial ports, over one hundred of them, was
based purely on 25-pair, Cat 3 Telco trunk cables and
USOC patch panels. A patch panel was installed in
every rack or two, and conventional, straight-through
10-base-T patch cables were used to connect from
those to custom-made serial null modem adapters
[23]. The other ends of the trunk cables were brought
into USOC patch panels. A few standard VT220-type
terminals were installed on rack shelves; these could
then be plugged into any port in those panels, switch-
board operator style.
Serial port server

The switchboard system worked quite well, but
the ultimate goal was to be able to connect to any of
these ports remotely. To accomplish this, an X86
Linux server was built and outfitted with Cyclades
[18] multi-port serial cards. Shell scripts driving C-
Kermit [16] were written to provide command-line-
based access to the piles of serial ports provided by
the Cyclades cards. In this way an administrator on the
Linux serial port server could simply connect to the
correct console without knowing which serial device it
was on. This system could be used either at the Linux
system’s console or through a secure network connec-
tion from anywhere in the world. The multiuser capa-
bility of the Linux box made it possible for several
administrators to be working on separate systems at
the same time.

This of course represents something of a single
point of failure in the support infrastructure for these
machines; the backup system remains the old switch-
board technique, since the Linux/Cyclades system
uses the same patch panels.
Power Control

Each of the thirty-five machine racks was outfit-
ted with a dedicated, 20A 120VAC circuit. To help
manage these, Model 3302F intelligent power con-
trollers from Pulizzi [56] were installed in each rack.
These devices each have eight programmable power
outlets, which can individually be turned off or on and
can be programmed to turn on in a specific sequence
with programmable time delays. These controllers can
be daisy-chained on an RS-485 serial network, which
then can be connected to a standard ASCII terminal or
terminal emulator.

This serial network was connected to the Linux-
based serial port server described in the previous sec-
tion, and scripts were written to interface to that serial
network and generate the correct commands to, for
example, power cycle a specific port.
Graphical console access

Windows NT, by default, does not support man-
agement through a serial console in the same way as
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do all these other devices. At present, we have about
twenty-two Windows NT servers in production, but no
room to put twenty-two monitors. To consolidate
access to these devices, a cascaded-KVM switch solu-
tion from Cybex [17] was procured.

The primary disadvantage of this solution was
that, much as was the case with the switchboard sys-
tem for the serial consoles, it still required that that
someone go to the data center to use it. A significant
enhancement to this system, based on the ‘‘VDE/200’’
device from Lightwave Communications [35], is cur-
rently under evaluation. The expectation is that we
will be able to use this device to deliver KVM signals
to the desktops of the systems administration staff; as
of this writing, we have a single, working control con-
sole on the same floor as our offices, across the street
from the data center.

Still, the high bandwidth requirements of a
graphical console reduce the chances of getting access
to the NT server consoles from outside of the two-
building local campus. One possible alternative is to
provide some sort of serial console access to an NT
machine. Pieces of such a solution seem to exist (see
e.g. [26] ) but it is unclear at this point whether this
can be made to work with NT in any satisfactory man-
ner.

Software Monitoring
Of course, most (but not all) of these devices

have some ability to be monitored via software, usu-
ally within the context of the operating system running
on the device. Both Solaris and Windows NT have
SNMP interfaces and a great deal can be done with
advanced network and system management systems.
In addition, Solaris provides a fair amount of event
data through syslog, as does Windows NT through the
event log.

Many of the monitoring tasks described in the
latter portions of this paper could in theory be accom-
plished through software-based monitoring on many
of these systems. For example, Sun’s Advanced Sys-
tem Monitoring [63] package provides driver-level
access to arbitrary I2C-based [55] monitoring devices,
including the various monitoring probes that are pro-
vided on the system board itself. It should be a
straightforward effort to map these into an extended
SNMP MIB and accessed through the UC Davis
SNMP daemon [65] that is used on our Solaris
machines, or also possibly through CGI scripts run by
Apache.2 Additionally, many newer X86 server sys-
tems support the new Intel Corporation Advanced
Configuration and Power Management Interface [29].
ACPI – follow-on to the Advanced Power Manage-
ment Interface (APM) – seems likely to enable the
collection of a wide variety of system information.

2Sun also offers a package called Sun Management Center
[61], formerly known as SyMON. This is a relative powerful
package; however, it is unavailable for the UltraAXmp and
UltraAXi boards

Still, there are three essential difficulties with
these software-based approaches:

1. The software work that has to be done tends not
to be particularly portable from machine to
machine or from OS to OS.

2. All these things tend to change at the whim of
the system vendor. It seems to the author that,
while by leveraging industry standards such as
this, one can have a fairly flexible and func-
tional system in a reasonable amount of time,
this often comes at the significant cost of sys-
tem longevity and compatibility among systems
from overlapping generations.

3. These capabilities are all very dependent on the
proper functioning of the hardware and operat-
ing system being monitored. Generally, this
means that these interfaces tend to be more use-
ful for routine monitoring and system configu-
ration changes than for troubleshooting or fault
recovery.

The Harder Stuff
Still, it was apparent that, even if all these

‘‘easy’’ tasks were completed, there would remain
gaps in the available monitoring and control capabili-
ties, and that closing those gaps was going to be sub-
stantially harder.

In-band vs Out-of-Band

It seemed clear that a monitoring and control
system would be more useful if it was external to the
devices being monitored – in other words, if the sys-
tem was designed to function out-of-band. Malfunc-
tioning computer and networking equipment cannot be
counted on to be functional enough to respond to man-
agement queries and requests. This observation was
realized by problems we experienced in our early
attempts to manage the Windows NT servers: it
seemed that one of the first stages in almost any fail-
ure mode was to stop talking to the network.

The in-band nature of all the approaches in the
previous section (with the exception of the power con-
trollers) is a major limitation. For example, most ATX
motherboards by default will only enter standby mode
when powered up. This is by design and, even though
this behavior can be changed in the system BIOS,
there are very good reasons for the default setting –
one cannot assume that the power will be stable imme-
diately after it is first restored. Thus, even though the
power controllers can reset the power to an NT server,
this is only the first step in restoring the server to full
function – someone must still push the ‘‘on’’ button.

