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Abstract

The current Mach 3.0 network device interface provides support for user space protocol
servers. This support includes mechanisms for user space device drivers and a message
based device interface including a programmable packet filter for demultiplexing net-
work packets. The flexibility and other benefits of these features are not without cost.
The goal of our work is to improve network performance, cpu utilization, OSF/1 network
driver compatibility, and support for protocol server compression while avoiding any sig-
nificant perturbation of the Mach 3.0 interfaces. The design and implementation of a
shared memory communication channel between the kernel interrupt handler and the
user space network protocol server is described. A variety of performance measurements
are reported and compared to measurements made on similar systems. Some of the impli-
cations of protocol servers on hardware and software architectures are discussed.

Introduction

Traditional operating systems kernels such as BSD 4.3, Mach 2.5 and OSF/1 provide all OS functionality,
including networking, as part of a single integrated kernel. When network packets arrive the networking
protocol code is able to process this data directly. In some cases no data copies are necessary. For instance,
for packets with network specific information such as ARP and routing information, and only one copy is
needed from the kernel's address space to the users buffer for many other types of incoming Packets.

With the advent of Mach 3.0 and the BSD single server [1] the interactions between the network device
driver and the network protocols changed. Most BSD functionality, including network protocols, was evict-
ed from the kernel and into a user space server. With the separation of BSD from Mach, device drivers
could no longer assume the presence of BSD services. The ability to share information and state between
the network device driver and the network protocols was eliminated by the separation by of the address
spaces. A new device interface was created to allowing the kernel to export device services to Mach tasks.
Most if not all device drivers and the clients of the device driver services written for these traditional oper-
ating systems must be modified to work in the new Mach 3.0 environment.

The network device interface for Mach 3.0 is message based. Network packets arrive, are copied into a
message and sent to servers listening for packets via IPC. There is a thread that runs as part of the BSD sin-
gle server which receives these messages. An mbuf is pointed at or wrapped around each message then fed
to the network protocol code and processed in the same manner it would have been in a traditional operat-
ing system kernel. The kernel exports a programmable packet filter as part of the device interface [2]. The
packet filter provides packet shedding, demultiplexing and duplication. This filter interprets a simple, stack
oriented language. Filter scripts can be created and installed by user tasks.

To use this new interface and kernel, a network device driver of a BSD or OSF/1 origin requires many
changes. For instance, the original network drivers assumed the existence of mbufs and had explicit knowl-
edge of the supported protocol families. The Mach 3.0 drivers do not have BSD or protocol family depen-
dencies. Functionality such as the first level of network packet demultiplexing and filtering is implemented
as a packet filter script. Instead of putting the data into some space in the kernel that the driver and the pro-
tocol code know about, a message must be put together, data copied into it and sent off to the network
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code. This method adds buffer copies and context switches to the cost of receiving a network packet. In the
case of small packets, a message based interface adds significant overhead relative to monolithic systems.
The 3.0 network device architecture is powerful and flexible and complex. This power and flexibility is not
without cost.

Mach 3.0 has experimental support for user space device drivers. There is a reference implementation of an
ethernet driver for the PMAX in the 3.0 distribution. The user space ethernet device driver work was moti-
vated by, among other things, the need for better performance. One limitation of this approach is that a sin-
gle network server is favored over all others. Only one task has direct access to the network driver. Only
that task gets the performance advantage. Other tasks wanting information off the wire must arrange with
the favored task for it to pass packets they are interested in on to them. Perhaps more important is that
some hardware platforms lack the necessary features to make user space device drivers practical or effi-
cient.

The goal of our work is to improve the network performance and efficiency of the OSF/1 single server. We
do this by attempting to reduce the number of context switches, data copies and scheduling interactions
during message processing. We hope to improve OSF/1 monolithic kernel and single server network driver
compatibility by increasing the reuse of OSF/1 driver and low level protocol code. This would reduce the
cost to vendors of migrating from monolithic kernel technology to micro-kernel based technology. In addi-
tion we attempt to avoid significant perturbation of the Mach 3.0 kernel interfaces.

A Shared Memory Device Architecture:

We have developed a experimental network device driver framework that attempts to address our perfor-
mance, portability and compatibility requirements. Qur framework incorporates the use of a shared memo-
ry communication channel between the device interrupt handler and the network protocol servers. Our
design relies on two kernel extensions.

