
The following paper was originally presented at the
Seventh System Administration Conference (LISA ’93)

Monterey, California, November, 1993

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Implementing Execution
Controls in Unix

Todd Gamble
WilTel Network Services



Implementing Execution
Controls in Unix

Todd Gamble – WilTel Network Services

ABSTRACT

Current implementations of UNIX offer security features in the form of discretionary
access controls (DACs). DACs are implemented with file access permissions and access
control lists (ACLs). Unfortunately, neither of these facilities provide for access control to
active processes. In order to provide many users access to a process (and its associated data)
the current practice at our site is to establish a group account, where members on a project
team share the login and password for an application. This practice is both insecure
[cur90][fer93], and a violation of our site’s security policies.

This paper describes the implementation of a new tool, medex, which eliminates the
need for group login accounts. Medex mediates the access of users to privileged accounts
and executables. The history behind our use of group accounts and a complete methodology
for UNIX application management are presented. Details of the implementation of medex,
including its interaction with the existing security features of UNIX, are given. The tool
utilizes execution control lists (ECLs) as a means to allow controlled execution of programs
under accounts other than the current login. Medex also re-authenticates the user’s
password upon each instantiation and maintains an audit trail via log files or the use of the
UNIX syslog facility. A complete project management example utilizing medex is given
along with a comparison to related tools.

Site Description

WilTel is the forth largest telecommunications
company in the U.S. The company’s nationwide
enterprise network has an installed base of approxi-
mately 200 UNIX platforms, including UNIX variants
from DEC, HP, IBM, NeXT, SCO, Sequent, and
Sun. The user base is in the thousands with the
largest system supporting approximately 600
accounts. Typical UNIX application projects include
distributed databases, device control and data
acquisition, network monitoring, and customer
access.

History

Many projects developed at WilTel have inher-
ited support systems which rely upon the use of
group accounts. Project teams share the password to
a single login account that is used by all team
members to manage an application. Team members
login or su (1) to a special account that is used to
start up the application or to modify data owned by
the application. While logins or su (1) usage can be
tracked via conventional accounting records on the
machines, the commands executed by the user once
in the account are limited only by the access authori-
zations for the special account, i.e., not those of the
specific user. Delegation of authority has little
granularity; either a user has the password to the
special account or not. Propagation of the password
from user to user is untraceable. Modification of the
password (e.g., aging) is difficult since password

changes must be scheduled with all users of the spe-
cial account.

Another common practice is to establish
‘‘check out’’ logins. A special account is created
that can perform some privileged function. Users
‘‘check out’’ the account by obtaining its current
password. After each use, the password is changed.
This eliminates the problem of password propaga-
tion, but still does not provide a means to limit the
user’s actions once access to the special account is
given.

Requirements

Our objective is to eliminate the need for group
accounts. They are difficult to maintain and are
insecure. However, we still need the ability to
define a privileged set of users who are capable of
accessing an application project’s data as well as its
processes during execution. Additionally, the number
of access points to the project data should be con-
trolled while providing a complete audit trail of all
accesses.

A separation of duties should be established
such that authorizations to the system may be made
by security administrators while system maintenance
is performed by system administrators. The system
should enable security administrators to define strict
controls on precise commands that could be executed
by a specific user with the account privileges of
another user. The system should be portable across
all the UNIX environments. Finally, any tools

1993 LISA – November 1-5, 1993 – Monterey, CA 237



Implementing Execution Controls Gamble

developed should be integrated with the vendor’s
existing security system.

Access Controls

Most of the UNIX versions at our site implement
access controls using industry standard Discretionary
Access Controls (DACs).

DACs are defined as follows:

The [system] shall define and control access
between named users and named objects (e.g.,
files and programs) in the ... system. The enforce-
ment mechanism (e.g., self/group/public controls,
access control lists) shall allow users to specify
and control sharing of those objects by named
individuals or defined groups or both. [dod85]

UNIX offers DACs in the form of file permis-
sion bits, i.e., the self/group/public controls. The
permission bit field is located within the file’s inode.
An inode is a data structure that defines a file within
the UNIX hierarchical file system. The permission bit
field (see Figure 1) includes access flags for three
classes of users: user (self), group, and other (pub-
lic). Read, write, and execute permissions (or
modes) for a file are specified by turning on (or off)
bits within the bit field.

