R ——
| e [e [[— E—
- r 11 »® 1 E ="
| e e e E— [e E— —
| | [— E B e T
| e [— % 1 B
| | [— e e
| e [— e e —
T | e [— e _
| —] 1 —
T | e [[E— —

| | [— [— —

= P [— — —

—_— I [R——— S [— —

= . —_—— —

—_—] (— B e — —_—

R | s e — e e _—
| e [— 1 B
| | [— 1 F
| e [— e B e Se—
| | [— R 1 B @
-1 1 | = 2 | rFr
=1 I'®m 1 F u
-1 1®" 1 T B
— o . 1 |

The following paper was originally presented at the
Seventh System Administration Conference (LISA '93)
Monterey, California, November, 1993

PLOD: Keep Track of
What Y ou're Doing

Ha Pomeranz
QMS, Inc.

For more information about USENIX Association contact:

1. Phone: 510 528-8649

2. FAX: 510 548-5738

3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

PLOD: Keep

Track of

What You're Doing

Hal Pomeranz — QMS, Inc.

ABSTRACT

PLOD (the Personal LOgging Device) is a simple text interface which allows System
Administrators (and others) to keep a record of the work they do from day to day. The
program was developed in Perl with device independence, flexibility, extensibility, and ease
of use in mind. The user-interface is reminiscent of Berkeley mail, complete with many
pre-defined tilde-escapes which perform various useful functions. Users may easily extend
the program by defining their own personal escape sequences.

Introduction

Certainly it may be said of System Administra-
tion that those who forget history are doomed to
repeat it. However, running from crisis to crisis, as
many Administrators do, is not conducive to a good
memory: in fact, it is unlikely that anybody reading
this can remember with detail what they were work-
ing on even one week ago. The solution, then, is to
let some external device be your memory and then
provide an easy means to recal information from
this external store. PLOD, the Persona LOgging
Device, is one such solution.

PLOD is redly just a simple Perl program
which will read lines from the keyboard and store
these lines, aong with a date/time stamp, into a
(encrypted, if desired) log file. By default, a new
log file is started automatically at the beginning of
every month, although the exact time period may be
customized by the user. A number of additiona
commands are supported, either on the command
line or via tilde-escapes ala Berkeley mail.

The design goals for PLOD included device
independence, flexibility, extensibility, and ease of
use. Everything was done so that PLOD would be a
tool that would get used frequently (several times
per day). If not, there would be little point in
PLOD’s existence. Implementing the program in
Perl went a long way towards achieving device
independence, since Perl runs on everything from
Amigas to VMS machines. The interface was
specifically chosen to be one that required no
assumptions about display device (i.e,, simple text
only). Much of PLOD’s behavior can be customized
via environment variables or initidization files.
Users may even add their own escape sequences.

The Theory of Logging

Many and varied are the arguments about per-
sonal logs. Some think that logs are a complete
waste of time, while others find them invauable.
Some see logs purely as a defense against manage-
ment scrutiny, some see them as a storehouse for

1993 LISA — November 1-5, 1993 — Monterey, CA

accumulated wisdom and trickery. Some keep per-
sonal information in their logs along with details of
their professional work, others maintain a more rigid
dividing line. Some people do a daily brain dump
into their logs before they go home, others prefer to
update their logs several times during the day.
Should the log be hard copy or on-line? Ultimately,
the decision is a personal one and must fit the way
you do business.

In many organizations, the job of System
Administration is not well understood by those not
in the System Administration group. Some System
Administrators spend inordinate amounts of time jus-
tifying their existence to management. In a confron-
tation, it can be difficult or impossible to regenerate
the countless tasks that go into keeping enterprise
systems functioning smoothly. Having documenta-
tion, in the form of a log, created prior to such a
confrontation can be an invaluable aid.

Hopefully, things will never get to the confron-
tation stage: logs can help here, too. If you are not
required to publish a regular status report, publish
one anyway. Extract items from your logs which are
of interest to your user community and publish them
in a condensed format (nobody wants to read more
than one or two screenfuls of information that don’t
pertain directly to their own work). It often helps to
place notices of system downtime in these reports,
so users will pay more attention to them. Make
your management and your users understand what
you do. If “‘they only notice you when something
goes wrong'’, then there's an important sales job
that you as a System Administrator are not doing
right.

Take your managers to lunch every month and
bring your logs along. Show them items that have
contributed to your products getting out on schedule.
Demonstrate areas that could use more resources.
““We need more disk space’’ does not impress peo-
ple with signing authority, but ‘‘*We had eight hours
of system downtime last month because | was play-

183

PLOD

ing partitioning games that could be solved by pur-
chasing another $3,000 of disk’’ usualy does.