1) The ability to create shared memory between an in-kernel device driver and a user space task
2) The ability of a kernel interrupt handler to perform a counting unblock of a user space thread.

In this approach the network device driver shares a region of memory with the protocol server. Both the
driver and the server have read and write access to the shared memory. Mach 3.0 already defines a
dev_map() service that can be trivially extended to provide the desired semantics. The shared memory con-
sists of queues, free space for network buffers and a few shared variables. Queues are associated with devic-
es, protocol families and other services. These queues provide the primary channel for communication
between devices and protocols.
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The design is derived from OSF/1 which, though a monolithic kernel, has a similar design. The network in-
terrupt handlers communicate with the protocol threads by placing network buffers on appropriate protocol
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queues and then, if necessary, unblocking a network thread. Our approach, of enhancing and transparently
extending the functionality of extant abstractions increases OSF/1 device drive compatibility and the reuse
of OSF/1 code within the server.

Device Driver and Protocol Server Interdependency:

The OSF/1 device drivers execute in the same context as the protocols. The Drivers exploit apriori knowl-
edge of the framework and the configured protocol families to improve performance. Regardless of the
truth and beauty of this issue, the practical consequence in this case is that the network device driver under-
stands the network buffer structures and have some apriori knowledge of the configured protocol families.
In the interest of OSF/1 compatibility we BSD 4.3 Reno mbufs, clusters and Stream mblks. BSD 4.3 mbufs
are fairly general memory descriptors and have been used extensively. In fact, OSF/1 is able to transparent-
ly and inexpensively layer mblks on top of mbufs. Protocol frameworks that use alternative data structures,
such as the x-Kernel, which do not wish to adopt mbufs can always make the relatively simple changes to
the device drivers necessary to use their own buffer descriptors.

Knowledge of the configured protocol families allows early packet filtering. This is currently done in the
OSF/1 device interrupt routine. To take advantage of this will require new protocols to add specific code in
the device interrupt handler. In the worst case this will mean a new version of all network device drivers for
each new family of protocols. Fortunately, new protocols are relatively uncommon and in most cases the
necessary driver modification s are trivial. The first level of packet filtering could be evicted from the ker-
nel but it would, without a doubt, slow some things down. In particular, protocol selection by the driver al-
lows us to support multiple protocol servers without paying the cost of indirection through a
demultiplexing server. Another advantage of doing the first level of demux inside the interrupt handler is
that corrupt packets can be shed without delay. This improves the robustness of the system by preventing
corrupt packets from tying up resources (buffers and CPU cycles) that could be used to handle real data.

Higher Level Protocol Processing

Protocol T
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er Device Devicel || Devicen Device 1 [ Devicen

The figure above illustrates the hierarchy of packet processing within the device driver. A the lowest level
there is per device, usually per network device controller, processing. Device errors would typically be han-
dled at this level. At the next level, the Family level, processing that is specific to ethernet but independent
of the individual manufactures versions of ethernet, takes place. For example, the ethernet header is exam-
ined for supported protocol types. Packets with bad types, such as test protocols, are dropped. The top lay-
er is entirely hardware independent.

Shared Memory & Synchronization:

Mach 3.0 exports a dev_map() interface. This interface did not change. The original device pager that is es-
tablished via dev_map() calls dealt with physical pages. A small change to the implementation of the de-
vice pager allowed it to handle virtual address. The dev_map() service in conjunction with vm_map() are
sufficient to build the shared memory window.
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While it is possible to share memory between the kernel and a user task, it is very difficult on some hard-
ware platforms to make the virtual addresses of the shared region align. This alignment, or rather the lack
of alignment of the virtual addresses of the shared memory in the kernel and the protocol server pose some
problems. Pointers and data references are usually absolute virtual addressees rather than offsets from a
base register or segment. As a consequence shared pointers only work without some sort of conversion
when the shared memory is mapped to the same location in each virtual address space. Our strategy is to as-
sume that the shared memory structures and pointers should correct for the protocol server and appropriate
conversions will be made in the kernel. Translations are done in the driver to localize and minimize the im-
pact on the code base.

