
The following paper was originally presented at the
Seventh System Administration Conference (LISA ’93)

Monterey, California, November, 1993

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

satool - A System Administrator’s
Cockpit, An Implementation

Todd Miller, Christopher Stirlen, Evi Nemeth
University of Colorado, Boulder

satool – A System Administrator’s
Cockpit, An Implementation

Todd Miller, Christopher Stirlen, Evi Nemeth
– University of Colorado, Boulder

ABSTRACT

Monitoring a large number of machines in a distributed environment can be time
consuming and inefficient. Often a system administrator discovers there is a problem with a
machine or network link when a frustrated user calls. satool provides a way to efficiently
monitor groups of machines and identify problems and potential problems quickly; it’s sort of
an early warning system for sysadmins.

satool is composed of three independent parts: an SNMP (Simple Network
Management Protocol) agent that runs on each machine being monitored, a database that
collects data from each client machine, and a graphical user interface (GUI) that acts as the
interface between the user and the database.

Introduction

With the advent of fast, inexpensive worksta-
tions, the standard computing environment has
changed from a few Vaxen to a distributed network
that has become increasingly complex and difficult
to administer. Monitoring large numbers of
machines in a distributed environment can be time
consuming and inefficient. In such an environment,
it is usually not possible to see the warning signs
that point to imminent disaster for a machine or net-
work. Instead, system administrators find them-
selves fighting fires when their time would be better
spent elsewhere. satool provides a way to efficiently
monitor groups of machines and find problems and
potential problems quickly in a straightforward
manner.

The satool server maintains a database of client
machines and the values of supported variables gath-
ered during the last poll. Normally, a client is added
to the database when the server receives a message
from the SNMP trap daemon that the client’s SNMP
agent is running. However, the server also maintains
an on-disk copy of the database that is read in on
invocation of the server. Because of this, the data-
base will survive system crashes. Client machines
can also be specified in the server’s configuration file
to "prime the cache" of machines to monitor. The
time between polls is configurable on a per-machine
basis (overriding a stated default). The server listens
for database requests from the display system on
port 0xFB1 (that’s a one not an I).

The satool display system includes an X based
GUI (Graphical User Interface) built using tcl/tk. It
supports a hierarchical top level view of the
machines being monitored. Machines can be
grouped to allow the screen area to scale with the
number of machines being watched. For example, a
sysadmin can configure his workstation to display

the machines he is directly responsible for, the
machines that his colleague on vacation is responsi-
ble for, and his network gateway to the outside
world. After traversing the hierarchy to an indivi-
dual machine, the display contains visual widgets
representing the health of that machine: disk space
free, memory statistics, cpu activity, mail queue
length, nfs statistics, etc. The user can choose the
form of the widget (currently text, a thermometer
display, or a sliding window histogram) to display
each quantity.

Alarm conditions for each variable can be
expressed in the configuration files as well. If the
value of a variable crosses the alarm threshold, a
special action (blinking, beeping, reverse video, digi-
tal pager, etc.) is taken on the screen to indicate it.
Alarms are propagated to the top level display, thus
if /var/tmp fills up on host heineken on the beers
subnet of the cs domain and if the groups are set
appropriately, the alarm condition would be noted in
the widgets representing heineken, beers, and the cs
domain. A user would see or hear the alarm
independent of which level he was actively display-
ing at the time.

A working prototype of satool exists. It will
be used this fall by the Computer Science
Department’s undergrad lab sysadmin group and
graduate/faculty research sysadmin group to monitor
about 300 machines. We expect to use feedback
from these groups to expand the sysadmin MIB and
to build more display widgets. The code will be
freely available with a Berkeley style copyright
notice.

Design Goals

satool was designed to be flexible, scalable,
easy to manage, and to reuse existing tools.

1993 LISA – November 1-5, 1993 – Monterey, CA 119

satool – A System Administrator’s Cockpit, An Implementation

Flexibility is achieved through the use of
configuration files and satool’s modular design. On
the data gathering side, configurable items include:
the actual data to be collected and how often to col-
lect it. From within the display system the user can
also configure threshold values that indicate a prob-
lem and the action to take if a threshold is exceeded.
Display system configuration also selects the hosts
or devices to display, the type of widget to represent
a variable, and personal preferences for items like
the arrival of an alarm condition (for example color,
sound, blinking, etc).