User Group Other

read write exec read write exec read write exec

8 7 6 5 4 3 2 1 0

Figure 1: UNIX file permission bit field

Some UNIX implementations offer additional
DAC mechanisms in the form of Access Control
Lists (ACLs)[hew91]. ACLs offer more selectivity in
access control than the standard file permissions.
ACLs allow the file owner or superuser to permit or
deny access to a list of users, groups, or combina-
tions thereof. ACLs are supported as a superset of
the UNIX operating system DAC mechanism for files,
but not for other objects such as inter-process com-
munication (IPC) objects.

An ACL consists of sets of (user.group,mode)
entries associated with a file that specify permis-
sions. Each entry specifies a set of access permis-
sions for one user.group pair, including read, write,
and execute (or search). In an ACL, user and group
IDs can be represented by their mnemonic user and
group names or by their numeric user ID number
(UID) or group ID number (GID) as found in the
/etc/passwd file. Two special symbols may also
be used in the ACL entry to simplify the lists:

% — no specific user or group
@ — the current file owner or group

While DACs control access to file objects, no
provision is made for objects of other types (e.g.,
active processes). Also, all access under the DAC

model is centered around the user (or group). The
level of granularity on controls does not extend to
specifying which programs may be used to access a
file object.

Execution Controls

Bacic [bac89] has proposed the Process Execu-
tion Control (PEC) model as a means to extend the
security system in modern operating systems. PECs
introduce additional steps in security by restricting
the list of executables that have access to a file and
by restricting which user can invoke which execut-
able. These two restrictions are designed to preserve
the integrity of system objects. Integrity is main-
tained if objects are manipulated only by authorized
and known entities that leave the object in a con-
sistent state after manipulation.

Using PECs, each object in the system is
tagged with an Execution Control List (ECL), that
describes which users may read/write an object and
which program must be invoked to do so. This hides
the object from the user while still allowing the user
to manipulate the file with designated programs.

PECs view all files on a given system as
objects whether or not they are executable. An exe-
cutable is a binary encoded file that may be passed
to the operating system for execution. A subject is
the combination of a known system user and an exe-
cutable that is accessible to the user. Objects are
manipulated by subjects and subjects may in turn be
manipulated by other subjects, making them an
object from the new subject’s viewpoint. Every
object in the system defines a domain of control
around itself. A domain is described by means of the
ECL specifying which subjects may manipulate an
object. An ECL entry is represented as a
<user,program,data> triple authorizing a specific
user to access a data object with a designated pro-
gram.

PECs have been implemented in a version of
Tunis1 [bac90]. The kernel of Tunis was modified
to consult ECLs when system calls are made for file
access. The lists consist of <user,program> pairs
that are attached to file objects via their inode in a
fashion similar to ACLs. These pairs define the sub-
jects that may access the object. The Tunis system
kernel functions as the mediation point between sub-
jects and file objects by consulting the ECL attached
to the file’s inode whenever a system call (e.g.,
write) is made to access the file.

The PEC model extends controls to restrict
access to data to pre-defined user and program pairs,
but does not include a specification for access con-
trol to processes.

1Tunis is a UNIX compatible operating system developed
at the University of Toronto.

238 1993 LISA – November 1-5, 1993 – Monterey, CA



Gamble Implementing Execution Controls

Medex Design

The existing DACs in UNIX and the PEC model
provide most of the necessary foundation to develop
a system which satisfies the original requirements.
Since modification of the UNIX kernel as done for
implementation in Tunis is not an option at our site,
a solution based on a combination of an application
program and careful configuration of the available
control mechanisms is used. The application pro-
gram is implemented as medex, an execution con-
trol facility that mediates access between users and
privileged objects. The system configuration require-
ments are the implementation of a control policy for
project resources on the system.

object: Either a file on the system or the invocation
of an executable file as an active process.

method: An executable that is authorized to access
a particular object, i.e., the executable is a
method of the object2.

subject: The combination of a known system user
and a method that is accessible to the user.

Figure 2: Definitions for medex control facility

Figure 2 defines the medex control elements.
Users on the system are authorized to access objects
via defined methods. With proper configuration, the
superuser is the only user able to subvert the con-
trols imposed by the medex facility.

Normally, the objects of concern are those
which are part of a particular application project. A
project can be defined as the class of all objects that
represent parts of the project on the system. In order
to identify objects within a class, a project account
is created on the system. The UID of the project
account is used as a class identifier for the project’s
objects. All file objects within a project class should
be owned by the UID of the project account. In
addition, the project account should disallow direct
logins, i.e., its password should be disabled. This
eliminates access to the project’s objects except for
privileged intermediaries (e.g., medex), thus, hiding
the objects from the user.