What should go into your logs? Ultimately,
anything that you think is useful. Certainly, details
on any problems you solve, including the syntax for
any commands you're likely to forget before the
problem re-occurs. If you have a great idea, or the
germ of a great idea, but no time to implement it,
put it in your log-- don't rely on a Post-It to be there
in a month. Watching the growth of some files on
your system? Put the checkpoint data into your log
file. If you are angry at a user or your management,
vent your frustration into your log and, after a suit-
able cooling off period, go back an look at what you
wrote. Maybe it won’t seem so important later, or
maybe you can spot a way to correct the situation
that you couldn't see in the heat of the moment.
The best advice is to start off being as verbose and
compendious as possible in what you log. Over time
you will see what is useful and what is not. Also,
there's the human tendency to become lazier over
time: if you get in the habit early of logging large
amounts of data, then you'll still be logging some-
thing when laziness sets in.

Your log should be updated often enough to
keep it complete. If a nightly braindump works
better for your schedule, then so be it. Other people
find they need to update their logs more frequently
to capture commands and output that they need to
solve future problems. Sometimes it is simply
impossible to update your logs as frequently as you
would like (because you are spending all of your
time fighting fires, for example). Update your log as
soon as you can get out of crisis mode.

Perhaps the most divisive issue is whether logs
should be kept electronically or in a notebook or
other paper medium. On the plus side, it's easier to
capture command output into an electronic logbook.
Also most System Administrators spend large
amounts of time in front of a keyboard, and so keep-
ing a log on-line is often more natural than shifting
gears to pen and paper. It's easy to run grep (or
other text manipulation tools) against an electronic
logbook, and rather more labor intensive to do it
against paper. On the minus side, it's difficult to
use your electronic logbook to help you solve the
problem of getting the host which contains your log-
book back on-line. Also, many System Administra-
tors work in environments where they don’t have
consistent access to a single machine to keep their
logs on, but in fact travel to many sites during a sin-
gle day or a single week. For these people, a note-
book and pen may be the only solution.

This ahility to easily take your logs anywhere
may be the biggest point in favor of hard-copy log-
ging. It's also easier to doodle or draw pictures for
yourself in a notebook when you're trying to work
through a problem: paper logs can be much more
free-form in style and content. One negative is

184

Pomeranz

constantly having to carry your logbook with you. If
your logs are compendious, it may become difficult
to physically carry much history around. Paper logs
don’'t have an easy backup mechanism and can often
be difficult to search for a small piece of informa
tion. If you do keep paper logs, be sure to use ball-
point or some other non-water soluble ink. Nothing
is more depressing than having a logbook turned into
an abstract watercolor design by a sudden rainstorm
or unexpected trip into the sink.

Most importantly, choose a format and style of
logging that is useful to you. If your log becomes
spotty and incomplete, or if you only enter data into
the log and never review your logs later, then you
must ask yourself why you are spending time keep-
ing alog at al.

PLOD User Interface

The user interface for PLOD looks a great deal
like Berkeley mail. It is a simple text interface that
many System Administrators are familiar with. For
those who prefer a different interface, Paul Foley
(paul @ascent.com) has developed an Emacs mode
for PLOD which contains a number of nice features.
Paul’s plod.el file is distributed with PLOD or may
be obtained from him directly.

The simplest use of PLOD is making one-line
log entries from the command line:

host% plod A one-line log entry.

Typically, however, the user will want to make
a multi-line entry. Simply invoke PLOD with no
arguments: a date/time stamp will be printed, and
the user may enter any number of lines of logging
information, ending their entry with a bare period.

host% plod

09/13/93, 15:56 --
Here is an example of
a multi-line log entry
(eot)

host%

A number of tilde-escapes are supported in
multi-line mode. For example, ~r filename will
append the contents of a file to the current log
buffer:

host% plod

09/13/93, 16:00 --

~r .cshrc

.cshrc: 56 lines
(continue composing note)
Some more text could

go here, as desired.
(eot)

host%

1993 LISA — November 1-5, 1993 — Monterey, CA

Pomeranz

A complete listing of tilde-escapes can be obtained
by typing ~h or ~? while in multi-line mode.

By default, log entries are stored in encrypted
format in the directory .logdir in the user’s home
directory. Individual log file names are four charac-
ters long in the format YYMM, and so a new file is
started at the beginning of every month. Log entries
within each file are separated by five dashes (-----)
on a line by themselves. The dashes are followed
by the time/date stamp for the log entry and the text
of the entry itself. Note that the decision to encrypt,
the location of the logging directory, the name of the
log file (and therefore the cycle time before begin-
ning a new file), and even the format of the
date/time stamp are completely customizable (see
the next section).

Several command line options are provided to
allow users to edit or review old log files. These
command line options also correspond to tilde-
escapes in multi-line mode (i.e., the command line
option -E is equivalent to the tilde-escape ~E). The
command plod -P will invoke the user’'s PAGER on
the current log file (decrypting the file if necessary).
Similarly, plod -E (plod -V) invokes the user’s EDI-
TOR (VISUAL) on the current log file. plod -C will
simply cat the current log to the standard output,
which can be useful for pipelines like plod -C | Ipr.