We wanted satool to be used on both small and
large networks, thus scalability was important. Data
collection has a low impact on the host and the net-
works on which satool is running. Allowing the
user to interact with hosts in a hierarchical manner
also increases scalability.

When dealing with large numbers of hosts
manageability is essential. satool provides sensible
defaults for parameters in configuration files. No
changes are required to monitor a new host; it will
be added when it sends a trap to the server. It is
important to note that if the correct site-specific
values are compiled into satool, there is only one
configuration file to maintain, the server’s.

In designing satool we also wanted to reuse
tools where possible to avoid reinventing the wheel.
To this end satool takes advantage of many standard
UNIX utilities to gather data. We also use the tcl and
tk languages from John Ousterhout at the University
of California, Berkeley for the display and SNMP
1.1b from Carnegie Mellon University. An SNMP
agent and sysadmin MIB (Management Information
Base) provide for communication between the data
collection and data gathering activities. The actual
data gathering is done by an SNMP agent running on
the hosts being monitored. We have extended the
CMU SNMP 1.1b agent and MIB to include vari-
ables of interest to UNIX system administrators not
included in the standard network or host MIBs.

Components

satool is made up of three distinct components:
a data gathering agent, a data collecting server, and
a display system. The agent is an SNMP agent
extended to use the satool MIB. It uses "helper
scripts" to massage data from standard UNIX com-
mands. The server polls agents at set intervals and
stores the resulting data in an ndbm (3) database. It
also services requests from the display system using
an SMTP-like protocol. The display system (written
in tcl and tk) interacts with the user and initiates
data transfers from the server.

satool Daemon (satoold)

satoold has three main functions: gather data
from its clients, store it in a database, and service

requests to access that data from the GUI. It also
writes its process id to a file (/etc/satoold.pid by
default) for convenience.
Data Gathering

satoold polls clients for data via SNMP at
configurable intervals. All polling is done by a
forked process which passes data back to the parent
via a UNIX domain socket. Polling times for clients
are kept in a linked list (called the "timer queue"
although it is not truly a queue) sorted by time to
poll (in UNIX time format). To allow concurrent
polls, a compiler-time variable specifies the number
of simultaneous polling processes allowed. A
counter keeps track of the number of polling chil-
dren along with an array of their process ids.
The flow of control is as follows:
� satoold is notified by the SNMP trap daemon

that a client has come up.
� The client is inserted into the timer queue if it

is not already present there.
� If the client is not already in the database, it

is added. Otherwise, the client’s current data-
base entry is updated to reflect the fact that
the client is now up.

� An alarm goes off, signifying that it is time to
poll a client.

� A signal handler is called, and a child is
forked to poll the client.

� The child completes the poll and sends the
data back to its parent via a UNIX domain
socket.

� If the connection to the client times out (the
timeout is defined at compile time), that
machine is now marked as down and its pol-
ling frequency is reduced (however, the pol-
ling frequency never reaches zero).

Data Storage
Client data is stored in an ndbm (3) database,

keyed on the fully qualified hostname. The use of
ndbm (3) allows for some basic crash recovery since
a copy of the database is kept on disk. As such it
can survive system downtime.
� The on-disk database is read on invocation of

satoold and a timer queue is created based on
the information in the database.

� Obviously bogus (empty) keys are discarded
(this is the most common cause of database
corruption we have seen).

Servicing GUI Requests
satoold accepts connections on port 4017

(0xFB1 in hex). Connections timeout after five
minutes of inactivity (configurable at compile time).
The protocol used is similar to SMTP (Simple Mail
Transport Protocol). The protocol commands are:
HELO Say hello to the daemon;
HELP Prints a short help message;
LIST Lists the all clients in the database;
GET Gets the data for a particular machine.