Consider the example of a queue of buffers in shared memory that does not align. For the purposes of this
example the kernel maps the window at 0xc000000 and the server maps the window at 0x6000. Assume
that a shared memory queue begins at the beginning of the window. Both the kernel and the protocol server
have non-shared memory pointers that refer to the shared memory queue control block. The value of the
server’s queue pointer is 0x6000 and the value of the kernel’s pointer is 0xc000000. The queue points to a
buffer in shared memory. The buffer is offset 0x100 bytes from the beginning of the shared memory win-
dow. The value of the queue’s pointer to the buffer is 0x6100. Server code can use the queue pointer in a
natural fashion. The kernel must convert 0x6100 (which in the kenel’s context may refer to almost any-
thing) to 0xc00100 before it can be used as a pointer.

Protocol to interrupt (PTOI) and interrupt to protocol conversion macros have been defined.
#define PTOI(addr) (((addr)) ? (unsigned int)(addr) +
(unsigned int)plus_shm_offset - (unsigned int)minus_shm_offset : 0 )
#define ITOP(addr) (((addr)) ? (unsigned int)(addr) -
(unsigned int)plus_shm_offset - (unsigned int)minus_shm_offset : 0)

Note the test for 0. This is necessary to avoid converting NULL pointers to non-NULL pointers. While the
cost of these conversions are not dramatic they could be avoided completely on friendly hardware.

We need to synchronize access to the shared memory between threads on multiple processors and interrupt
handlers. Synchronizing access by the user space protocol servers and the kernel space device driver to
data in the shared memory present some difficulties. Typically, unprivileged programs use a system call or
use either atomic operations such as compare-and-swap instructions to synchronize with the kernel. Privi-
leged tasks, such as the kernel, frequently disable interrupts to synchronize with interrupt handlers. This is
because the naive use of locks without disabling interrupts, even spin-locks, to synchronize with interrupt
handlers has deadlock problems [3]. The performance characteristics of system calls make them unsuitable
for our purposes. In the absence of hardware support across the majority of interesting platforms, a porta-
ble software synchronization method must be devised. In the absence of the ability to disable interrupts an-
other method must be employed to prevent the interrupt handler from waiting forever for a lock.

It has been asserted that wait-free synchronization primitives can be engineered with an atomic compare-
and-swap instruction [4]. Presumably these primitives would be suitable for synchronizing with interrupt
handlers. However, many hardware platforms do not provide hardware support for atomic operations such
as compare-and-swap or fetch-and-theta. In fact, there are popular hardware architectures that do not pro-
vide even a simple atomic test-and-set instruction. Hardware that allows unprivileged tasks to disable inter-
rupts, a frequently used technique for synchronizing with interrupt routines, are even less common.
Because of the general lack of adequate hardware support we chose to provide a software solution. Our
hope is that the abstractions will prove amenable to optimization on friendly hardware platforms.

Our queue and the buffer allocation abstractions provide wait-free operations to the device driver’s inter-
rupt routines. The queue and buffer management routines use a low level software mutex to implement crit-
ical sections. This mutex can be replaced or optimized on friendly hardware platforms. Critical sections are
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used to coordinate access to the new data structures necessary to implement the queue the various wait-free
operations. There is a per queue conditional variable used to indicate that the agent that removes buffers
from the queue has blocked as well as a new mechanism for unblocking threads.

Software Mutex:

We chose to implement a software mutex algorithm to serve as the basis for the higher synchronization pro-
tocols. A software approach has the twin advantages of being very portable and amenable to hardware de-
pendent optimizations. We were also interested in assessing the cost of software synchronization
algorithms.Software algorithms for mutual exclusion [S] are designed for coordinating multiple processes -
not processes and interrupt processing routines. Interrupt handlers have different execution characteristics
from processes. Generally speaking, device drivers do not like long busy - wait or spin loops When syn-
chronizing with device drivers, monolithic kernels usually take advantage of privileged instructions to dis-
able and re-enable interrupts. Unprivileged tasks, such as the protocol server must find another way to
synchronize with interrupt processing routines.

