
The following paper was originally presented at the
Seventh System Administration Conference (LISA ’93)

Monterey, California, November, 1993

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

LUDE: A Distributed Software Library

Michael Dagenais - Ecole Polytechnique de Montreal
Stephane Boucher - Bell-Northern Research

Robert Gerin-Lajoie - Universite de Montreal
Pierre Laplante - Centre de Recherche Informatique de Montreal

Pierre Mailhot - Universite de Montreal

LUDE: A Distributed Software Library
Michel Dagenais – Ecole Polytechnique de Montréal

Stéphane Boucher – Bell-Northern Research
Robert Gérin-Lajoie – Universite de Montréal

Pierre Laplante – Centre de Recherche Informatique de Montréal
Pierre Mailhot – Universite de Montréal

ABSTRACT

Numerous software packages are being used and updated regularly on most computer
systems. Installing all these software packages is a formidable task because each one has a
different procedure for compiling or for placing the files required at run time. The LUDE
(Logithèque Universitaire Distribuée et Extensible) software library is an organization for
installing software packages, a set of tools to install and uninstall software packages and
browse their documentation, and a number of FTP servers offering over 100 pre-installed
freely redistributable software packages. It offers functionality and flexibility not available in
existing systems.

Introduction

The LUDE software library is a joint project of
the Computer Science and Operational Research
Department of Université de Montréal
(iro.umontreal.ca), of the Electrical and Computer
Engineering Department of Ecole Polytechnique de
Montréal (vlsi.polymtl.ca, info.polymtl.ca...) and of
the Centre de Recherche Informatique de Montréal
(crim.ca). The LUDE project was initiated in
December 1991 to address the following goals:
� Serve heterogeneous systems.
� Let each disk server decide, on a package per

package basis, if it wants a network access or
a local copy of the executables and/or source
code.

� Provide access to new software packages
without editing user configuration files (.login,
.cshrc).

� let more than one version of a given package
coexist during transitions.

� Keep each software package in a separate
subtree to ease the management of disk space
and prevent name conflicts.

� Make all the documentation easily accessible
through a single user interface.

� Let several independent organizations
cooperate by sharing software package instal-
lation.

In this paper, an overview of the capabilities
offered by Lude is presented. The detailed reference
manual is found in the GNU info files that accom-
pany the Lude distribution. The next section
discusses where and why this project started. The
following section reviews existing systems that
address the problem of software distribution. Then, a
section presents typical client server organizations.
Next, the basic file tree organization is presented and
Lude installation tools are described. The paper

ends discussing status and availability of Lude as
well as possible future developments.

Motivation and Organizational Context

The iro.umontreal.ca domain serves 45 profes-
sors and 600 students. It contains about 90 UNIX
workstations from Sun, DEC and Silicon Graphics as
well as 70 MacIntosh and 15 IBM PC compatible
network clients. There are 600 user accounts and 8
full time hardware and software support staff in
addition to one local administrator for each of the 8
computer laboratories.

A number of subdomains of polymtl.ca are
using Lude and serve approximately 48 professors
and 500 students (Electrical and Computer Engineer-
ing graduate and undergraduate students). There are
approximately 100 UNIX workstations from Sun and
HP/Apollo, 6 MacIntosh and 20 IBM PC compatible
network clients. There are 700 user accounts, 5 full
time technicians that work mainly on UNIX support,
two research engineers with significant activities in
software support and one departmental network
analyst.

The crim.ca domain serves 400 users, research-
ers, software engineers, support staff and external
users. It contains approximately 100 UNIX worksta-
tions from Sun, DEC, IBM, HP, NeXT and Silicon
Graphics. The CRIM focuses its research activities
along the following areas: Knowledge-based sys-
tems, Speech understanding and signal interpretation,
Software engineering, Parallel architectures, Compu-
terized control of industrial processes and computer
vision, Teleinformatics and computer networking,
Computer-assisted training environments and user
interfaces.