120 1993 LISA – November 1-5, 1993 – Monterey, CA

satool – A System Administrator’s Cockpit, An Implementation

satoold responds to each command with a three
digit completion code and a status/error message
(in text) before returning the requested data (also
like sendmail). The breakdown of the three digits
is as follows:

First Digit:
2 Command completed
5 Command failed with a fatal error

Second Digit:
0 Syntax
1 Information
2 Connection
3 Host
5 Data

Third Digit:
The third digit differentiates between codes
that have the same first two digits. For
instance, code 220 is the "connection esta-
blished" greeting, and 221 is the "connection
closed" message.

satoold Configuration File
Parameters to satoold can be configured

through its configuration file
(/usr/local/etc/satoold.conf by default). The polling
interval for most hosts is specified by the
interval default entry. It defaults to 300 seconds if
not specified. Individual host values specified
using interval hostname entries override the
default. Hosts to preload automatically, without
receiving a trap from the host, are specified with a
preload hostname entry. Anticipated use of the
preload feature is to include main servers in the
config file to prime the cache. By using host-
specific intervals one could also poll those hosts
more frequently.
A sample satoold.conf file follows:

example satoold.conf
#
interval default seconds
interval hostname seconds
preload hostname
#

interval default 300
preload hazelrah.cs.colorado.edu
preload alta.cs.colorado.edu
preload kinglear-gw.cs.colorado.edu
#preload fiver.cs.colorado.edu
interval romeo.cs.colorado.edu 600
interval alta.cs.colorado.edu 200
interval pipkin.cs.colorado.edu 400

SNMP Agent

The SNMP (Simple Network Management
Protocol) agent used in satool is based on
snmp1.1b from Carnegie-Mellon University. This
release is MIB-I compliant. There are two major
differences between CMU and satool versions: the

configuration file and support for satool variables
in the MIB (Management Information Base).
Config File

The satool SNMP agent’s configuration file
(/usr/local/etc/satool-agent.conf by default) is
currently only used to specify the host to send
coldstart traps to (in the absence of a configuration
file a default host is used that is specified at com-
pile time). On invocation, the agent will send a
coldstart trap to the host listed in the config file (if
that file exists) to announce its presence. The
SNMP agent runs on the hosts being monitored
and does the actual data gathering. We have
extended the CMU SNMP 1.1b agent and MIB to
include variables of interest to UNIX system
administrators not included in the standard network
or host MIBs.
satool Variables

The agent now supports variables defined by
the satool MIB. The values for most of the vari-
ables are obtained via "helper scripts" that run
standard UNIX commands and parse the output into
a form that the agent can use. Their are two major
reasons to use these "helper scripts." First is the
increased portability and flexibility scripts provide.
Second is our desire to use existing UNIX tools
where available.

There is, however, a problem with the
approach described above. It is extremely slow for
a large number of variables because the agent does
a popen (3) call which forks and execs the script
for each variable. A solution is to have the script
output all the variables we might be interested in
at once and cache the values. For example,
instead of calling a vmstat (1) helper script eigh-
teen times, we call it once and cache the values for
ten seconds (configurable at compile time). Subse-
quent requests for any of the variables will get the
cached values. This speeds things up considerably
and the ten second granularity is considered
acceptable. The full satool MIB can be found in
appendix A of this paper.
Sample MIB Entry

The following MIB entry describes the load
average to an SNMP agent.

satoolLoadAve OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { satool 1 }

The first line defines an object called satool-
LoadAve. It is of type INTEGER (SNMP doesn’t
have floats so we multiply the load average by 100
and then truncate it). The ACCESS line indicates
that satoolLoadAve is read-only (wouldn’t we all
like to see writable load averages!). The status of
the object is "optional" because it is not part of the

1993 LISA – November 1-5, 1993 – Monterey, CA 121

satool – A System Administrator’s Cockpit, An Implementation

standard MIB. The last line describes where the
object "fits in" to the MIB hierarchy (which is
visually a tree). In this case satoolLoadAve is the
first leaf in the satool branch. Its full path is
.iso.org.dod.internet.private.enterprises.cu.satool.
satoolLoadAve.0. The terminating zero indicates
that satoolLoadAve is a leaf node.