Supporting Heterogeneity

While many modern computing and communica-
tions devices incorporate some monitoring and control
capabilities, the implementation of these tend to be
highly variable from system to system; monitoring and
control procedures and software must be developed
separately for each type of system. If one were to
deploy, for example, a homogeneous network
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consisting of nothing but Sun UltraEnterprise or Com-
paq ProLiant servers, one could probably design a
fairly successful monitoring system that depended on
the specific capabilities of those devices.

However, in our research network, such an
approach was not an option. As we started this whole-
sale network redesign, we had made a commitment to
acquire most of our computer systems, including both
SPARC/Solaris and X86/Windows NT servers, by
integrating OEM parts in our own facility. While
high-end systems such as those from Sun and Compaq
are potentially more reliable, they are substantially
more expensive than those which we build in-house –
twice as expensive in many cases. Our assessment of
this trade-off was that, without substantial budget
increases, the ‘‘more manageable’’ systems could not
be deployed in sufficient quantities to meet the com-
puting demand. As a result, our production systems do
not generally come with some of the advanced soft-
ware tools and on-board diagnostics that might come
with top-of-the-line, commercially integrated systems.

Not Everything is a Nail

The data that may be collected from the various
systems, besides being variable from system to sys-
tem, is often inadequate for many purposes. For
example, the Sun UltraAXmp motherboards are able
to provide a threshold warning when the temperature
reaches a certain level (recorded by Solaris in syslog).
If the system gets much warmer, it will shut down.
While this is useful, it would be more useful if it were
possible to obtain a steady reading of system tempera-
ture, that could be routinely recorded into a database
for trend analysis.

Also, most systems limit monitoring to what is
happening inside the system itself, while it is fre-
quently the case that one would be just as interested in
what is going on outside the system. For example,
rack ambient temperature and airflow can be very use-
ful in identifying patterns in system problems. Many
systems can report information concerning power sup-
ply status, but this is usually limited to the DC side of
the supply; it is rare that a system will provide infor-
mation concerning the AC side of the supply: current
and voltage, circuit loading, power sags and spikes,
etc. Many of our most difficult-to-solve problems
occur as a result of failures or deficiencies in systems,
such as the AC power supply, which are controlled by
other parts of our organization. Obtaining good data
on those can often be essential to a resolution.

Finally, much of the instrumentation – both for
monitoring and control – provided out of the box with
typical computer systems is designed to be useful only
to an operator physically present at the system. This is,
for example, the case with the power and reset but-
tons, as well as the indicator LEDs on the system front
panel. It is rare that the system manufacturer will pro-
vide any straightforward mechanism for remote access
to this native instrumentation.

Design

Thus, in parallel with the efforts described in the
previous section, an investigation was begun into the
feasibility of creating a monitoring and control system
which operates separately from the computer systems
themselves.

Design Criteria
In approaching this problem, several design cri-

teria were identified:
• Relatively low cost. It did not seem practical,

from a budgetary standpoint, for the monitoring
system to be comparable in cost to the systems
being monitored.

• Small size. Even with thirty-five machine
racks, rack space was highly constrained. If
these monitoring devices could be made either
to fit inside the monitored devices, or fit com-
fortably in the free space at the back of the
racks, they would be much easier to install.

• Low power with no special cooling require-
ments. In particular, it would be most useful if
it were possible to run these boards during time
periods when the monitored systems are not
able to operate. Optimally, the instrumentation
network could be run for at least a couple of
days just on battery power. Note that these cri-
teria imply that the monitoring board cannot be
powered by the monitored system’s own power
supply.

• Remotely accessible, preferably using a stan-
dard interface that is available on virtually any
computer. Ideally, the system would be accessi-
ble via a web browser, but access via a charac-
ter terminal interface would also be acceptable.

• Distributed, modular intelligence – small, sin-
gle-board intelligent probes, networked
together and under the control of a higher-level
supervisory system. Each probe board would be
dedicated to a single monitored system in order
to minimize cross-dependencies among
systems.3

Goals
As the whole point of this project is monitoring

and control, it is well to take a look at what it is
expected that the system will monitor and control, and
why.

Monitoring

• Temperature. Each monitoring board should
have interfaces to measure four or more tem-
peratures. One could be measured by a chip on
the surface of the monitoring board itself, while
the other three should be in the form of headers

3The primary alternatives to this would appear to be (a) to
have a smaller number of much more powerful systems,
each monitoring a relatively large number of basic sensors,
or (b) to have a network of individual, intelligent sensors.
For a variety of reasons, these were rejected fairly early on
in the project.
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that will allow the connection of remote sen-
sors. These sensors could be placed on CPU
heat sinks, disk drives, outside of the system,
etc. The author views temperature as the single
most important indicator of system health. If
anything is seriously wrong with a system,
chances are good that the temperature will
either go up or go down.

• DC Power supply voltages. The monitoring
board should have headers that can be con-
nected to contacts on the motherboard which
carry +12V, +5V and +3.3V. Drift or instability
in these values can indicate a weak power sup-
ply.

• Fan rotation. Many fans today have a tachome-
ter lead. On each rotation of the fan, this lead is
shorted to ground a number of times (four is
typical) Feeding a voltage to the tachometer
wire through a pull-up resistor will result in a
square wave with a frequency that is directly
proportional to the fan’s RPM. Typically a
computer system board will provide this rate
counter functionality itself, but it is straightfor-
ward to tap into this signal and also do the
counting on another board. The monitor board
should be able to keep track of at least two
fans.

• LED states. When confronted with a malfunc-
tioning system, many people will take a look at
the hard drive activity LEDs on the front panel
as a quick check to see if there is any disk
activity. If the light stays on solid, it can be an
indication of a hung SCSI or IDE bus. If it is
off solid, this can be an indication that the oper-
ating system is not running any tasks. If it is
blinking rapidly, it would appear that something
is going on – often, by the blink rate, just what
is happening on the system can be deduced.
The monitoring board should have connections
to monitor the state of up to three LEDs. It
should be able to report the current on/off state
as well as a current count of off-to-on transi-
tions.