All these sites had in common a large number
of workstations used to support scientific and teach-
ing activities. In particular, many software packages

1993 LISA – November 1-5, 1993 – Monterey, CA 25

LUDE: A Distributed Software Library Dagenais, et al.

had to be compiled and installed independently at
each site. Monthly meetings were held at
iro.umontreal.ca to discuss software packages, net-
working and system administration. Representatives
from polymtl.ca and crim.ca were invited to these
meetings and became aware of the common prob-
lems and proposed solutions.

Following informal discussions, Robert Gérin-
Lajoie, Pierre Laplante, Stéphane Boucher and
Michel Dagenais decided to meet and attack the
problem of organizing and sharing /usr/local. When
this paper was submitted to LISA, an anonymous
reviewer suggested a discussion of the problems
involved in joint projects. This was probably left out
unconsciously from the first draft, not because it is
not an interesting question, but because of the
difficulty of jointly writing such a section.

A few points are certainly noteworthy. During
the 18 months when Lude was conceived and
developed, 2 of the original 4 team members
changed jobs. Each site went at least once in a state
where because of internal changes (new servers,
moving altogether) or personnel leaving they could
not put any resource on the project for several
months. In such a joint project, there is no hierarchi-
cal links between the members and one cannot
impact much on the priority level assigned to the
project by other team members.

Because of the combined experience of the
team members, the final Lude organization is more
mature and perhaps simpler than what any single
member could have achieved alone. Moreover, the
approval of members with different backgrounds
brings confidence in the soundness of the proposed
organization. On the other hand, in many cases the
tools had to support everyone’s favorite option
(internationalization, minimization of symbolic
links...). This made the tools more powerful, perhaps
more complex, but certainly more difficult to imple-
ment.

During the design and implementation, discus-
sions were held by phone, private e-mail and mailing
list and several times minor communication
misunderstandings arose. For example, one would
understate his reluctance to a feature or his difficulty
to meet a deadline with some team members more
than others. The result would then be a skewed
vision of a problem and of the best remedy, between
the different team members.

Several other interesting joint development pro-
jects could have been pursued: user accounts
management, backups... However, sharing software
packages was probably in retrospect the best choice.
Indeed, each site becomes immediately aware of the
interesting packages used or developed by the other
sites, including system administration tools.

Existing Systems

A number of systems were developed for
managing the installation of software packages such
as Xhier[1], Depot[2, 3], AUTOLOAD[4], and lfu[5]
but none was found that met our requirements in
terms of flexibility, heterogeneous support and, in
particular, documentation indexing and browsing
capabilities.

One such system, Xhier[1], was developed at
the University of Waterloo. It has been used on a
large scale and automates even the editing of system
files like /etc/inetd.conf, adding required dummy
user accounts. On the other hand, it was still evolv-
ing, used server initiated transfers and is relatively
complex[1]. Furthermore, it cannot be redistributed
because of license restrictions.

Lfu[5] was developed at University of Edin-
burgh and offers a relatively simple but somewhat
inflexible organization. Indeed, the basic organiza-
tion is a tree of servers with one master server for
each architecture. In addition, it cannot accommo-
date easily more than one version of a software
package.

Depot[2, 3] is the only system known to us that
has been installed at more than one site. It evolved
significantly from the first version and is now rela-
tively close to the Lude organization. Indeed, each
software package is in its own directory and sym-
bolic links are created in /usr/local/bin, lib, include...
towards the files exported by each package. Depot
introduces the notion of package collection, not used
in Lude, but does not manage multiple architectures.
Furthermore, more than one version of a software
package cannot easily coexist on a single computer.

Servers and Clients

The LUDE software library enables a large
number of sites to pool the software packages com-
piled by their system administrators. Each computer
can act as a client and/or a server as it desires. A
client only needs a network connection to a LUDE
server (such as the Internet). A server needs to
install software packages as described in the LUDE
documentation and to export them through NFS
(Network File System) or FTP (File Transfer Proto-
col). A client may represent a more or less heavy
load for a server:
� A client takes a complete copy whenever a

new package is available and remains auto-
nomous thereafter. This represents a light load
and can be performed between distant sites.