We have designed an asymmetric variation of Peterson’s [6] mutual exclusion algorithm. Descriptions and
analysis of the original algorithm can be found in [5],[6].The only significant hardware assumptions we
make are integer (32 bit) sized atomic loads and stores. This maximizes the hardware independence of the
code. The important characteristic of this variant of the algorithm is that the interrupt side does not spin in-
definitely, instead it gives up after of couple of attempts to get the lock. This is required in order to remove
the possibility of deadlock. Otherwise deadlock could occur if the device driver interrupted and attempted
to acquire the mutex immediately after the protocol server acquired the mutex.

Protocol Side:
protocol = TRUE; I* announce intent to acquire mutex*/
turn = INTERRUPT; I* give the interrupt routine a chance */
while (interrupt == TRUE && turn == INTERRUPT ) {
spin() ; /* wait if the interrupt routine got there first */
)
< critical section >
protocol = FALSE; /* renounce intent to enter and exit*/
Interrupt Side:
interrupt =TRUE; /* announce intent to acquire mutex*/
turn = PROTOCOL; I* give the protocol task a chance */
if ( protocol == TRUE && turn == PROTOCOL) {
interrupt = FALSE; I* if the protocol routine got there first */
return(FALSE); /* renounce intent to enter and exit */
o}
< critical section >
interrupt = FALSE; /* renounce intent to enter and exit*/

Note the asymmetry of the algorithm. The Protocol side of the algorithm is identical to Peterson’s original.
The protocol or single server is permitted to wait (by spinning) for the interrupt processing to complete. On
the other hand, the interrupt handler gives up almost immediately rather than spinning. This removes the
risk of deadlocking on the mutex. After the interrupt handler relinquishes its attempt to acquire the first mu-
tex it is free to attempt to acquire another mutex or take other action.
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Queues

OSF/1 1.0 already uses queues as the communication channel between the network device driver and the
protocol threads. Queue initialization, lock, enqueue, dequeue and flush operations are already defined. We
have attempted to preserve these abstractions. While we were largely successful some trivial side effects of
our different implementation strategy are visible.

Access to the original OSF/1 queues is synchronized by simple locks. These are spin locks that depend on
the ability of the protocol code to disable interrupts in order to synchronize with device drivers. The proto-
col server, as a unprivileged task, does not have the ability to disable interrupts. Consequently the locks for
the shared memory queues are built from the software mutex algorithm described earlier.

Another consequence of the protocol code executing in a user task is that its execution can be pre-empted
for iong periods of time. The naive implementation of locks and queues using the software mutex can be
problematic if the protocol server blocks or is pre-empted. It is important for good performance that the
queues used for sending buffers to protocol stacks be available to the driver. If the queue is unavailable the
driver can drop the packet while trusting to the higher level protocols to generate a retry. There are a vari-
ety of reasons why this can happen in the OSF/1 monolithic kernel today. However, dropping packets al-
most always has a bad effect on performance and should not be done lightly.

In some situations the driver must be able to successfully enqueue a buffer to avoid leaking resources. It is
possible that the device driver is finished with an outbound buffer but cannot successfully retumn it to free
space. This can occur if the free space is locked by the garbage collector or if the buffer is complex such as
a chain of buffers or a buffer containing a pointer to a cluster. When the driver decides that a buffer is too
complex to free it enqueues the buffer on a deferred-free queue. The protocol pulls buffers off of this queue
and frees them at a more leisurely pace. The driver must be able to enqueue the complex buffers onto the
deferred-free queue in order to guarantee that the buffer will be eventually freed and not forgotten.

The problem is: design a multi-processor safe queue that is always that is essentially wait-free to the device
driver without the hardware support to disable interrupts or perform complex atomic operations.

To accomplish this we define a shared memory queue. There are two types of shared memory queues, IN
queues and OUT queues. The Consumer (whatever performs dequeue operations on a particular queue) of
an IN queue is the protocol server. The Consumer of an OUT queue is the device driver. The asymmetric
nature and needs of the different Consumers dictates an asymmetric implementation of the enqueue and de-
queue operations. Each queue is actually composed of two separate queues. There is pointer for the Produc-
er and the Consumer indicating which sub-queue is being used. An enabled flag associated with each sub-
queue. is used by the enqueue and dequeue operations to preserve queue order. Each IN or OUT queue has
a conditional variable used to indicate that the Consumer for that queue is idle and must be restarted in or-
der to resume dequeue operations.