Display System

The display system provides an X-based
Graphical User Interface (GUI) for viewing the
contents of the satool database. The GUI, written
with Tcl and Tk, uses configuration files to setup
satool’s hierarchical view of the hosts being moni-
tored, to specify thresholds for data values, and to
set the type of display objects. The display system
also checks for data values out of bounds and
notifies the user when an alarm threshold has been
crossed. It is intended to be run on a sysadmin’s
workstation or dedicated management station sit-
ting quietly in the background until an alarm is
triggered when it will notify the sysadmin of
impending trouble.
Tcl and Tk

Tcl (pronounced "tickle"), which stands for
"tool command language", is an interpretive pro-
gramming language built from a library of C pro-
cedures. Tk is an X11 toolkit that is accessible
from Tcl. They were developed by John K.
Ousterhout at the University of California, Berke-
ley.

Tcl/Tk’s strengths are its portability, extensi-
bility, and communication. Tcl and Tk have been
ported to most UNIX based platforms that support
X11R4 or higher. Scripts written in Tcl/Tk can be
extended and modified at run time without recom-
pilation. Tcl/Tk provides a powerful communica-
tion command called send, which allows different
Tcl/Tk processes to communicate with each other.

Tcl/Tk was chosen for the satool project
(over Interviews or Suit) because it is mature and
easy to use. Chris, who did the GUI part of
satool, took the manual home one evening for bed-
time reading. By afternoon the following day,
after only four hours playing with it, he had a
small application built. After this experience other
windowing toolkits were not seriously considered.
Configuring the Display

satool represents groups of hosts hierarchi-
cally, very much like the netgroup concept defined
by Sun. The groups can be nested; there is only a
practical limit to the depth of the hierarchy. Click-
ing on the icon representing a group zooms you to
the members of that group.

Groups are defined by the configuration file
satool-display.conf using the syntax of the
/etc/aliases file, namely:

groupname: member,member, ...

A member can be either an individual host or a
group, for example:

ugradlab: kinglear, kinglear_clients
kinglear_clients: hamlet, ophelia, \

juliet, caesar, romeo

The alarm thresholds for each variable monitored
are also specified in this file on a per host basis.
Macros are supported, so that a group of machines
with the same values can be configured in a single
line. The syntax is:

macro = variable value, variable ...
machine: variable value, variable ...
machine: macro
groupname: macro

For example, to configure all the kinglear clients to
use the same alarm threshold values:

hp_common = load_avg 5,num_procs 100
kinglear_clients: hp_common
kinglear: load_avg 10,num_procs 200

If a machine object is not mentioned in the
configuration file, it will be assigned default values
which are set in the GUI code. There are two
additional entries: the domain designation and the
server designation. Specifying a domain allows all
hostnames following it to use short names, rather
than fully qualified names. It is in effect until
another domain entry occurs. The syntax is:

domain: domain-name

The server entry specifies the hostname of the
machine that contains the database, for example:

server: kinglear

Display Objects
satool’s display objects, currently a sliding

histogram, a thermometer, and a text object, are
used to view the data in the database. The fre-
quency at which a display widget is updated can
be changed by selecting a new value from the Fre-
quency menu at the lower left corner of the win-
dow. The user cannot choose an update rate that
is more frequent than the database polling rate.
The default value for the update frequency is 5
minutes; it is set in the satool-display.conf file but
can be overridden by the user.

We call a histogram which displays the
values from the last n (10 by default) time inter-
vals a sliding histogram. This type of widget is
appropriate for variables like the load average and
gives a sense not only of the current value but of
its first derivative. The minimum, maximum, and
running average are also shown. The histogram
will scale as appropriate.

The thermometer widget is used to display
one dimensional data. The current implementation

122 1993 LISA – November 1-5, 1993 – Monterey, CA

satool – A System Administrator’s Cockpit, An Implementation

uses a percentage value instead of scaling the data.
The thermometer displays the current data value,
the maximum and minimum running values, and
the running average. Figure 1 shows a typical
thermometer.

Figure 1: Thermometer

Figure 2: Main Window

satool’s text object displays the name of the
machine being monitored and the requested data
items. Four data values: average, minimum, max-
imum and threshold are shown.