� A client takes a copy of the install and run
subtrees and maintains a symbolic link to the
source code on the server. If access to the
source code is relatively infrequent, this is not
a very heavy load either.

� A client only keeps symbolic links to the
server for the source code as well as the run

26 1993 LISA – November 1-5, 1993 – Monterey, CA

Dagenais, et al. LUDE: A Distributed Software Library

time for most software packages. Thus, each
time one such package is accessed, the server
is involved. This is only acceptable if the
client and server are very close, on the same
network and in the same organization.

Typically, a multi-level client server organization
will be found:
� Public servers allow clients from around the

world to take copies of their packages through
FTP or NFS. Some usage restrictions may
apply if the load is too high on these servers.

� Departmental servers regularly interact with
public servers to keep a large set of up to date
packages. Department clients may then use
these packages either by taking a copy or
even through symbolic links for the infre-
quently used packages. In some cases, a
departmental server can also be a public
server.

� A local server takes a copy of frequently used
packages from the departmental server and
perhaps keeps symbolic links for other pack-
ages. The source code for these packages is
normally accessed through a symbolic link to
the departmental server or to a nearby con-
senting public server.

� Individual workstations may simply mount
/usr/local from the local laboratory server.

� Notebook computers copy packages according
to their upcoming needs for standalone,
nomadic, operation.

The compiled binaries for a software package
will differ according to the target architecture and
operating system. The two together form the class of
the target system. The following classes have been
registered up to now:

dec1.2_alpha sony4.0_68030
hp8.0_s200 sun3.5_68010
hp8.0_s800 sun3.5_68020
ibm3.1_rs6000 sun4.1_sparc
linux0.99.10_386 ultrix2.1_uvax
pyr5.1_mips ultrix4.1_mips
sgi4.0_mips vax4.3_vax
sol2.1_sparc

It is important that the same names be used
throughout the various LUDE software libraries on
connected servers; currently, the mailing list
lude@iro.umontreal.ca is used for this coordination.

File Tree Organization

In /usr/local, the usual directories are found, in
addition to server and soft, and have the following
content:
� bin: symbolic links to executable files (ade-

quate operating system and architecture class,
default version). For example, emacs points to
the file /usr/local/soft/emacs-18.59/run/poly-
/sun4.1_sparc/bin/emacs.

� lib: symbolic links to files used at execution
time by the package. It can be libraries of
compiled modules, fonts, macros or even exe-
cutable files called within a package. As an
example, m3 points to /usr/local/soft-
/modula3-2.11/run/poly/sun4.1_sparc/lib/m3.

� include: symbolic links to include files like
declarations of procedures and data structures
for library modules. For instance, m3 points to
/usr/local/soft/modula3-2.11/run/poly-
/sun4.1_sparc/include/m3.

� man: symbolic links to man pages. For exam-
ple, man1/emacs.1 points to /usr/local/soft-
/emacs-18.59/run/poly/sun4.1_sparc/man-
/man1/emacs.1

� info: symbolic links to hypertext files as used
in the GNU project.

� doc: symbolic links to unstructured documen-
tation and to software description files in
Internet Anonymous FTP Archive format
(IAFA-PACKAGES). For example, lude-
1.6/IAFA-PACKAGES points to /usr/local-
/soft/lude-1.6/install/IAFA-PACKAGES while
lude-1.6/README points to /usr/local/soft-
/lude-1.6/run/crim/sun4.1_sparc/doc/lude-
1.6/README.

� server: symbolic links or mount points to
accessible lude servers. For example, poly
could be mounted on the directory
lude.polymtl.ca:/usr/local/soft.

� soft: one subdirectory for each locally avail-
able software package. For example, one
finds there emacs-18.59, modula3-2.11...