• AC current. There are two places at which it
would potentially be useful to monitor AC cur-
rent: At each circuit and at each device. At the
circuit level, a current reading will give one a
sense of how close a circuit is coming to capac-
ity, and how much more can be added to it
without concern. Monitored over time, one
potentially can detect, for example, that a new
device has been added to a circuit, or that one
was added during the night and then removed
(those darn cleaning crews!). With a little more
work, it would also be possible to monitor volt-
ages, and look for spikes and overall power
quality. At the device level, one could addi-
tionally detect, on a per-device basis, sudden
increases and decreases in current demand that
could be indicative of a number of system level

events such as impending failure, shutdown or
reboot.
The monitoring board should be able to moni-
tor a single AC current at at the device level.
We determined that the task of monitoring AC
at the circuit level had a number of complexi-
ties that made it more appropriate to leave to a
later project.

• RS-232 serial interface. The monitoring board
should have a minimum of two RS-232 serial
interfaces in addition to some sort of network
interface. In some cases, such as with the CMD
RAID controller, useful information such as the
state of a RAID set is available only through a
serial interface. It also may prove practical to
interface these devices to the serial console
ports on the SPARCservers and network
switches, but with the serial console network
discussed above, this is left for another day.
One serial interface would be used for these
applications, while the other would be left
available as a debugging and local control inter-
face.

• Generic digital inputs. There should be four or
more generic digital inputs to account for plat-
form specific capabilities, for example to sense
alarm conditions that are provided by some
chassis and system boards. At least four such
inputs are known to be required to moinitor our
RAID subsystems. One possible use for such an
input would be to create a sort of ‘‘watchdog
timer ’’. One might write a daemon or NT ser-
vice which toggles the state of one pin on the
parallel port every five seconds or so. The mon-
itor board could watch for that change and, if it
does not occur for twenty seconds or so, set a
flag which could be picked up and be reported
in an alert. In embedded systems, a timeout on
the watchdog timer is usually programmed to
result in a system reset; with some caution, this
approach could be taken for the monitored sys-
tem via the relay outputs mentioned below.

• Generic analog inputs. There should be two or
more generic analog inputs, again to measure
platform-specific values, which could be addi-
tional temperatures, airflow, humidity, etc.

Control

• Relays. There should be two relays on the mon-
itoring board, each of which can be used to
close a switch header on a motherboard, such
as those for the reset or power on/off functions.
These should be specifically designed to not
close except under tightly controlled circum-
stances. Of special concern is during monitor-
ing-board power-up and when the relays are
connected or disconnected from the monitored
system; the monitor board should never cause
the monitored system to shut down or reboot.

• RS-232 serial. The same interfaces that were
described under ‘‘monitoring’’ can clearly be
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used in a control application; for example, a
command could be added to shut down a RAID
array before powering off a server.

Taking a closer look
With these goals and criteria in mind, several

candidate technologies were examined. But first, let us
note what is not available.

The market, as far as could be determined, was
barren of products that directly met the goals and cri-
teria listed above. Generally, the industry seemed to
be taking the view that computers could monitor
themselves just fine. Several computer system vendors
had system and network management solutions. But,
almost without fail, these solutions depended on the
existence of a homogeneous collection of reasonably
high-end systems, and/or they functioned in-band with
the operating system and primary data network.
Although many vendors were consulted, and many
had suggestions as to how to approach the task, not
one claimed to have a solution on the shelf.

Following is an outline of several technologies
which were considered for this project.

PC-104 Single-board Computers
Features

PC-104 is a standard form factor for X86 PC/AT
computers, using 4’’ square boards and stacking pin-
and-socket connectors to carry the ISA bus. A wide
variety of peripheral and I/O boards are available.

Advantages

The advantage of PC-104 is the use of a stan-
dard, familiar PC architecture.

Disadvantages

High cost. A fully-functional system can cost in
excess of $1000. Proprietary aspects often complicate
software development. Generic sensor interfaces
require external signal conditioning circuitry.

Vendors

Ampro [5], Advantech [2], Technoland.

Single-board Microcontrollers
Features

Small boards configured with standard micro-
controllers. Usually provide a variety of digital and
analog interfaces, not normally designed for expan-
sion.

Advantages

Moderate cost, well-documented and less propri-
etary.

Disadvantages

Limited mix of sensor interfaces often restrictive.
Generic sensor interfaces require external signal con-
ditioning circuitry.

Vendors

EMAC, Inc. [36], Z-World [71], R.L.C. Enter-
prises [58].

Industrial Control PLC Networks
Features

Programmable Logic Controllers are pro-
grammed with basic state machine logic. Networks of
individual sensors and controls are connected back to
the PLC.

Advantages

Very flexible; wide variety of controllers and
sensors available.

Disadvantages

PLC architecture is very limiting. individual
sensors and controls are large and relatively expen-
sive.

Vendors

Advantech [2], Omega Engineering [53].

Custom-designed microcontroller boards
For better or worse, this is the one approach that

seemed to be capable of addressing the bulk of the
stated goals and criteria. Among the more popular
microcontrollers, PIC microcontrollers from Micro-
chip Technology [41] are tremendously easy to work
with, and these were selected for the first attempts at
custom design.

The PIC microcontrollers are programmable in
their own quirky assembler language or in any of sev-
eral higher-level languages, most notably C. Pro-
grams are written into the PICs with low-cost device
programmers. The model which saw the most use in
this project was the PIC16C76 [42], a 20MHz, 28-pin
device with five analog inputs, 8KB of program mem-
ory, three timers and a real programmable serial port.
These chips cost between $5 and $10 depending on
quantity, and the minimal parts one needs to add to
have a functional controller system (e.g. crystal, volt-
age regulator, a few capacitors) cost maybe another
$10. On a board based on a PIC controller, one can
easily include all the I/O interface circuitry that one
would have needed to design for all the other solutions
anyway. Several companies, e.g. MicroEngineering
Labs [43] sell prototyping boards for the PIC for $10
or so – with these one can have a functional controller
board with a couple of hours of soldering.

This custom design solution, although perhaps
not the the one which intuition would select, proved to
be by far the most straightforwardly malleable, to be
the most cost effective – even when the cost of devel-
opment tools is accounted for – and the most free of
proprietary encumbrances. With this approach,
promising, concrete results were obtained in a very
reasonable timeframe.