Methods are specified in the control file
medex.methods. Entries in the file associate a
UNIX executable with the UID of the project account.
In order to be a method of a project object the exe-
cutable must execute under this UID. Each entry is
tagged with the method name that will be used to
authorize access to the method (see Figure 3).
Method names need not be related to the actual exe-
cutable (i.e. they can be used to provide a some
level of abstraction), but they must be unique. Exe-
cutables are specified as UNIX pathnames followed
by any command line options. The pathnames must

2This definition of method has similar semantics to the
methods defined in Smalltalk [gol83].

be absolute, i.e., specified from the root of the direc-
tory hierarchy with a leading ‘‘/’’. This is done in
order to reduce the possibility of a trojan horse being
introduced in the execution path of the medex pro-
gram.

METHOD-NAME:uid,pathname [options]

Figure 3: medex.methods file

Users are granted access to defined methods via
authorizations in the medex.ecl file. Each line in
the file represents an ECL entry that associates a
<uname.gname> pair with a method. A user with a
username of uname and group membership in
gname3 may invoke the executable defined in the
method with the method’s UID, i.e., the user may
act as the project account to run the program given
in the method’s specification. For example if
methods are defined as in Figure 4 and ECLs as in
Figure 5 then user jane in group programmer can
access objects in the project bigapp with the
methods PRG1 and GUITOOL.

PRG1:bigapp,/usr/proj/bigapp/prog1
GUITOOL:bigapp,/local/guis/tool1

Figure 4: Example medex.methods file

jane.programmer:PRG1, GUITOOL

Figure 5: Example medex.ecl file

The ECL file syntax includes the special char-
acter % with a similar meaning as in ACLs. The
percent sign ‘‘%’’ is used to indicate a wild card
entry, i.e., any user or group. For example, with the
ECL file in Figure 6, all users in the group program-
mer are given access to the method GUITOOL, while
jane is the only user that may access the PRG1
method. Note that jane can still access GUITOOL
since she is a member of the programmer group.

jane.programmer:PRG1
%.programmer:GUITOOL

Figure 6: Example medex.ecl revised file

Medex Implementation

Medex is implemented in Perl [wal91] for
compatibility with all the required UNIX variants. The
special features of Perl for analysis of tainted execu-
tion paths are used in order to minimize the possibil-
ity of trojan horses or other programmed threats
based on executable imposters. Both the ECLs and
the method specifications are stored in protected files
owned by the superuser account.

Methods are stored internally using a Perl asso-
ciative array which is keyed on the method name.

3Group memberships are defined in the file
/etc/group on most UNIX systems.

1993 LISA – November 1-5, 1993 – Monterey, CA 239



Implementing Execution Controls Gamble

ECL entries are stored as an array of regular expres-
sions. When a request is received by an invocation
of medex, the requester’s <uname.gname> pair and
the method name given on the medex command
line are compared to the ECL. If a match is found
then the method is executed for the requester and a
log entry is generated either to the file medex.log
or by issuing a call to UNIX syslog facility. On each
invocation medex queries the user for her login
password in order to verify her identity. This elim-
inates the possibility of an unknown user accessing a
privileged account via an abandoned login. Note in
Figure 7 that the user jane calls medex by specify-
ing its absolute pathname, a good idea when execut-
ing any setuid program.

jane% /usr/local/bin/medex PRG1
Password: xyz123

Figure 7: Example medex invocation

The medex program must operate as the
privileged user root in order to switch its UID
from the requesting user to that of the method’s pro-
ject. Care must be taken to create methods which do
not allow the user to escape to a UNIX command
shell and gain additional access not defined in the
method. Therefore, method declarations for UNIX
utilities that allow shell escapes (e.g., vi) are highly
discouraged.

The reader will note that user and group
names, instead of numeric UIDs and GIDs, were
used in the medex control file examples above. In
fact, the use of numeric UIDs and GIDs is not sup-
ported. Experience has shown that these are much
less stable than the specific user and group names
that are assigned. Since only the names are used in
the medex files, the problems with UID and GID
migration are avoided. Also, references to the user’s
group membership work for all groups in which the
user is a member, not just his or her current one4.
This eliminates the need for the user to issue a
newgrp call in order to switch groups prior to invok-
ing medex.

Medex Usage

The procedures for medex usage include the
establishment of special accounts with disabled
logins, creation of groups for application develop-
ment or support teams, and delegation of access
authority to special accounts via the ECL control
file. This procedure provides a mechanism for
enforcing access via medex to the special account.