Thus, each software package is placed in its
own subtree in /usr/local/soft. Moreover, every ver-
sion of a software package is treated as a different
package with its own subtree. The unique name of a
package is then formed by the concatenation of its
name and version number (e.g., emacs-18.59,
modula3-2.11). This enables more than one version
of the same software to coexist peacefully during
transitions and simplifies the management of disk
space since each package is kept separate.

However, several modifications (or minor ver-
sions) may exist for a package; these usually
represent minor modifications to the original source
code (for instance in the Makefile). Most often, a
single modification is needed and is named after the
person or the site performing the compilation.

Inside the subtree, three subdirectories are
present src (original source code and modifications),
run (everything needed at run time, possibly for
several platforms and modifications) and install
(description of the package and possibly special
actions related to installing this package), as well as
a file, history, which traces where this package was
copied from. When a software package is installed,
symbolic links are created in /usr/local/bin, lib... and

1993 LISA – November 1-5, 1993 – Monterey, CA 27

LUDE: A Distributed Software Library Dagenais, et al.

point to files or sub-directories in the run subtree of
the package.

% ludeadm -create -software emacs-19.4 -modification crim
% cd /usr/local/soft/emacs-19.4/src/orig
% ftp prep.ai.mit.edu
ftp> cd pub/gnu
ftp> binary
ftp> get emacs-19.4.tar.Z
ftp> quit
% zcat emacs-19.4.tar.Z | tar xf -
% cd ..
% mv orig/emacs-19.4 .; rmdir orig; mv emacs-19.4 orig
% ludeadm -software emacs-19.4 -modification crim -duplicate
% cd crim
% vi makefile
% make all install
% make clean
% cd ../..
% ludeadm -software emacs-19.4 -modification crim -unduplicate
% vi install/IAFA-PACKAGES
% vi install/crim/LUDE
% vi install/crim/sun4.1_sparc/LUDE.lock
% ludeadm -software emacs-19.4 -modification crim -release
% mail -s emacs-19 lude@iro.umontreal.ca

Figure 1: Compiling a new Lude package

In more details, a software package subtree
contains, for example for a modification named crim
and the class sun4.1_sparc, the following subdirec-
tories and files:
� history: actions performed to copy/link locally

this software package, for tracing purposes.
� src/orig/*: all the files exactly as they were in

the original source code distribution.
� src/crim/*: all the files added to or changed

from the original distribution in order to
create the crim modification. Often this direc-
tory simply contains a modified makefile.

� install/IAFA-PACKAGES: software package
description in IAFA format.

� install/crim/LUDE: description specific to the
crim modification.

� install/crim/sun4.1_sparc/LUDE: information
about who compiled the sun4.1_sparc class,
and when, for the crim modification of this
software package. Additional files in the same
directory may specify files that do not require
symbolic links in /usr/local/bin, lib... or
actions to perform before and after the local
installation.

� run/share: files common to all modifications.
� run/crim/share: files common to all classes

within the crim modification.
� run/crim/sun4.1_sparc/bin, lib, include, man,

info, doc: all the files required at run time for
the sun4.1_sparc class of the crim

modification. These files will have symbolic
links in /usr/local/bin, lib... pointing towards
them. Often the man, info and doc subdirec-
tories in run/crim/sun4.1_sparc will be sym-
bolic links to the corresponding directories in
run/crim/share to allow transparent sharing of
architecture independent files.

Installation Tools

Lude is both an organization, described in the
previous section, and a set of tools. The lude com-
mand is a tool that can copy a software package
from a server and install symbolic links in
/usr/local/bin, lib...; it can also unlink and remove a
software package. For example, to install modula3-
2.11, modification poly, from the lude-poly server,
linking the source code and copying the run time,
using the default class for the local machine, the fol-
lowing command is used:

% lude -copy run \
-link -software modula3-2.11 \
-modif poly -server lude-poly

The ludeadm tool is used to create an empty
package subtree, separate the local modifications
from the original source code and release the com-
piled package when it is ready for public consump-
tion. The sequence of commands shown in Figure 1
is typically used to compile a new package for Lude.