A Word About Networking
Physical layer

Three technologies were considered as a choice
for the physical layer: RS-485, Ethernet, and CAN.
This in fact turned out to be a fairly straightforward
choice, however.
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RS-485, which is also basis for differential SCSI
and many short-haul modems, is very simple in
design. It transmits a differential signal over common
copper twisted pair wire, one pair for half-duplex and
two pairs for full-duplex. A ground return wire is usu-
ally present as well, so an RS-485 network cable will
most likely have either three or five conductors. Data
can be transmitted over such cables at relatively high
rates, over reasonable distances, and with a great deal
of noise immunity. RS-485 is usable in a bus topology,
allowing the connection of dozens of devices to a sin-
gle length of three- or five-wire cable. At distances
likely to be experienced in a data center, RS-485 can
easily approach speeds of 115.2 Kbps, while over
short distances – as found in SCSI busses – it can sup-
port speeds as high as 10Mbps or more.

Upper Layers

While the selection of a physical layer was fairly
straightforward, there were no obvious choices for the
higher-level protocol. TCP/IP was out of the question
– the software required to implement TCP/IP was
much too complex to deal with in an 8-bit microcon-
troller. There appeared to be no ‘‘standard’’ protocol
available; there were several proprietary protocols
such as Echelon’s LonWorks [24], but it was also very
common for embedded systems developers to ‘‘roll
their own’’ protocol. After an evaluation of the avail-
able options, the latter approach seemed the most
promising.

A Networking Architecture

The outlines of an architecture for the network-
ing of the monitoring boards was developed, although
never used for reasons which will become clear. For
the benefit of those who may wish to take this less
proprietary approach, this architecture is described
here.

Master-slave model

In order to reduce the complexity of the code
which must run on the microcontrollers, and to elimi-
nate the need to handle collisions, we decided that the
microcontrollers would speak only when spoken to.
Each RS-485 string would have a single master node
which would direct the microcontrollers to return data
or carry out a control task. In idle time between
requests, the controller would constantly be taking
measurements in order to reduce the polling latency.

RT OS with simple dispatch table

Each microcontroller would run a relatively sim-
ple Real-Time Operating System, which would handle
task scheduling, interrupt, timer and queue manage-
ment, as well as resource (e.g. memory) allocation. As
requests come in off the network, a process running
under the RTOS would scan request headers and select
out only traffic for that controller. As each such packet
comes in, a command token in the packet and any
needed data would be parsed out and inserted in an
appropriate job queue. A process running under the
RT OS, until this point blocked in wait for the queue to

fill, would be woken up and given an opportunity to
act on the command.

Commands would be classed as synchronous or
asynchronous. In the case of a synchronous command,
the master node would do nothing – and the network
would be quiet – until the slave node returned the
results; a timeout would be set so that a dead node
would not hang the network. In the case of an asyn-
chronous command, the master node would wait for a
receipt acknowledgement but would then go on with
other work, giving the slave node time to finish the
command. When the command was complete, the
slave node would buffer the results and wait for
another poll from the master node before attempting to
return the results. A request to transmit previously
requested results would of course be a synchronous
command, requiring immediate response (or negative
acknowledgement) If the results are never requested,
the slave node would discard the results when the
buffer was needed again.

Figure 1: Instrumentation network diagram.

On the Wire
Request packets would contain a preamble, a

one-byte target address, a one-byte command token,
one-byte request sequence number, an optional data
field, a checksum and a trailer. With a single master
node, a source address would not be required in a
request packet. Response packets would have a
slightly different preamble, the source address and
response code, followed again by the sequence num-
ber, optional data, checksum and trailer. Request pack-
ets would need to be acknowledged by the microcon-
troller within a set time window, but response packets
would not require acknowledgement; instead, the mas-
ter node would simply repeat the request if required.

Start-up node discovery would be done by a sim-
ple search through all possible addresses – basic
RS-485 networks support only 32 devices and this dis-
covery can be completed in only a few seconds.4

Master Node
It is expected that the master node would be a

Unix-type machine, probably Linux or BSD. On this

4This is an electrical limitation related to the input
impedance of the transceivers; high-impedance transceivers
are available which will allow up to 128 devices to be at-
tached, but the use of these seems unnecessary in this appli-
cation
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master node, the protocol would be implemented as
user-space executables which could be called by CGI
scripts from the Apache web server. The service
requests and results could be delivered from and to the
user via the http protocol. Automatic cron jobs could
run on the master node to make routine, periodic
requests for data that would then be stored in a
database.

Figure 2: Conceptual drawing of monitor board.

Disadvantages
There are some disadvantages of this system; it

does not, for example, provide a mechanism for the
microcontroller to report alerts or interrupts back to
the master node. A non-responsive or ill-behaved
slave node would need to be flagged as a potential
problem, and an alert generated through the network
management system. Also, the number of devices
hanging off each serial port would also be limited by
how many could successfully be polled without using
up all the available bandwidth with overhead process-
ing.
emWare

This architecture was not implemented, however,
because a source, emWare [25], was identified for a
product that did essentially the same thing. emWare’s
product, EMIT (Embedded Micro Internetworking
Technology), provides a networking protocol, an http
gateway, skeleton source code for several microcon-
trollers, and Java Beans that can be used to create a
graphical interface to the networked controllers. It was
estimated that that this product would take at least six
to twelve months off the time to develop the instru-
mentation software, and a much more functional end
product would result than would have otherwise.
First Working Prototype

Ultimately a wire-wrapped, PIC-based prototype
was designed and built. This prototype did most of
what was required, including running the EMIT soft-
ware and talking to a web browser via the Java Beans.
The browser window would display the constantly-

updated board temperature, display counts of the HDD
activity lights, and a Java-based button could be
depressed to initiate a hardware reset on a Windows
NT server. Finally, an affordable and buildable solu-
tion was in sight. This was in the fall of 1999, and this
board was the one that was described to some LISA
participants in a Work In Progress session last year.