IN/OUT Shared Memory Queue

Conditional
Consumer Queue
Queue (1) Queue (2)
Producer Queue
Head Head
Statistics, etc. -
Tail Tail
Mutex Mutex
Enabled
NULL Enabled L
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Coordinating the use of the sub-queues is a bit complicated. In addition to the software mutex protocol
there is a condition variable protocol, a queue ordering protocol as well as the enqueue and dequeue proto-
cols. A conditional variable is associated with each shared memory queue. The Producer reads the condi-
tion variable and the Consumer writes it. The Producer tests the condition and if the condition is TRUE
then a device event is generated. The Consumer sets the condition to TRUE if there is nothing to do. Then
it checks again, in case new work arrived in the interval between the time it last checked for work and
when the condition was set. If there is still nothing to do then the Consumer becomes idle. Otherwise the
condition is set to FALSE and the Consumer does the appropriate work.

It is possible for the Producer to detect that the condition is TRUE before the Consumer has actually be-
come idle. In order to avoid losing device events the device event service counts events. In our prototype
device events are implemented using a version of thread_resume() that counts the resumes as well as the
suspends. If the Producer generates a device event before the Consumer attempts to block then when Con-
sumer eventually does attempt to block it will immediately return instead. The condition variable protocol,
in conjunction with device events, provides a mechanism for Producers to activate idle Consumers.

The Enable protocol is used to guarantee that buffers are dequeued from the set of sub-queues in the order
that they were enqueued. The Producer only uses the Enabled flag when it discovers that its current sub-
queue is locked by the Consumer. In that case it locks the other sub-queue and enables it. The Producer
never changes its current sub-queues unless it was blocked. When that occurs it sets the Enabled flag on the
new sub-queue to indicate that it successfully changed sub-queue and enqueued a buffer. The Consumer
only references the Enabled Flag in the event of a sub-queue becoming empty. When the Consumer’s cur-
rent sub-queue becomes empty the Consumer checks the Enabled Flag of the other sub-queue. If the Pro-
ducer has successfully changed sub-queues and enqueued at least one buffer the Enabled bit will be TRUE.
In that case the Consumer changes its sub-queue, sets the Enabled but to FALSE and dequeues the buffer.

Free Space:

The design of the shared memory queues is complex. Synchronizing access by interrupt handlers and un-
privileged tasks to shared memory is difficult. The same difficulties arise in the design of shared buffer
space management (allocate, free, garbage collection). An additional source of complexity is both Device
drivers and Protocol servers need to allocate as well as free buffers.

A solution to the problem is to divide the buffer free space into multiple pools. All of the control structures
are duplicated for each pool. This includes statistics, reference counter arrays, and other control informa-
tion. Most of the control information is located within a pool control block. Access to each pool is mediat-
ed by a Mutex variable. When the device driver needs a buffer it can query each pool. If it is unable to lock
the pool or if the pool is empty it can go on to the next pool. If there are no buffers available then the de-
vice will discard the packet. This strategy allows us to reuse the bulk of the OSF/1 mbuf and cluster code.

Shared Memory Window
Globals Queue Pool Cluster Cluster
Control Control Reference Pools
Blocks Blocks Counters

One side effect of multiple free pools is that the buffers need to be returned to the pools from which they
were allocated in order to be coalesced into clustess. This is not difficult since each pool is composed of a
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contiguous region of memory. The correct pool can be deduced from the address of the buffer. Note the
fact that the cluster pools are adjacent in shared memory. This simplifies and improves the performance of
the mbuf to pool (mtop) calculations before the original mbuf to cluster number (mtocl) calculation can be
performed.

When the server is finished with a buffer or cluster the resource is returned to the appropriate free pool and
the reference counters are decremented. When the device driver is finished with a buffer it attempts to re-
turn it to the appropriate free pool. If the attempt fails, either because the pool was locked or the buffer was
complex (a buffer chain, special free requirements, or a buffer with associated external memory) the inter-
rupt routine places the buffer on the deferred-free queue and the protocol server eventually returns the buff-
ers to the correct free pools.