The ludeindex tool organizes and indexes the
documentation. It can generate a keyword database

28 1993 LISA – November 1-5, 1993 – Monterey, CA

Dagenais, et al. LUDE: A Distributed Software Library

for man pages (using the catman command) as well
as create a Wide Area Information System (WAIS)
database using the synopsis and the first description
paragraphs of each man page. It also creates a main
menu for GNU info files. Finally, it creates a World
Wide Web (WWW) html file for each software
package, from the corresponding IAFA-PACKAGES
file. The html file also contains hypertext links to the
man pages, info and doc files that come with the
package. Furthermore, man pages and info files are
converted on the fly to html format upon access; the
conversion preserves the info hypertext structure and
handles adequately the SEE ALSO section of man
pages.

Ludeindex can index not only locally installed
software packages but also those on remote Lude
servers, indicating their availability in the html file.
This way, software packages can easily be found
either through a main menu or through keyword
searches. Moreover, the associated documentation is
readily available through hypertext links using the
same browsing tool. Even more, chances are that
many users are already familiar with WWW brows-
ing tools since they are increasingly used to access
public databases such as university course and staff
directories.

Status and Availability

The LUDE tools are written in Perl and amount
to 5000 lines of commented code. The user manual
is a 2000 lines info file. All text messages are kept
in a separate file to offer multi-lingual support. At
current time, both English and French are fully sup-
ported. The LUDE tools and associated documenta-
tion are freely redistributable under the terms of the
GNU General Public License. They can be obtained
through FTP from ftp.crim.ca:lude-crim/lude-1.6.

There are at least three public LUDE servers in
operation offering more than 100 different software
packages: ftp.crim.ca, ftp.iro.umontreal.ca,
ftp.vlsi.polymtl.ca. Three mailing lists are used to
coordinate the activities surrounding Lude: lude-
request@iro.umontreal.ca to subscribe/unsubscribe,
lude@iro.umontreal.ca where discussions and
announcements take place and lude-bugs-
@iro.umontreal.ca where bug reports should be sent.
Nine countries are currently represented on the
lude@iro.umontreal.ca mailing list.

Over 1600 software packages (source and/or
executables) were downloaded from
ftp.iro.umontreal.ca and ftp.crim.ca from the Lude
tree. This covers the period from the 23rd of June to
the 25th of August 1993.

Slightly over 1000 different usernames
(representing perhaps 900 different users) did per-
form these transfers. All of the following top-level
domains were represented: at, au, be, br, ca, ch, cl,
com, cs, de, dk, ec, edu, es, fr, gov, gr, hk, hu, ie, il,

in, it, jp, kr, mil, mx, net, nl, no, nz, org, pt, se, sk,
th, tr, tw, uk, us, ve, za.

Surprisingly, a good proportion of the transfers
concerned only source code. It seems to indicate that
a major use of Lude is to serve as an extensive
source code library, including modifications required
to install each package on some architectures.
Indeed, even though a site may not want to copy
executables, it may copy the local modifications per-
formed to compile the package on the target archi-
tecture, verify that these modifications are sensible
and perform the compilation; this still represents
considerable savings as compared to starting from
scratch, while not compromising security.

A publically accessible WWW server demon-
strates the documentation indexing and organization
achieved through the Ludeindex tool: the ‘‘lude
list’’ and ‘‘lude index’’ menu items in
http://froh.vlsi.polymtl.ca:80/usr/local/lib-
/WWW/default.html. A publically accessible
Gopher server, gopher.crim.ca item RISQ/Lude, pro-
vides access to the lude and lude-bugs mailing lists
and maintains a list of Lude servers.

Conclusion

The Lude project significantly reduced the time
spent compiling software packages. Thus our sites
were able to offer a much wider selection of up to
date software packages. Managing the local installa-
tion of packages through lude is much simpler and
the documentation is now well organized. All these
immediate benefits demonstrate the success of this
project. A secondary benefit is that each site is now
more aware of good things happening at the neigh-
boring Lude sites since each newly installed package
is advertised to all three sites.