After completing this prototype, however, it
became clear that the PIC had a severe shortcoming:
The PIC simply did not have enough data memory,
and it had no external memory interface. The most
serious problem resulting from this was in interfacing
with the CMD RAID controller’s serial port. Although
the RAID controller had a mode for talking to such
automated devices, use of that mode entailed the abil-
ity to buffer records that were comparable in size to
the PIC’s entire memory. Thus, a different microcon-
troller was going to be needed.
Atmel AVR

After a review of the alternatives, Atmel’s [8]
AVR architecture was selected, specifically the
ATmega103. The AVR was still an 8-bit microcon-
troller and was still inexpensive, but the instruction set
was much more powerful than the PIC’s and it had an
external memory interface. Over the next few months,
a fairly complete board was designed around on this
part, while many design details were tested on low-
cost development boards that are available from
Atmel. At around the end of Spring of this year, the
design was nearly complete, and attention was given
to the task of procuring the parts that would be
required. Especially in a small project such as this, it
is generally a good idea to have the parts in hand
before the boards are made, so that adjustments can be
made in the event that some parts are not available.
The Parts Shortage of 2000

One does not normally, however, expect the
availability problem to be as severe as was experi-
enced in this case. Parts were so hard to come by this
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past Summer, that it was headline news every week in
publications such as EE Times and Electronic Buyer’s
News (EBN). Pretty much anything in a surface-
mount package, anything with memory in it, or any-
thing that was used with anything that was surface
mount and/or used memory – especially flash mem-
ory, was simply not available. EBN ran a story about
an OEM CEO who raided his employees’ Palm orga-
nizers just to get the flash memory [52] ; see also [69]
and [68]. In the case at hand, about half the parts on
the board – which was designed using surface-mount
technology – were unavailable, most notably the
Atmel microcontroller itself. Atmel reportedly was so
far behind that they had ceased taking orders, and
Atmel distributors were quoting lead times as long as
ten months. There was no way around it, it was either
shelve the whole thing for a while or go back to the
drawing board.

Yet Another microcontroller
Thus, the search began for yet another microcon-

troller. This time, the search was limited to devices
which could (a) use as much of the existing hardware
design as possible, (b) were available for immediate
purchase and (c) for which there existed a port of the
emWare code. Given the scarcity of parts, this turned
out to be a pretty short list; very few microcontrollers
of any sort were obtainable at that point. In the end, a
supply of Dallas Semiconductor DS80C320 chips was
located. The DS80C320 is sort of a souped-up, high-
speed 8051-architecture microcontroller with no inter-
nal program storage. They also have relatively little in
the way of of built-in peripherals, so the search had to
be expanded to include several new parts, such as an
external analog-to-digital converter and EEPROM
memory. Parts in hand, work was begun to design the
board one more time. However, this time around, it
was going to have to be larger – the perimeter of a
CD-ROM drive rather than of a floppy drive as origi-
nally planned – and would have a higher power con-
sumption than desired. But something had to give, and
at least work was still progressing.

Working Design

Overview
Almost all of the parts used in this board will be

‘‘through-hole’’ as opposed to ‘‘surface-mount’’. The
board itself will be designed in four layers (two signal
layers, a ground layer and a power layer), with the
outside dimensions about the same as that of a CD-
ROM drive. Mounting holes will be drilled near the
edge in such a way as to make it straightforward to
mount the board, using angle brackets, in a standard 5
1/4’’ drive bay. The plan is to mount this device in a
free hard drive bay inside the server device. The
instrumentation network and power supply for the
board will enter the system through one of the I/O slot
hanger brackets, and bundles of sensor wires will be
connected from various locations within the server to
connectors on the back of the monitor board.

A conceptual drawing of the board design is pro-
vided in Figure 2.

Power

The boards are designed to operate from a +24V
power supply. The relatively high DC voltage is used
for two reasons: First, some devices, such as the
4-20mA current loop, need the 24V to operate. Sec-
ond, the plan is to daisy-chain the power supply along-
side the RS-485 network. If the boards were designed
to run from a +5V power supply (voltages will need to
be converted on-board in any event), the supply cur-
rent would have to be higher; this would have a num-
ber of implications, including the use of heavier wires
in the daisy-chain harness. The 24V power is con-
verted to +5V, -12V and +12V on-board using off-the-
shelf DC-to-DC converters.

Connectors

All the run-time I/O connectors will be on one of
the short edges of the board. The design calls for three
connectors. One rectangular nylon connector will
carry connections for power input, the RS-485 net-
work and the 4-20mA current loop.

The other two connectors are both 26-pin high-
density D-sub connectors. One will carry most of the
analog connections, while the other will have the
serial ports, relays, counters and other digital connec-
tions.

There will also be small header connectors on
the surface of the board for the attachment of JTAG
cables, for the programming of the two programmable
logic parts used in the design.

Components

In this design, there are about twenty or so inte-
grated circuits, and about two or three dozen other
parts. Some of the more interesting parts are described
here; refer to Figure 3 to see how these parts work
together.

Dallas Semiconductor DS80C320

The Dallas Semiconductor DS80C320 [21] is a
clone of the Intel 80C32 [30]. Dallas’ part uses a new
core design, runs faster than the old Intel part (up to
33MHz), and does more in each clock cycle than the
traditional 8051 designs. The Dallas part also has an
extra serial port, extra timers and a few extra external
interrupt pins. This is actually about as nice as
8051-architecture chips get.

Waferscale Integration PSD913F2

Waferscale [67] makes a line of highly-integrated
parts that they call ‘‘Programmable System Devices’’,
or ‘‘PSDs’’; the current design uses the PSD913F2
[66], which provides 160KB of flash memory in
twelve sectors, 2KB of SRAM and a 57-input/19-out-
put simple PLD. The PSD provides all the program
storage for the board, some of the data storage, and
handles all the address decode work needed to gener-
ate chip selects for the other ICs on the board.
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National Semiconductor LM12458

National calls the LM12458 [48] a ‘‘data acquisi-
tion system’’. It is a highly programmable analog-to-
digital converter, with eight inputs. The conversion
circuitry can give a result with twelve bits of preci-
sion, and it can buffer several results to take some pro-
cessing load off the microcontroller. It can also be pro-
grammed with threshold values, which allows for the
generation of an interrupt if a sensor drifts out of spec-
ification.

Figure 3: Block diagram of monitor board functional components.