All of the above command line options will
optionally accept the name of an older log file, plus
encryption key as needed. The default encryption
key is pl<yr><mn>od, so to review the log file
from August, 1993, the user would type:

host% plod -P 9308 pl938od

Note that the default file name is always four char-
acters long, since the month portion is zero-filled,
but the default encryption key does not use a zero
filled month.

PLOD Customization

Customizing PLOD can be as simple as chang-
ing an environment variable or as complex as adding
a new tilde-escape. Since PLOD is written in Perl,
it is also easy to customize by modifying the script
directly. This is not recommended, however, since
modifications will have to be reapplied to each new
release. PLOD has a rich set of hooks for customi-
zation, so please evaluate them carefully before
modifying the distributed code. The author is
always happy, however, to incorporate bug fixes or
useful new features.

A number of defaults have been hard-coded
into the PLOD program itself. When executed,
PLOD will look for a system-wide /etc/plodrc file
for machine or site-dependent configuration informa-
tion. After the /etc/plodrc file has been evaluated,
the user's environment variables are searched for
personal configuration choices. Finaly, PLOD

1993 LISA — November 1-5, 1993 — Monterey, CA

PLOD

checks the user's home directory for a .plodrc file
which may contain additiona or PLOD-specific
configuration information.

PLOD recognizes the common EDITOR,
VISUAL, PAGER, and HOME environment variables.
The LINES environment variable controls how long
the output of various tilde-escapes must be before
$PAGER is invoked to provide output by screenful.
This is somewhat like the set crt = n option in BSD
mail.

A number of environment variables are used to
control the location of various files that PLOD
creates or manipulates. LOGDIR specifies where the
log files are stored and LOGFILE is the name of the
file in that directory. If LOGFILE begins with a
dash (/), then LOGDIR is ignored and LOGFILE is
taken to be the absolute path to the current log file.
PLOD attempts to trap SIGKILL and SIGQUIT, and
aborted logs ae dropped into the file
$HOME/$DEADLOG (unless, again, DEADLOG is
an absolute pathname). TMPFILE is the absolute
pathname of the scratch file PLOD uses for various
operations. This file is always removed once the
operation is completed.

CRYPTCMD is the absolute pathname of the
command used to encrypt log files. The default is
/binfcrypt, which is not in the least secure but does
provide protection against casua browsing. If
encryption is not desired, simply set CRYPTCMD to
be null. KEYVAL is the encryption key to be used by
CRYPTCMD.

Finally, PLOD recognizes the STAMP environ-
ment variable to customize the format of the
date/time stamp associated with each log entry.
Note that it is generally inadvisable to put a line like

setenv STAMP "‘date +%m/%d/%y, %H:$M'--"

in your .cshrc or other shell startup file, since this
would imply the same date/time stamp for al log
entries during the life of the shell. It is better to
customize this variable in the /etc/plodrc or
~/.plodrc files, which are re-evaluated at each execu-
tion of PLOD.

Unlike most UNIX configuration files, the
/etc/plodrc and ~/.plodrc files are evaluated as Perl
code. Thus, if you wanted to customize the STAMP
variable in your own ~/.plodrc, you could write:

SSTAMP = sprintf ("%02d%02d%02d %$02d:%024d",

(localtime) [3,4,5,2,1]);

(line broken for display purposes) which would give
you something like DD/MM/YY HH:MM in the
European fashion.

While the requirement that the /etc/plodrc and
~/.plodrc be correct Perl syntax may be a barrier to
novice users, it opens huge vistas of customization
possibilities. Customization through environment
variables is dtill an acceptable option for the non-
Perl oriented.

185

PLOD

Perhaps the nicest feature of evaluating the
configuration files as Perl code is alowing users to
extend PLOD by adding their own escape sequences.
PLOD maintains all escape sequences as a global
array, %funcs, of function pointers (actually, since
Perl does not currently support the notion of a
pointer, type globs are used). Functions are indexed
in the array by the letter of their tilde-escape. For
example, Figure 1 shows the definition of the ~!
escape which executes a shell command and then
returns to PLOD. PLOD automatically passes any
arguments following a tilde-escape to the appropriate
function. The entire argument list is passed in as a
single string which may have to be broken up if the
function needs to process its arguments one at a
time.

The scalar $bang is an optiona descriptive
message used by the on-line help function invoked
with ~h or ~?. As Figure 2 shows, the function sim-
ply extracts a sorted list of all escape sequences
defined in the %funcs array, and prints each one fol-
lowed by the descriptive string referenced by the
associated type glob. This example shows that it is
trivial to bind the same function to multiple tilde-
escapes. Note aso the use of the LINES PAGER,
and TMPFILE customization variables.