Collaborative development is a difficult task
since each site has different priorities at different
times. A volunteer must be found each time a new
sub task is identified. The amount of work separating
a first locally working prototype from a mature,
tested and fully documented release is easily
underestimated.

Three areas are currently getting our attention
regarding future developments. One area is graphi-
cal user interfaces. A graphical front end could list
the available software packages, modifications and
classes on which operations such as copy and link
can be applied. A second area is automating the
software selection and updating process. A tool
could list available software packages sorted by
compilation date and/or keywords and even automat-
ically perform the installation based on those cri-
terions. Another possibility is to initially install
packages through symbolic links and then based on
usage decide which package should be copied
locally.

1993 LISA – November 1-5, 1993 – Monterey, CA 29

LUDE: A Distributed Software Library Dagenais, et al.

A third area is security. Copying executable
files always carries a certain risk. Secure communi-
cations through authentication or cryptographic
checksums can be used to alleviate the risk.

Author Information

Michel Dagenais received his B. Ing. from
Ecole Polytechnique de Montréal in 1983 and his
Ph.D. from McGill University in 1987, both in
Electrical Engineering. He is a professor in the
department of Electrical and Computer Engineering
at Ecole Polytechnique de Montréal. His interests
include distributed object oriented programming for
CAD applications, and system administration. He
can be reached at dagenais@vlsi.polymtl.ca.

Stéphane Boucher graduated from Ecole
Polytechnique de Montréal with a B. Ing. in com-
puter engineering. He worked as software developer
and then as network analyst for the department of
Electrical and Computer Engineering of Ecole
Polytechnique de Montréal. His work on Lude was
completed while he was at Ecole Polytechnique. He
is now a software engineer for Bell-Northern
Research in Ottawa, Canada. His interests range
from operating systems and compilers to Software
Engineering. He can be reached at sbo@bnr.ca.

Pierre Laplante is a senior system administrator
at the Centre de Recherche Informatique de
Montréal. He earned a B. Sc. in Computer Science
from Universite de Sherbrooke. His current interests
include heterogeneous system administration using
UNIX and X programming, in particular developing
system administration tools with perl, wafe, c and
c++. He can be reached at laplante@crim.ca.

Robert Gérin-Lajoie is Chief Laboratory
Manager in the Computer Science and Operational
Research Department at Universite de Montréal. He
received his M.Sc. in Computer Science from
Universite de Montréal in 1981. His interests
include large Unix systems administration tools and
methodologies, and information and knowledge
access tools. He can be reached at
rgl@iro.umontreal.ca.

Pierre Mailhot is currently system administrator
at the Computer Science and Operational Research
Department of Universite de Montréal where he pre-
viously obtained B. Sc (1986) and M.Sc (1989)
degrees in Computer Science and worked 3 years as
programmer-analyst with the department’s VLSI
laboratory. His interests include system administra-
tion, operating systems, security, distributed simula-
tion and CAD tools for VLSI. He can be reached at
mailhot@IRO.UMontreal.CA.

Bibliography

[1] J. Sellens, ‘‘Software maintenance in a campus
environment: The xhier approach,’’ in Proceed-
ings of the USENIX Fifth Large Installation

Systems Administration conference, (San Diego,
California), pp. 21-28, October 1991.

[2] K. Manheimer, B. Warsaw, S. Clark, and W.
Rowe, ‘‘The depot: A framework for sharing
software installation across organizational and
unix platform boundaries,’’ in Proceedings of
the USENIX Fourth Large Installation Systems
Administration conference, pp. 37-46, October
1990.

[3] W. Colyer and W. Wong, ‘‘Depot: A tool for
managing software environments,’’ in
Proceedings of the USENIX Systems Adminis-
tration LISA-VI conference, (Long Beach, Cali-
fornia), pp. 153-162, October 1992.