Altera MAX7064S

The Altera MAX7064S [4] is a 64-macrocell
CPLD, (Complex Programmable Logic Device). The
purpose of this part here is to handle the counting of
the three HDD activity LED interfaces. The three LED
headers on the monitored system’s motherboard will
be connected (via optoisolators and buffers) to input
pins on the CPLD. The CPLD increments an internal
counter every time one of the counter input pins tran-
sitions from low to high. It communicates to the
microcontroller though a parallel interface; the micro-
controller thinks that the CPLD is just three bytes of
memory.

Dallas Semiconductor DS1780

The Dallas DS1780 [20] is a system monitor
chip, designed for use on PC motherboards. It is capa-
ble of monitoring the surface temperature at the chip
itself, as well as two fan speeds, several power supply
voltages, and various other parameters. It has a regis-
ter that latches the state of five external pins on power-
up; this is designed to read an identifier off a Pentium
processor, but here it is used with a DIP switch to
latch the board’s address on the RS-485 network.
Finally, the DS1780 has a system reset circuit, which
will keep all the chips on the board in a reset state
until the power supply has stabilized.

STmicroelectronics M24C32

The M24C32 [59] is a byte-addressable, 32 Kbit
serial EEPROM. Although there is plenty of flash and
SRAM memory elsewhere on the board, neither of

these are particularly good at storing small amounts of
dynamic data which must survive a system power
cycle. This device can be used to store various setup,
configuration and calibration parameters such as the
monitor board’s monitored system name. It can also
occasionally be used to log various critical events that
one might need to retrieve after the system was power
cycled.

Philips Semiconductor PCF8584
Since the DS80C320 does not have an I2C inter-

face, and both the DS1780 and the serial EEPROM
required one, the design calls for a Philips PCF8584
[54], an I2C bus controller, to do this job.

Dallas Semiconductor DS1687
The Dallas DS1687 [19] is a battery-backed real

time clock (RTC). It will be used by the board both to
keep track of the time and to generate a square wave
input to the microcontroller which will provide a regu-
lar system ‘‘tick’’ for the RTOS, that is used to sched-
ule various housekeeping activities. This part also pro-
vides 256 bytes of NVRAM.

Burr-Brown RCV420
The Burr-Brown RCV420 [10] is a 4-20mA cur-

rent loop receiver. 4-20mA current loops work by sup-
plying around 24V to a pair of wires which are carried
out to a remote sensor. The sensor is powered off the
loop wires themselves, and communicate back to the
receiver by regulating the loop current to be a value in
the range of four to twenty milliamps which, net of the
4mA base, is proportional to the value the sensor
wishes to report. Current loops can be run for long dis-
tances, require only two wires to carry both power and
signal, and have excellent noise immunity.

The RCV420 senses the loop current and outputs
a voltage proportional to the reported current and in
the range of 0-5V, which is what most analog to digital
converters are designed to measure. In this board, the
RCV420’s output will be connected to the LM12458.
The RCV420 will be used to interface to a remote AC
current sensor.
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Sensors

Temperature Sensors

In addition to the single temperature measured
by the DS1780, three remote temperature sensors will
be supported. The remote sensors will use the National
Semiconductor LM20 [49], a tiny, 2mm x 1.25mm x
1mm surface-mount part.

AC Current Sensors

Although this was not anticipated, the AC cur-
rent sensor interface turned out to be one of the hard-
est parts of the entire design to get right.

It is quite easy to come by remote current sensors
which transmit information via 4-20mA current loop –
this is a standard type of part used in industrial process
instrumentation applications. However, while the
specifications of hundreds of toroidal-transformer and
Hall current sensors from several different vendors
were reviewed, none were identified which simultane-
ously met the specifications and goals for size (to be
able to put one in a regular outlet box, or inside the
power controller), frequency response (60Hz), sensing
range (1-20A) and cost (<$50). In addition, for many
industrial current sensors, the translation between the
AC current and a single value to be transmitted on the
4-20mA current loop is not always well-defined or
particularly sophisticated. A sample of one such sen-
sor was disassembled and inspected, and determined
to use a particularly simple rectifier and linear integra-
tor circuit which would, at best, give only an ‘‘indica-
tion’’ of the current level, not something that could be
reliably mapped to an RMS value.

This is particularly an issue with the kinds of
loads presented by computer equipment. Unlike resis-
tive loads, which will usually have AC current profiles
which look pretty much just like the voltage profile
(i.e., sine waves), the switching power supplies used
in computer equipment consume AC current in short
bursts. This sort of signal is said to have a high ‘‘crest
factor ’’; this presents special challenges in the mea-
surement of an absolute AC current level – see [33].
Many industrial current sensors are designed under the
assumption of either resistive or inductive (motor)
loads; these assumptions do not necessarily translate
well into this application. Thus, it is not really fair to
say that the device mentioned in the previous para-
graph was poorly-designed; rather, it is more that it
just was designed for a different application. Errors in
current values reported by simple averaging circuits
for signals with high crest factors can be as high as
50% or more.

Candidate design

In the current sensor design developed for this
project, the transducer is a small, toroidal current
transformer made by Coilcraft [15]. This is an inex-
pensive ($5 or so) part which is just a little more than
ten cubic centimeters in volume. The current output of
the CS60 is dropped across a small resistance, and the

resulting voltage is input into an ‘‘RMS to DC Con-
verter ’’ – the AD737 [6] from Analog Devices. To
translate the output of the AD737 into a 4-20mA cur-
rent signal, a Burr-Brown XTR101 [11] current loop
loop transmitter is used.

While, as of this writing, this circuit design is not
complete, it should result in a relatively small pack-
age, as current sensors go, and should cost $50 or less
to build. It is believed that the primary way to improve
on this design is by use of a high-speed analog-to-digi-
tal converter and a digital signal processor chip, which
would be considerably more complex and costly.

While the requirement for a 4-20mA current loop
receiver adds complexity to the overall design, the
availability of such an interface on the monitoring
board, because of the wealth of sensors with 4-20mA
outputs available for industrial process instrumenta-
tion systems, gives this board a great deal of flexibility
in being able to handle new and unanticipated applica-
tions.

RT OS

While, at this point, emWare’s EMIT software
appears to be quite suitable for this project, the skele-
ton microcontroller code provided has a number of
shortcomings. It generally will work, but it is not par-
ticularly modular. One would like to see a structure for
building modular, cooperative processes calling
library routines which implement a well-defined API,
but the emWare code is more like a giant, monolithic
event loop into which one inserts one’s own code. It is
designed sort of like an RTOS, but a number of essen-
tial RTOS services are missing, or blurred into the
main event loop.