Further implementation of PECs can be accom-
plished by changing the file permissions on execut-
ables and data to make them available only to the

4This is primarily an issue in UNIX System V where
users may only belong to one group at a time.

special account, thereby limiting the paths by which
the data can be accessed. Management of the ECL
file can be delegated to a security administrator for
proper separation of duties by changing the file’s
access permissions to make the file writable by the
security administrator. This can also be accom-
plished with the use of an ACL on the file, specify-
ing access for the administrator’s account.

Example 1: Application Project Management

In this section we present a small example to
illustrate the use of medex when managing a data-
base application. We often have the need to estab-
lish processes which collect data in real-time from
devices and store the data in a database. Since the
application is updating the database, it must operate
under the login of a valid database user. Also, the
application must be supported by a rotating support
staff in order to provide for 24 hour data collection
from the device.

To provide for this type of access, we first
establish a login account for the application. For this
example, we choose the account name rtapp to
match the application’s name, i.e., rt. The account
rtapp is also given write access to the necessary
database files on the database server. We disable
logins on the rtapp account by placing an ‘‘*’’ in the
password field of the account’s line in the
/etc/passwd file.

Two directory areas are created on the system,
one, /proj/rt/dev is a development area, and
the other, /proj/rt is a production area. All files
in the production area are given the owner rtapp,
essentially putting all production access under
medex control.

Once the special account is enabled, we estab-
lish methods to control the application in the
medex.methods file as in Figure 8. Methods are
established to start the application, stop the applica-
tion, reload a configuration file, and to update the
production code from a development area. The
RTSTOP method is implemented as shell script that
issues a KILL signal to rt. The RTUPDATE method
is a program that migrates development code from
the directory /proj/rt/dev to the production
directory.

RTSTART:rtapp,/proj/rt/init
RTSTOP:rtapp,/proj/rt/kill
RTRECON:rtapp,/proj/rt/config
RTUPDATE:rtapp,/proj/rt/update

Figure 8: medex.methods file for rt

We establish the group rtappops in the
/etc/group file; filling the group with the user-
names of the support personnel for the application.
Authorizations for members of the group to access
the rtapp methods are defined in the medex.ecl
file as in Figure 9. All users in the group rtappops

240 1993 LISA – November 1-5, 1993 – Monterey, CA



Gamble Implementing Execution Controls

are allowed to start and stop the application. Only
the user sally is allowed to reconfigure the applica-
tion. The user tim, the application department’s code
librarian, is allowed to move code from development
to production. Note that it is not necessary for tim to
be a member of the group rtappops.

%.rtappops:RTSTART,RTSTOP
sally.rtappops:RTRECON
tim.%:RTUPDATE

Figure 9: Changes to medex.ecl file for rt

With this configuration, all transactions to the
application rt are logged with audit trail informa-
tion indicating the specific user that modified or
accessed the application. Code migration from
development to production is also controlled and
logged, making revision and quality control easier.

Example 2: Running DNS

In this section we present an example of using
medex to control access to a pre-existing account,
namely the root account. We operate the DNS
(Domain Name System) at our site using the Berke-
ley Internet Name Domain (BIND) software. The
system implements the program named (8) as a UNIX
daemon which processes queries for the DNS data-
base. The daemon is usually started by root from
one of the system startup files. Since the daemon is
constantly running, it accepts commands via sig-
nal (3) calls, rather than from the command line.
Under normal operation a UNIX process will only
accept signals from its owner, in this case root. For
all system administrators or operators that we wish
to have access to named, we must give them access
to the root account. Rather than just hand out the
password to root’s account, we use medex to
enable root access for the limited set of executables
necessary to control named.

When named starts, it reads the current DNS
database from a set of files called zone files. These
files contain the necessary data for the DNS server
to reply to queries about hostname to address map-
ping information. Since the syntax for DNS zone
files is somewhat tricky, we automatically generate
our files from a host table that is in the same format
as the standard UNIX /etc/hosts file. The trans-
lation is performed by a tool called h2n5 (hosts to
named).

Once named is running we need our BIND
operators to be able to:
� Update the hosts file and rebuild the DNS

databases on the server with h2n.
� Issue a HUP signal to named telling it to

5h2n is presented by Albitz and Liu in their book DNS
and BIND from O’Reilly and Associates. I highly
recommend it for anyone considering running a DNS
server.

reload the databases into its active memory.
� Restart named by issuing a KILL signal and

running the server daemon by running
/etc/named as root.

First we create a new group in the
/etc/group file by adding a line like:

dnsops:*:100:charles,tony,david

This sets up the group dnsops with group id of
100 and puts our DNS operators (Charles, Tony, and
David) in the group. We use the new group to
authorize access the DNS methods. We add the lines
in Figure 10 to medex.methods to support the
required commands. The shell script reload issues
a HUP signal to named. The file restart is a
shell script that sends a KILL signal to named and
then re-executes named. The use of these scripts
illustrates using medex to control access to an
active process, i.e., the named daemon.