Sometimes a thread in the OSF/1 monolithic kernel goes to sleep because there are no free buffers avail-
able. When a buffer is freed any threads blocked waiting for buffers are receive a wakeup(). OSF/1 uses the
global variable “m_want” as a conditional to indicate that there are sleeping threads in need of buffers.
Since our design needs to be able to free buffers from protocol or interrupt level processing m_want was
moved to shared memory. The server sets m_want to TRUE if any networking threads block in need of
buffers. The kernel never changes the state of m_want. This permits m_want to be referenced without first
acquiring a lock. After each successful release of a buffer by the kernel m_want is tested. If it is TRUE
then the network threads are unblocked. The first of these threads resets m_want to FALSE.

There is an interesting trade-off to be made when choosing the number of pools. Assuming the total
amount of free space is constant, a large number of pools decreases the amount of free space controlled by
any single mutex. This means that during the time the Protocol holds a particular mutex it is restricting ac-
cess to a smaller portion of the free space. This gives the Device a better chance of finding a pool with
some free space in it. This is a Good Thing. On the other hand, the fragmentation of the free space into
many pools will have a tendency to limit garbage collection. It would be problematic to join data into con-
tiguous chunks spanning pool boundaries. Smaller pools also increase the chances that multiple pools will
have to be checked before any free space can be found since any individual pool will be more quickly ex-
hausted.

Network Performance:

The goal of our performance testing plan is to understand the performance and the cost of this architecture.
All of our measurements were done on the same Hp Vectra 386 based computer with 16 megabytes of
memory, a western digital wd80013EBT networking card, and an OSF/1 1.0.2 binary set. The only differ-
ence between the tests was in the kernel (and single server for the two Mach 3.0 based system) chosen at
boot time. The systems that were measured were OSF/1 V1.0.2, the second pre-alpha release of the OSF/1
single server, and that same single server with only the changes described in this paper.

All of the tests were conducted between the 386 machine and a 68040 based NeXT Station. The NeXT has
sufficiently greater ethernet performance than the 386 platform that we have confidence that it was never a
limiting factor in our tests. As the implementation of all three versions of networking code were at least
90% the same, all measured differences between systems were due to the changes at the device interface
layer. The limited number of variables in the performance tests give us give us confidence in our analysis
of the results. All of our performance numbers are presented on the bar graphs in a form normalized to the
fastest of the tests in a series.

We have chosen to run three benchmarks. The ttcp program - version 1.10, ftp and the dot benchmark pro-
vided in version 1.2 of the X11perf package.

Our first test, ttcp is a streaming network test. No file system interaction happens during the tests, and the
size of the packets can be chosen. Six repetitions of transmit and receive tests were done for three different
packet sizes. We have chosen a small 10 byte packet size, an average 1K packet size and a larger 8K packet
size.

156 Mach Symposium USENIX Association



TTCP Transmit

TTCP: Ttcp numbers are much more effective in judging network streaming performance then ftp. This
program is purely a network benchmark. As used by us it has no file system interactions. For transmits our
tests showed that the OSF single server's performance was less then one third of the integrated system
across all three packet sizes. As can be seen in the "TTCP Transmit” bar graph, our modified single server
has recovered about half of the difference for all three packet sizes. All three system perform poorly on
very small packets, yet still the OSF/1 system is more then twice as fast as the other two systems. Our mod-
ified single server was uniformly in the middle of the two systems. We are currently winning back about
half of the performance lost by the current interface in transmits. Ttcp receives present a slightly different
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story. On ten byte packets the OSF single server is less then a fifth the performance of the OSF/1 system.
Our modified server outperforms OSF/1 by about ten percent. This is the only place where the benchmarks
show our server outperforming the OSF/1 system. On one kilobyte packages the OSF single server was
about one third of the performance of the OSF/1 system, and we are again in the middle of the two with
performance just over half the performance of the OSF/1 system. On 8 kilobyte packages the OSF single
server was a little under half as fast as the OSF/1 system, and our modified system was only a little faster
then the standard single server.