Thus, the plan is to break that code up – much of
it may have to be substantially rewritten – and re-
implement it as a number of modular tasks under the
control of an actual RTOS. This is somewhat less
daunting than it may seem, because the existing code
does at least provide a good, working example, and a
large proportion of the emWare code is not useful in
this application (e.g. modem support) or is not rele-
vant in the context of an RTOS.

The working plan has been to use Jean
Labrosse’s uC/OS-II as the RTOS. One purchases the
source code to uC/OS-II by purchasing Labrosse’s
book on the product. What comes with the book is
only licensed for non-commercial use and is unsup-
ported in the sense that one has to purchase upgrades
and bug fixes.

In researching references for this paper, however,
the author learned of a new, fully free RTOS that had
just been released in mid-1999. The PROC [50] Real-
Time Kernel, written by Jan Erik Nilsen of Nilsen
Elektronikk, is a very straightforward RTOS kernel
which has been ported to several microcontrollers and
would seem to be fully capable of meeting the require-
ments for this project.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 53



Designing a Data Center Instrumentation System Drzyzgula

Status

Hardware
As of this writing, the schematics for the board

design are largely complete except for some of the
analog interfaces. The next major step is to develop
the board layout, which amounts to drawing where the
chips go on the board and how all the traces get from
one chip to the other. When that is complete, the
design will be taken to the board fabrication house to
have one panel of printed circuits made. A few of
these will be populated with parts and tested by hand.
If the boards work as planned, further assembly will
be moved to a contract manufacturer.

There are some additional boards which have to
be made, which are various stages of completion:

• Since most PCs do not have an RS-485 port, an
RS-232 to RS-485 converter board [22] was
designed. This board works by simply attaching
an RS-232 transceiver and an RS-485
transceiver back to back. One panel’s worth of
these boards have been made, and the samples
that have assembled have worked exactly as
required. Thus, this board is largely complete.

• There was only one part for this design which
was not available in a through-hole form – the
Dallas DS1780 – and no similar system moni-
tor chip seemed to be available in through-hole
from any other vendor. Thus, rather than have a
single surface-mount part on the board, a small
adapter board was designed and enough were
manufactured to last through the first produc-
tion run of the monitoring board.

• Boards on which to assemble the remote tem-
perature and AC sensors will also be required;
these designs are partially complete.

Software
One of the hardest parts of doing this work is

that so little of the software can be written and tested
before the hardware design is done. Thus, while an
architecture for the software has been developed at a
fairly high level, and both the emWare/EMIT and
uC/OS-II software have been tested on actual hard-
ware, little has been done of the down-and-dirty work
of banging out the code to make this thing all work.

Availability

Neither the author nor his employer have any
proprietary interests in the portions that have been
developed by us or at our behest. This includes the
general system architecture, the hardware designs,
including all printed circuit board schematics and lay-
outs. As portions of this work are completed, it is
intended that these will be made available on the Inter-
net – of course with no warranty or support. Two por-
tions of the design, the RS232-to-RS485 adapter
design [22] and the Null-modem adapter design [23]
are available in this way, and others should be avail-
able soon, as time allows. This paper is in part

intended to serve a similar purpose. If the reader has a
specific interest in some portion of what has been
done here that has not yet been made available, please
let the author know.

However, since many portions of the project
make use of proprietary software tools, there may be
some gaps in what can be released. For example, to be
able to modify, compile and run the software that will
be written for the monitoring board, a potential user is
likely to have to obtain licenses from Tasking [64] for
the C compiler, and emWare [25] for the EMIT SDK.
Both the Waferscale and Altera programmable logic
parts were selected in part because their manufacturers
provide excellent free development tools.

This being said, one secondary goal in this pro-
ject has been to avoid the dependence of the hardware
components on commercial software packages. It
should be quite feasible to build a few of these moni-
toring boards and write completely different program-
ming for them. Implementations of the services pro-
vided by the commercial packages could likely be
written from scratch if one is sufficiently determined.

It should also be noted that all these printed cir-
cuit board designs are being prepared with the Eagle
layout editor, from CadSoft [12]. While these files
will not be importable into competing design pro-
grams, they will be readable and printable with Cad-
Soft’s freeware ‘‘lite’’ version of Eagle, which also
serves as a viewer. However, one would not be able to
modify the designs with the free version because they
are larger and have more layers than the free version
will allow to be edited. The professional version of
Eagle is, however, quite reasonably priced compared
to many other EDA packages. Also, the ‘‘Gerbers’’
will be made available – Gerbers are the native format
for the Gerber photoplotters, and have become the lin-
gua franca of the PCB fabrication industry.

Project future

Looking toward the future, the author believes
that an optimal outcome would be that this idea – of a
instrumentation network, designed in response to
requirements specific to a data center environment and
which operates quite independently from the produc-
tion computer and communications systems – will
catch on, and we will ultimately see commercial prod-
ucts along these lines, complete with ‘‘connection’’ or
‘‘probe’’ kits for various commercial and generic com-
puter systems, much in the way that KVM switches
are sold today. The author hopes that, were this to
come to pass, the controller modules themselves will
be designed in an open and standard manner, so that
users of such equipment will be able to expand the
capabilities both of the hardware and of the software.

Toward this end, it seems that one significant
contribution that could be made by this project would
be to begin to define standards for how such an instru-
mentation network should operate. In that regard, a
starting outline is offered here:
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Sensor Interfaces
Some of the hardest parts of this hardware design

are the interfaces between the microcontroller and the
sensors or controls. While 4-20mA interfaces will suf-
fice for many sorts of sensors, for others they may not
be as practical or cost-effective.