DNSRELOAD:root,/var/named/reload
H2N:root,/var/named/h2n
DNSRESTART:root,/var/named/restart

Figure 10: Changes to medex.methods file

%.dnsops:DNSRELOAD,DNSRESTART,H2N

Figure 11: Changes to medex.ecl file

With the commands setup we can authorize the
DNS operators with one line in medex.ecl (see
Figure 11). Though this procedure implements all
the necessary execution controls, the DNS operators
still need to change the hosts file. This is done
by making the file’s group dnsops and enabling
group write permission on the file. We also put the
file under revision control using the revision control
system (RCS) so that changes are tagged with the
specific username of the DNS operator.

Comparison to Other Tools

Two tools exist with similar functionality to
medex. One, sudo6, allows controlled access to
the superuser account. Commands (and command
groups) may be aliased and access to them author-
ized in a control file called sudoers. Sudo
satisfies many of the requirements of medex, such
as a protected access mechanism to the privileged
account and an audit trail, however it is limited to
access of the superuser account. It includes a more
complex syntax that is accessed with a parser written
in lex and yacc. The remainder of the program is
written in C. These features made it less portable
than a utility developed in Perl.

A second tool, su-someone7, allows a
specified group of users to switch to a special user’s

6Sudo’s current incarnation was developed by Jeff
Nieusma and David Hieb at The Root Group, Inc.

1993 LISA – November 1-5, 1993 – Monterey, CA 241



Implementing Execution Controls Gamble

account. This stops the password to the special
account from being propagated, but it doesn’t restrict
the actions of the user once they have made the
switch. The access list is compiled into the program,
i.e., a new executable is created for each application
of the tool.

Conclusions

During the implementation of medex it
became glaringly apparent that most of the work
involved developing a model for application project
management, rather than actually implementing a
tool to provide a controlled access to privileged
accounts. Along with the implementation were other
procedural issues, such as procedures for setting up
special accounts and for establishing adequate
separation of duties. Questions raised in this area
may lead to future extensions that allow delegation
of method and ECL specifications for a particular
project class to a project security administrator.

Since some of the ECL specification syntax
relies on the use of group assignments in the
/etc/group file, there is a possible limitation on
the number of methods and projects that a user may
access. This limitation is imposed by the operating
system restricting the number of concurrent groups
that a user may belong to at one time. An additional
group membership file could be added, but the use
of existing DACs in the form of the /etc/group
was a desirable feature.

Availability

Release information for medex is available
via anonymous FTP from ftp.wiltel.com in
the directory /pub/src/medex. See the
README file in this directory.

Author Information

After receiving his M.S. in Computer Science
in 1991 from Washington University in St. Louis,
Todd Gamble worked as a UNIX system administrator
for the university until joining WilTel in July of
1992. He is currently project lead of Network Secu-
rity for WilTel. His recent project areas include net-
work firewalls, Internet customer access, and Unix
security. He can be reached via electronic mail at
the address todd_gamble@wiltel.com.

References

[bac89] Eugene Mate Bacic, "Process Execution
Controls as a Method to Ensure Consistency",
Fifth Annual Computer Security Applications
Conference, pp. 114—120. 1989.

[bac90] Eugene Mate Bacic, "Process Execution
Controls: Revisited", Canadian System Security

7su-someone was developed by Wietse Venema at the
Eindhoven University of Technology.

Centre, Communications Security Establish-
ment, 1990.

[cur90] David A. Curry, "Improving the Security of
Your UNIX System", SRI International Publi-
cation, ITSTD-721-FR-90-21, April 1990.

[dod85] Department of Defense, Trusted Computer
System Evaluation Criteria, DOD 5200.28-
STD, National Computer Security Center, Fort
Meade, Maryland, December 1985.

[fer93] David Ferbrache and Gavin Shearer, UNIX
Installation Security & Integrity, Prentice Hall,
Englewood Cliffs, 1993.

[gol83] Adele Goldberg and David Robson.
Smalltalk-80: The Language and Its Implemen-
tation, Addison-Wesley, May 1983.

[hew91] HP-UX Release 8.05 System Manuals,
Hewlett-Packard Company, June 1991.

[wal91] Larry Wall and Randal L. Schwartz, Pro-
gramming Perl, O’Reilly and Associates,
Sebastopol, CA, 1991.

242 1993 LISA – November 1-5, 1993 – Monterey, CA