Ftp was chosen due to the property that it is universally used to check network performance. Although it is
not a great network benchmark due to interactions it has with the file system, it is common, easy to use and
easy to report. No network performance discussion would be complete without some ftp numbers. This ftp
test was the ftp a unix kernel from disk on one machine to /dev/null on the other. The test was run six times

in each direction.
FTP ofa Unix kernel

1.00 ]
0.80
0.60 B osF/11v 102
0.40 ] B OSF SS W/ Shared mem. Window

- ] OSF SS W/ IPC
0.20 —:
0.00 :

Put Get

FTP: In ftp OSF/1 1.0.2 was the best to both transmitting and receiving files. The OSF single server using
the standard IPC based network interface from CMU is about twenty five percent the speed of the OSF/1
system on transmits and just over forty percent the speed of OSF/1 in receives. The closer numbers for re-
ceives over transmits are not too hard to believe as the OSF single server's file system, and disk interfaces
are not yet final and complete. Work on file system is currently underway in another project. Our enhanced
OSF/1 single server suffers from this same problems, and we expect performance of both systems to im-
prove over time. Ftp's reliance on file system performance is one of the reasons why it is not a reliable net-
work benchmark. Our modified OSF single server did provide some performance improvement in the ftp
case. In transmitting a file we saw an improvement of almost eighty percent over the standard interface,
however we still are only about 45 percent the performance of the OSF/1 integrated kernel. On receives the
story is not quite as good. While we are just over SO percent the speed of the integrated kernel, we are just
over ten percent faster then the OSF single server.

Our third and final benchmark is X11perf's dot test. This was run as an X client application from the 386
to an X server running on the NeXT. The benchmark reports back the number of dots per second that it
was able to cause the server to plot. This test has the most varied workload of all three tests, not only is the
test sending to the network, but we have the intervention of Xlib packaging the server requests up in what
it considers to be reasonably sized request.
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X11perf: The numbers from the X11perf suite's dot test are valuable because that are not just network
streaming number of a single packet size. This test was the closest we came to testing a real network appli-
cation. It numbers should give us a feel for how the performance of network applications such as X clients
would be affected by the network interface. Again here we see that the OSF/1 system performed the best.
The OSF/1 single server performed with about half the performance, and our modified server was about
seventy five percent the performance of the OSF/1 system.

The results contain few surprises. Most of the benchmarks show that we have made progress towards our
goal of closing the gap in performance between traditional integrated kernels and protocol servers. In our
benchmarks we see no areas where we are outperformed by the message passing network interface, al-
though there are areas where we have made less progress to date then we had hoped.

In most cases we have reduced the cost of out of kernel networking. In the majority of the streaming tests
we have split the difference between the OSF/1 system's performance and that of the standard OSF single
server with it's Mach IPC based network interface. There were two surprises for us. In the ttcp receive case
of eight kilobyte packages we had a larger drop in performance over the one kilobyte package size then we
anticipated. Our working hypothesis is that the buffer pools are being exhausted but we not yet verified this.

The other surprise was in the ttcp receive of ten byte packets we outperformed even the OSF/1 1.0.2 sys-
tem. Again it is still early in our analysis of the results, however we speculate that this advantage in perfor-
mance over the integrated kernel stems from reducing the number of scheduling events. Where OSF/1
schedules a thread for each incoming packet, we only need to schedule a thread if the Consumer thread for
that queue is idle queue. With lots of small packets we believe that the producer is able to put packets on
the queue faster then the consumer can get them off. The consumer just works its way down the incoming
queue, not needing to be scheduled for each packet, because it checks for more work before it goes to
sleep. The producer being able to tell that the consumer is still working does not need to go to the work of
scheduling some consumer to process the packet, as it does in the current OSF/1 system.

While our numbers are not neutral to the OSF/1 system, these numbers from our early prototype give us a
belief that we are on the right track. We still are using mechanisms that are very expensive, such as using
the device_setstat mechanism to wake the device up to dequeue outbound packets, yet we are still seeing
an across the board performance improvement. We are optimistic that our network interface performance
will continue to improve.
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Discussion:

The disparity between the performance figures of the monolithic kernel and the standard single server give
some indication of the costs associated with user space protocol servers. It should be noted that both single
servers tested were early prototypes. Their overall performance, as well as their network performance will
improve in due course. All of the performance improvement shown by the experimental single server was
due to the network enhancements described in the paper. No other modifications to the code base were
made. This suggests that as the performance of the standard single server improves so will the experimen-
tal server.