Configuration
The sysadmin can configure their satool

display to select the hosts whose data will be
displayed, types of widgets to use, alarm thresholds
and actions, and screen layout. The users
configuration file is called .satoolrc and should be
in his home directory. Examples of each
configuration primative are listed below:
� configure display object for each data item

display: load_avg H, \
disk_usage T

� configure alert colors and icons

alert1: green client1
alert2: yellow client2
alert3: red client3
alert4: black client4

(above syntax: alert_name: color icon)
� select groups from satool-display.conf

groups: kinglear_clients, alta_clients

� select macros from satool-display.conf

kinglear_clients: hp_common

� set thresholds

alta_clients: load_ave 3

� define groups

my_group: kinglear_clients, kinglear

� save state of display objects

Histogram kinglear.cs.colorado.edu \
load_ave +20+20

1993 LISA – November 1-5, 1993 – Monterey, CA 123

satool – A System Administrator’s Cockpit, An Implementation

� save state of main window

Main +274+245

� set default display object

default: X

� set frequency default (in minutes)

frequency: 10

� set number of histogram bars

h_bars: 15

� set pager phone number (also in satool-
display.conf)

pager: 303-555-1212

Figure 3: Viewer window

Windows and Menus
In addition to the data display objects, satool

has four other windows: a main window, viewer
windows, help and message windows.

The main window contains the root of the
host hierarchy. From it you can traverse the
hierarchy via viewer windows. It also provides an
interface to netlog, a local tool for displaying sys-
tem events sent via the 4.3 BSD syslog (3) facility.
Figure 2 shows a typical main window.

The main window’s File menu has three
options: Exit, Save Config, and Save Config on
Exit. Saving the configuration writes the current
screen layout, display options, and window loca-
tions to the users .satoolrc startup file. To
configure a netlog section of the main window
include the following line in your .satoolrc file:

netlog: loghost.domain

for example:

netlog: kinglear.cs.colorado.edu

Viewer windows show group membership and give
the user access to the data satool monitors. The
Data menu, which is opened by selecting a host,
lists the data items available. The option All will
display a text object showing all the data items for
the selected host. The viewer window’s Display
menu allows the user to override the type of
display object that will appear. Once the user has
selected an option from this menu, it will remain
selected until the window is closed or another
option is chosen. Figure 3 shows a typical viewer
window.

Help on the use of the GUI is available
through the Help Menu.

124 1993 LISA – November 1-5, 1993 – Monterey, CA

satool – A System Administrator’s Cockpit, An Implementation

satool’s alert system notifies the user when
data values cross stated thresholds. The data
object causing the alert will change appearance
(color, reverse video, new icon, etc.); the alert will
cascade up through the hierarchy.

In addition, the user can configure additional
notification methods on a per machine basis. The
current list of alarms implemented are:
� alert_alarm: sends annoying beeps
� alert_mtf: moves the offending object to the

front of the screen
� alert flash: flashes the offending object
� alert_mesg: creates the message window
� alert_pager: page a human being

The message window receiving an alert will report
the host, data item, current value and threshold
value. It also displays error messages including
configuration errors, start-up errors and errors in
accessing the database.

Extending satool

Adding a new variable to monitor is fairly
easy. Following is a list of the steps we took to
include a new variable that does a traceroute (8) to
an outside machine to make sure gatewaying is
working correctly. In each case, the area where
code needs to be added is marked with
EXTEND_HERE in a comment.
Agent

The first step is to write a helper script that
the SNMP agent will call. In this case, it is a
perl (1) script called traceroute-helper. The script
simply does a traceroute (8) to the machine
enss.ucar.edu and prints 1 if it was successful and
0 if there was a problem (routing loop or host
unreachable). This script must be placed in a
directory in the agents path. The next step is to
add the new variable to the MIB.

satoolGatewayOk OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { satool 11 }

It is now necessary to modify the SNMP agent to
run traceroute-helper when appropriate and update
satoold to use the new variable. There are three
places to change in the agent. The first step is to
assign the new variable a NUMBER in the satool
header file. This is used to identify the variable
internally. The last number used is 48 so we can
do:

#define SATOOLGATEWAYOK 49

Next, we need to tell the agent about the variable’s
existence. This is done in snmp_vars.c in the vari-
ables[] array. We just need to add a line like the
following:

{{ENTERPRISES, CU_ENTERPRISE,
SATOOL_NUM, 11, 0}, 10, INTEGER,
SATOOLGATEWAYOK, RONLY,
var_satool }

after the last satool variable. Between the first set
of braces is the numeric representation of the vari-
able name, separated by commas. ENTERPRISES
represents iso.org.dod.internet.private.enterprises
and CU_ENTERPRISE is the enterprise number
assigned to the University of Colorado.
SATOOL_NUM is satool’s number in the cu
hierarchy, and 11 is our place in the satool hierar-
chy (the eleventh branch). The zero is used as a
terminator. The "10" is a count of the elements in
the first set of braces. INTEGER denotes the type
of the data and SATOOLGATEWAYOK is our
variable number. RONLY signifies that this vari-
ables is read-only. var_satool is the function that
is to be called to resolve the variable. Now that
the agent knows about the variable and how to
resolve it, we need to write a resolution function.
In this case, we just put the new variable in an
existing function, var_satool(). This function is in
satool.c and currently resolves the load average
and mail queue length. To add our new variable
we just add the following code to the switch state-
ment in var_satool().

case SATOOLGATEWAYOK:
fildes = popen("traceroute-helper",

"r");
if (!fildes) return(NULL);
if (fscanf(fildes, "%d", &n) < 0)
{

pclose(fildes);
return(NULL);

}
long_return = (long)n;
pclose(fildes);
return (u_char *) &long_return;

All we are really doing here is running our helper
script and passing what it prints back as an int.
Server

We still need to tell satoold to monitor and
store this variable. To do this we need to update
three files. The first step is to add the new vari-
able to the satool_variables struct in satool_db.h.
We can add something like:

int gateway_ok;

Next we need to have this updated when the server
polls its clients. The place to do this is in
update_data() in load_values.c. We need to add
two lines at the end of the if statements.

else if (!strcmp("satoolGatewayOk.0",
name))
sat_var_ptr -> gateway_ok =
snmp_var_to_int(buf, variable,
subtree->enums);

1993 LISA – November 1-5, 1993 – Monterey, CA 125

satool – A System Administrator’s Cockpit, An Implementation

This converts the snmp variable into an int and
stores it in the correct field of the struct. The next
step is to add code to print the variable and value
when the display system requests a host’s data.
We just need to add one line in the get_command()
function in parse_client_request.c.

sprintf((char *)ret + strlen(ret),
"%s %d ", "gateway_ok",
sat_var -> gateway_ok);

This just adds a "variable value" pair to the return
buffer. That’s all it takes. If you want to add
variables that are outside the satool part of the
MIB you will need to add extra code to
update_data(). This is not necessary from within
the satool hierarchy because the SNMP getnext
operator is used to get the variables (as such the
server need not know them by name when request-
ing them).
GUI

The final step is to add the new variable to
the GUI. It must be added to the default list in
procedure BuildList, file IO.tcl:

gateway_ok 0 X

The variable name is followed by a threshold value
and its default display object. A threshold value of
0 for a boolean variable triggers the alarm when
the gateway is down; a text display object is
specified. Note that the text display is the default
and so would not actually need to be listed.

The new variable must also be added to the
Data menu. This is done in the mkDataMenu pro-
cedure in Menu.tcl. The new option can be set as
follows:

$parent.menu.data.misc add command \
-label "Gateway Ok?" \
-command "RunDisplay gateway_ok"

Since tcl/tk is interpreted there is no need to
recompile; just restart satool and the gateway_ok
data object will be immediately available.

Supported Architectures

Currently, the SNMP agent is only known to
work under 4.3 BSD. The satool elements of the
agent are known to also work under Ultrix 4.2/4.3
and should be easily portable to most versions of
UNIX. The satool GUI will run on any system
capable of running tcl/tk. satoold should run on
any version of UNIX that supports Berkeley sockets
and ndbm (3).