Since temperature sensors would be a frequent
choice in this application, it would make sense to opti-
mize an interface just for these. Temperature sensors
vary considerably in their electrical interfaces. For
example, thermistors are devices which vary in resis-
tance over temperature, thermocouples generate tiny,
temperature-dependent voltages with response curves
that are quite dependent on the metals used, while
some IC sensors, having pre-linearized voltage out-
puts, vary by 10mV per degree. The interface require-
ments for these three types of sensors are quite differ-
ent. The differences are, however, sufficiently small
that it would be fairly simple to specify one or two
standard temperature sensor interfaces for a computer
monitoring board which could support the connection
of any of these types of sensors through a simple con-
ditioning circuit. A four-pin connector, for example,
carrying +5V supply, supply ground, and a differential
analog signal return, or a five-pin connector with
+12V, -12V, supply neutral and the differential return,
would likely work quite well for such an application.
By defining these interfaces, the board design
becomes more straightforward, and standard sensor
designs, covering a wide range of functionality, could
be defined and mass-produced.
Controller Hardware Architecture

While this may not be the most practical area for
standardization, the creation of one or two reference
designs can be very useful in creating a standard
which can be widely implemented. An important con-
sideration here will be the selection of an architectural
level for the microcontroller – 8-bit, 16-bit or 32-bit.
This choice will have a great impact on many other
design decisions, such as the RTOS or the networking
protocol. It will also determine much with regard to
the overall cost and complexity of the design. The
author ’s personal assessment is that this application
calls for an 8-bit architecture, although a 16-bit pro-
cessor, while possibly overkill, might be considered if
strongly indicated by other considerations. 32-bit
architectures would appear to be excessive at best.
Controller RTOS

The RTOS, or Real-Time Operating System, that
would run on the monitor boards is something that
would be very useful to standardize. An important cri-
teria for RTOS selection is likely to be the openness,
or ‘‘freeness’’ of the RTOS architecture and imple-
mentation both for commercial and non-commercial
use. There exist several RTOSs which are ‘‘free’’ in
the sense that one can download the source and tinker
with it, but which are otherwise restricted in ways
which limit their usefulness for an open, collaborative
project. uC/OS-II [40], for example, has this problem.

There are also several RTOSs which are fully free in
the sense required, but which are designed only for
32-bit or wider processors. Some examples of these
are RTEMS [51], eCos [57] and the various embedded
(although in some cases not fully Real-Time) Linux
versions (Embedix [37], uClinux [38] and Hard Hat
Linux [45] ).

Given an assessment that 32-bit architectures are
uncalled for here, this would imply a need for a free
RT OS targeted to smaller architectures. Unfortu-
nately, these seem to be somewhat less common.
Three RTOSs meeting this criteria have been identi-
fied by the author: Uros Platise’s UROS5, Nilsen Elek-
tronikk’s PROC [50], and Kate Alhola’s Katix [3].
Another, Barry Kauler’s Screem [31] may also be suf-
ficiently free for such a project. PROC appears to be
the most interesting, complete and portable of these.
Driver Interface

Within the context of a selected RTOS, the con-
cept of a sensor driver module could be defined, lead-
ing to significant opportunities for code reuse.
Networking Protocols

A networking protocol would of course be cru-
cial. While searching for information in support of the
research for writing this paper, it became clear that the
state of – or at least the state of information on –
higher-level protocols for CAN has improved consid-
erably since the early stages of this project. It seems
likely that CAN, together with some reasonably open
higher-level protocol, would make an excellent choice
for a networking protocol in a standard for this kind of
instrumentation system.

The difficulty with CAN is that, like Ethernet
and to a lesser extent RS-485, CAN is a specification
at the physical and data link layers of the OSI stack.
These layers typically are implemented in silicon,
either as an on-board peripheral in a microcontroller,
or as an external interface chip. This means that, in
order to be useful, a CAN design must include an
‘‘HLP’’, or Higher Level Protocol. Unfortunately,
there are literally dozens of HLPs to pick from, and
most are proprietary, incompatible with one another
and highly application-specific. This has also resulted
in a great deal of fragmentation in the CAN market, to
the point that it is not clear to this author that any
complete, fully open, free software implementation of
a CAN HLP stack exists. For more information on
CAN and the tangle of HLPs, see [34], [39], and [32].

Nonetheless, this must be moderated by the prac-
ticality of implementing such a protocol within the
context of the selected microcontroller and RTOS. The
PROC Real Time Kernel includes an architecture for a
basic multi-processor message-passing interface
which may prove sufficient for an application such as
this.

5During the preparation of this paper, Mr. Platise’s website
seems to have gone off the air. The author does not know of
a mirror, and hopes that it will return soon
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Gateway architecture
To provide an interface between the system

administrators and the instrumentation network, some
sort of gateway system needs to be defined. As men-
tioned earlier in this paper, the original design called
for the use of an HTTP server, probably Apache, to
provide this interface. The construction of simple CGI
programs to interface to the back end network, or
even, perhaps, an Apache module (mod_instrumentation?)
would be a very straightforward way to accomplish
this. Another possibility, of course, is to use an SNMP
agent to fill this role. A collaborative project to define
a standard for data center instrumentation systems
could, as part of this effort, define an SNMP MIB for
the various sorts of interfaces which one would expect
to find on the monitoring probes. This would of course
provide for excellent integration between the instru-
mentation network and existing network and system
management tools.

Conclusions

While it is difficult, at this point, to conclude that
the results have been worth the effort, the promise of
what it should be able to do once complete, and the
progress that has been made, have been very encour-
aging.

Despite the need to make a substantial invest-
ment in specialized equipment and software for this
project, these costs remain modest compared to over-
all hardware costs for a network such as this. For
example, a basic, Sun Enterprise 420R with a single
processor and 1GB of memory has a list price of about
$25,000, whereas a comparable machine built from an
UltraAXmp motherboard will cost about $13,000; the
marginal costs of upgrading these systems will con-
tinue to favor the UltraAXmp, since, as we are acting
as an OEM, the additional parts are normally pur-
chased from distributers rather than VARs. Even with
the discounts that can be expected for the 420R, the
savings here can easily reach $10,000 to $20,000 or
more per system. The situation for X86 servers and
RAID subsystems is similar. Extended over dozens of
RAID-equipped servers, the total advantage, in terms
of acquisition costs, of the in-house integration
approach is clearly on the order of hundreds of thou-
sands of dollars. By contrast, the total investment in
development hardware and software has been on the
order of tens of thousands of dollars. Additionally,
when the design is complete, the per-system imple-
mentation costs should be well less than $500.
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