The performance numbers suggest that the biggest improvement comes reducing the number of times a
buffer is copied. Moving data to or from the device via Mach IPC is expensive. Even the use of IPC to ini-
tiate device writes when there is little or no data to be copied is expensive if it has to be done for every net-
work message. Using the shared memory queues reduces the number of copies. But on the system tested,
which has a single CPU and a dumb network device, the number of IPC messages is not significantly re-
duced.

On the test system, writes are almost always synchronous even though the mechanisms are in place for
asynchronous, parallel operation. There is only one CPU. After on out-bound packet is queued on an OUT
queue the device is started via a trap to the kernel. The kemel dequeues the packet, writes it to the device
and looks for something to do. There is never anything to do because the CPU has been busy doing the de-
vice write. Since there is nothing to do the routine becomes idle. Eventually the server gets the CPU back
and puts another buffer on the queue and checks to see if the device is idle. It almost always is and the cy-
cle repeats. A multiprocessor system or a system with a smart device controller would permit the protocol
to enqueue buffers and the device to write them out at the same time.

IN queues are structured in a way that permits the asynchronous nature of receives to be exploited. Howev-
er, single threaded applications that exhibit request reply behavior work against asynchronous receives. If
the protocol server must ACK before the next message is sent then the asynchronous nature of the receive
will never be exercised.

Future Work:

In the immediate future we plan to port the system to coherent shared memory and message passing multi-
CPU computers. Our system has enough characteristics in common with UPRC [7] that we expect similar
performance on a shared memory machine. URPC may suggest to our design. We also plan to port to a plat-
form with a different CPU and 1/O architecture. This will give us the experience we need to judge how suc-
cessful we were at designing abstractions capable of exploiting friendly hardware. Eventually we plan to
run other network applications and benchmarks in an effort to refine our understanding of the behavior
characteristics of the system.

We plan to continue work to improve the performance of user space protocol server. An investigation into
ways to further reduce context switching and scheduling interactions. One approach is to improve the asyn-
chronous operation of device write without the need for the server to explicitly interact with the kernel. For
example, some devices can generate an interrupt upon completion of a write or after a timer elapses. This
would be a good cheap way to get into the kernel without an IPC message or system call. Another opportu-
nity is when a message is received. At that time an interrupt is generated. Once the received message in en-
queued on the correct IN queue the driver could look for outgoing buffers on the OUT queue.
Unfortunately the window between the time when the protocol has enqueued something and when decides
to call device_start() is very small.

There may be a way for the application C-thread technology to make the window larger by delaying the
write. It may also be possible to implement a delayed or gang write policy. Delaying the device_write after
the enqueue operation not only allows other enqueue operations to piggy back but it widens the window ex-
ploitable by the receive interrupt handler described above.
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C-Threads may have an application in the receive path as well. In the protocol server we associate a single
Mach thread with each IN queue. This limits that amount of parallelism available to any particular protocol
family. If the thread for a particular family blocks the device driver must unblock that particular thread.
This approach simplified the design and initial implementation of the prototype. However the judicious use
of C-Threads may improve the potential for parallelism and reduce the number of IPC messages. Network
threads would not be attached to particular protocol queues. Instead, Device events would wakeup one of
several network threads which would look in shared memory for an indication of which IN queue it should
start with. When there was no more work to be done with the first IN queue the thread would check all the
other queues before blocking.

Summary:

The primary goals of this project were to improve the performance and efficiency of protocol serves using
portable technology. A secondary goal was to maximize the reuse of the OSF/1 monolithic kernel code
base. The preliminary performance results from the first prototype are encouraging. The current prototype
provides enough improvement in performance to continue the project. The perturbation of the code base
and the additional complexity needed to manage the shared memory data structures was greater than origi-
nally expected.

As has been observed by other researchers [8] current practice in hardware design is not in step with the
evolving practice in OS design. The lack of compare-and-swap instructions to build synchronizers, the lack
of good segmented architectures or equivalently flexible VM architectures, the costs incurred by PIC code,
the costs of context switching or system calls, dumb device controllers, and the lack of support for safe ac-
cess to devices by unprivileged processes contributes to the difficulty of building safe and efficient servers.
To avoid exacerbating the situation operating system designers and CPU designers need to play a greater
role in one another’s work in the years to come.
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