Future Enhancements

satool is currently deployed in the Computer
Science Department’s research and instructional
networks. As experience is gained in this
"pseudo-real-world" environment, we expect to
continue improving it. Current plans include:

� MIB-II support
� Support for more architectures in the SNMP

agent
� Extra modules to alert sysadmins of pending

and existing problems (email and pager).
� Extra widgets for the display system
� More flexible alarms, including special han-

dling based on the time of day and a muting
option.

� Scalable alert thresholds including support
for a bottom threshold as well as the upper
limit.

Author Information

Todd Miller is a recent graduate of the
University of Colorado, Boulder where he received
a Bachelors Degree in Computer Science and
served as a systems administrator for the last two
years he spent there. You can reach him electroni-
cally at millert@alumni.cs.colorado.edu.

Christopher Stirlen is a masters student in
Computer Science at the University of Colorado,
Boulder. He currently works for XVT Software in
Boulder as a Software Test Engineer. Chris has a
strong interest in User Interface design and visual
programming. Reach him electronically at
stirlen@cs.colorado.edu.

Evi Nemeth is an Associate Professor of
Computer Science at the University of Colorado,
Boulder. Reach her electronically at
evi@cs.colorado.edu.

References

Case, et al., RFC 1067, DDN Network Information
Center, SRI International, 1988.

Hardy, Darren and Morreale, Herb, buzzerd:
Automated Systems Monitoring with
Notification in a Network Environment, LISA
VI Conference Proceedings, 1992.

Nemeth, Evi, SA-Tool, A System Administrator’s
Cockpit, AUUG Conference Proceedings,
1991.

Ousterhout, John K., An Introduction To Tcl and
Tk, 1993, available via anonymous ftp on
sprite.berkeley.edu:tcl/bookps.Z.

Rose, Marshall, The Simple Book, Prentice Hall,
Inc., Englewood Cliffs, New Jersey, 1991.

Rose, Marshall and McCloghrie, Keith, RFC 1065,
DDN Network Information Center, SRI Inter-
national, 1988.

Rose, Marshall and McCloghrie, Keith, RFC 1066,
DDN Network Information Center, SRI Inter-
national, 1988.

126 1993 LISA – November 1-5, 1993 – Monterey, CA

satool – A System Administrator’s Cockpit, An Implementation

Appendix A: satool MIB
-- sa tool

cu OBJECT IDENTIFIER
::= { enterprises 632 }

satool OBJECT IDENTIFIER ::= { cu 1 }

-- to get real load average divide
-- the int by 100
satoolLoadAve OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { satool 1 }

-- number of entries in the mail queue
satoolMailQueueLen OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { satool 2 }

-- number of system calls / sec.
satoolNumSysCalls OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { satool 3 }

-- process information
processes OBJECT IDENTIFIER

::= { satool 4 }

-- number of processes
satoolNumProcs OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { processes 1 }

-- number of processes in disk wait
satoolNumWaitingProcs OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { processes 2 }

-- number of zombied processes
satoolNumZombieProcs OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { processes 3 }

-- number of processes in the run queue
satoolRunQueueLen OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { processes 4 }

-- number of processes blocked for
-- resources
satoolNumBlockedProcs OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { processes 5 }

-- number of processes runnable
-- but swapped
satoolNumRunnableButSwapped OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { processes 6 }

-- vm information
vm OBJECT IDENTIFIER ::= { satool 5 }

-- number of context switches / sec
satoolNumContextSwitches OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { vm 1 }

-- number of active virtual pages
satoolActivePages OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { vm 2 }

-- number of free virtual pages
satoolFreePages OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { vm 3 }

-- number of page reclaims / sec
satoolPageReclaims OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { vm 4 }

-- number of pages attached / sec
satoolPagesAttached OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { vm 5 }

-- number of pages paged in / sec
satoolPageIns OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { vm 6 }

-- number of pages paged out / sec
satoolPageOuts OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { vm 7 }

-- number of pages freed / sec
satoolPagesFreed OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { vm 8 }