[4] D. Pukatzki and J. Schumann, ‘‘Autoload: The
network management system,’’ in Proceedings
of the USENIX Systems Administration LISA-VI
conference, (Long Beach, California), pp. 97-
104, October 1992.

[5] P. Anderson, ‘‘Managing program binaries in a
heterogeneous unix network,’’ in Proceedings
of the USENIX Fifth Large Installation Systems
Administration conference, (San Diego, Califor-
nia), pp. 1-9, October 1991.

30 1993 LISA – November 1-5, 1993 – Monterey, CA

Dagenais, et al. LUDE: A Distributed Software Library

Appendix A

To install LUDE, one needs access to the /usr/local directory, and bin, lib, include, man, info, doc, soft and
server sub-directories must exist. A new sub-directory under /usr/local/soft will be created for each software
package installed.

To start, the LUDE utilities and the Perl interpreter must be retrieved. The following FTP servers are
accessible on the Internet: ftp.crim.ca, ftp.iro.umontreal.ca and ftp.vlsi.polymtl.ca. With FTP, it is often easier to
retrieve the complete subtree for a package and then remove the unwanted binaries (for architectures not used at
your site).

Here is how to proceed for installing lude and perl:

% cd /usr/local/soft
% ftp ftp.crim.ca
Connected to Clouso.CRIM.CA.
220 clouso FTP server (Version 2.0 Mon Apr 12 22:48:26 EDT 1993) ready.
Name (ftp.crim.ca:dagenais): ftp
331 Guest login ok, send e-mail address as password.
Password:
230-
230-This ftp daemon support tar and compress.
230-To get a directory, append ".tar" to the name of the directory.
230-To get a compress version, append ".Z" to the name.
230-
230-
230 Guest login ok, access restrictions apply.
ftp> cd lude-crim
250 CWD command successful.
ftp> binary
200 Type set to I.
ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for file list.
X11R5
TeX-3.141
xrolo-v2p6
procmail-2.7
et3.0-alpha.1
lucid-19.3
hyperbole-3.04
wafe-0.92
cvswrapper-0.9
xntp-3.0
bibview-1.4
etgdb
perl-4.035
lude-1.6
226 Transfer complete.
859 bytes received in 0.3 seconds (2.8 Kbytes/s)
ftp> get lude-1.6.tar.Z
200 PORT command successful.
150 Opening BINARY mode data connection for /bin/tar.
226 Transfer complete.
local: lude-1.6.tar.Z remote: lude-1.6.tar.Z
ftp> get perl-4.035.tar.Z
200 PORT command successful.
150 Opening BINARY mode data connection for /bin/tar.
226 Transfer complete.
local: perl-4.035.tar.Z remote: perl-4.035.tar.Z
ftp> quit
221 Goodbye.

1993 LISA – November 1-5, 1993 – Monterey, CA 31

LUDE: A Distributed Software Library Dagenais, et al.

% zcat lude-1.6.tar.Z | tar xf -
% rm lude-1.6.tar.Z
% zcat perl-4.035.tar.Z | tar xf -
% rm perl-4.035.tar.Z
% sh
$ PERL=/usr/local/soft/perl-4.035/run/poly/sun4.1_sparc/bin/perl
$ cd /usr/local/soft/lude-1.6/run/poly_eng/sun4.1_sparc/bin
$ $PERL lude -sof perl-4.035 -mod poly -cl sun4.1_sparc -link
$./lude -sof lude-1.6 -mod poly -class sun4.1_sparc -link
$ exit
%

Then, any other software package is easily installed. Suppose that you also downloaded modula3-2.11.tar.Z
in /usr/local/soft using FTP. The following commands are now sufficient to install it.

% zcat modula3-2.11.tar.Z | tar xf -
% rm modula3-2.11.tar.Z
% lude -sof modula3-2.11 -mod poly -class sun4.1_sparc -link

32 1993 LISA – November 1-5, 1993 – Monterey, CA