Pomeranz

In addition to the %funcs array, two other glo-
bal data structures are available for user-defined
escape sequences to manipulate. The list @lines
contains the lines of text the user has entered for the
current log entry. The first element of the list is
aways the date/time stamp. Figure 3 shows the
code for the ~a escape which will append the con-
tents of the current log entry to afile.

The other data structure available is the list
@buffer. This contains the last long Perl fragment
entered using the ~M escape. This escape sequence
allows users to enter multi-line Perl fragments on the
fly and have them incorporated into the current invo-
cation of PLOD. It is possible to enter code that
will manipulate @lines, and therefore the contents of
the current log entry. It is even conceivable that
such a code fragment could modify its own image in
@buffer and produce some horrible hack of self-
modifying code. This is not recommended.

Creating one’'s own escape sequences in not the
limit of the power of this customization mechanism.
Perhaps the /etc/plodrc file could contain code to
evaluate a site-wide /usr/local/etc/plodrc before any
machine-specific customizations in /etc/plodrc:

sub bang {
local ($cmdline) = @ ;
system "$cmdline";

print " (continue composing note)\n";

}

$bang = "cmdline\tExecute system command and return";

$funcs{’ !’} = *bang;

Figure 1: Code to implement escape mechanism

sub helpuser {

$long= (scalar (keys %$funcs)>=$LINES)

for (sort keys %funcs)
*info = $funcs{$_};
if ($long) {
print TMP "~$ sinfo\n";
1

else { print "~$_ $info\n"; }
1
if ($long) {

close (TMP) ;

system("/bin/cat $TMPFILE|$PAGER") ;

unlink "$TMPFILE";

}
}

Shelpuser = "\t\tPrint this message";

$funcs{’'h’} = *helpuser;
$funcs{’?’} = *helpuser;

&& open (TMP, ">$TMPFILE") ;

Figure 2: On-line help function

186

1993 LISA — November 1-5, 1993 — Monterey, CA

Pomeranz

if (-e "/usr/local/etc/plodrc")
eval { do "/usr/local/etc/plodrc"; };
die "*** Error in " .

}

"/usr/local/etc/plodrc:\ns$e@" if se;

do machine-specific customizations here

Further chicanery is left as an exercise to the
interested reader. If you develop something good,
please inform the author.

Conclusion

PLOD is a living breathing entity which owes
many of its features to the ideas of others. The
author greatfully acknowledges the contributions of
David W. Crabb (crabb@phoenix.Princeton.EDU),
John Ellis (ellis@rtsg.mot.com), Mike Lachowski
(mlachow@erenj.com), Eric Prestemon
(ecprest@pocorvares.er.usgs.GOV), Erik E. Rantapaa
(rantapaa@math.umn.edu), and James Tizard
(james@ringo.ssn.flinders.edu.au). The origina idea
for PLOD came from a conversation with Bill Men-
dyka (mendyka@dg-rtp.dg.com) at LISA VI.

The author would not dare to suggest that
PLOD is the logging tool for everybody. A goodly
number of people find it useful. You may choose to
keep a journal via some other mechanism, but
always keep a record of the work you do. The pay-
off may be infrequent, but is often enormous.

PLOD v1.6 has been recently posted to
comp.sourcesmisc and comp.lang.perl. The
comp.sources.misc newsgroup is archived at many
FTP sites. Scripts posted to comp.lang.perl are
archived at coombs.anu.edu.au. In addition, a shar
file is avalable via anonymous FTP from
gatekeeper.imagen.com in the directory /pub/plod. If
al ese fals, the author will be happy to satisfy
email requests for the current version.

PLOD

Author Information

Hal Pomeranz is a victim of being in the right
place at the right time. A grant alowed his under-
graduate institution to purchase a state of the art (at
the time) workstation network for the amusement of
the student hackers who were nominally supposed to
keep things running. This was apparently enough of
a credential to launch a career that has included Sys-
tem Administration stints at AT&T Bell Labs and
the NASA Ames Research Center. Hal Pomeranz is
the author of the fabulously overlooked Perl Practi-
cum column for the USENIX ;login: Magazine. His
current email address is pomeranz@agm.com.

sub appendfl ({

local($file) = @ ;
if (lopen (OUTP, ">> $file"))
warn "*** Could not append to file $file\n";
return;
}
print OUTP @lines;
close (OUTP) ;
print "Wrote ", scalar(@lines), " lines to file $file\n";
print " (continue composing note)\n";
}
Sappendfl = "file\t\tAppend contents of buffer to file";

$funcs{’a’} = *appendfl;

Figure 3: Implementation of ~a escape

1993 LISA — November 1-5, 1993 — Monterey, CA

187

188 1993 LISA — November 1-5, 1993 — Monterey, CA