-- anticipated short term memory
-- shortfall
satoolMemLow OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { vm 9 }

-- number of pages scanned clock
-- algorithm / sec
satoolPagesScanned OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { vm 10 }

-- io stuff
io OBJECT IDENTIFIER ::= { satool 6 }

1993 LISA – November 1-5, 1993 – Monterey, CA 127

satool – A System Administrator’s Cockpit, An Implementation

-- number of device interrupts / sec.
satoolNumInterupts OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { io 1 }

-- rpc stuff
rpc OBJECT IDENTIFIER ::= { satool 7 }

-- number of rpc calls (server)
satoolServerRpcCalls OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 1 }

-- number of bad rpc calls (server)
satoolServerRpcBadCalls OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 2 }

-- number of empty rpc calls (server)
satoolServerRpcNullRecv OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 3 }

-- number of rpc calls with too small
-- a body (server)
satoolServerRpcBadLen OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 4 }

-- number of rpc calls that failed to
-- decode into xdr (server)
satoolServerRpcXdrCall OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 5 }

-- number of rpc calls (client)
satoolClientRpcCalls OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 6 }

-- number of bad rpc calls (client)
satoolClientRpcBadCalls OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 7 }

-- number of retransmitted rpc calls
-- (client)
satoolClientRpcRetrans OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 8 }

-- number of rpc calls where the reply
-- transaction ID did not match the
-- request transaction ID (client)
satoolClientRpcBadXid OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 9 }

-- number of rpc calls that timed out
-- (client)
satoolClientRpcTimeOut OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 10 }

-- number of times the client had
-- to sleep
satoolClientRpcWait OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { rpc 11 }

-- nfs stuff
nfs OBJECT IDENTIFIER ::= { satool 8 }

-- number of nfs calls (server)
satoolServerNfsCalls OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { nfs 1 }

-- number of bad nfs calls (server)
satoolServerNfsBadCalls OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { nfs 2 }

-- number of nfs calls (client)
satoolClientNfsCalls OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { nfs 3 }

-- number of bad nfs calls (client)
satoolClientNfsBadCalls OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { nfs 4 }

-- number times a client structure
-- was successfully gotten
satoolClientNfsNclGet OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { nfs 5 }

-- number times all client structures
-- were busy
satoolClientNfsNclSleep OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { nfs 6 }

-- cpu stuff
cpu OBJECT IDENTIFIER ::= { satool 9 }

-- percent of cpu in user time
satoolCpuUserTime OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { cpu 1 }

-- percent of cpu in system time
satoolCpuSysTime OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional

128 1993 LISA – November 1-5, 1993 – Monterey, CA

satool – A System Administrator’s Cockpit, An Implementation

::= { cpu 2 }

-- percent of cpu in idle time
satoolCpuIdleTime OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { cpu 3 }

-- percent of cpu spent running niced
-- processes
satoolCpuNiceTime OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS optional
::= { cpu 4 }

-- table from df
satoolDfTable OBJECT-TYPE

SYNTAX SEQUENCE OF DfEntry
ACCESS read-write
STATUS optional
::= { satool 10 }

dfEntry OBJECT-TYPE
SYNTAX DfEntry
ACCESS read-write
STATUS optional
::= { satoolDfTable 1 }

DfEntry ::= SEQUENCE {
dfIndex

INTEGER,
dfDevice

OCTET STRING,
dfMountPoint

OCTET STRING,
dfTotalKb

INTEGER,
dfUsedKb

INTEGER,
dfAvailKb

INTEGER,
dfCapacity

INTEGER
}

dfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
::= { dfEntry 1 }

dfDevice OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
::= { dfEntry 2 }

dfMountPoint OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
::= { dfEntry 3 }

dfTotalKb OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
::= { dfEntry 4 }

dfUsedKb OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
::= { dfEntry 5 }

dfAvailKb OBJECT-TYPE

SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
::= { dfEntry 6 }

dfCapacity OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
::= { dfEntry 7 }

1993 LISA – November 1-5, 1993 – Monterey, CA 129

130 1993 LISA – November 1-5, 1993 – Monterey, CA

