User-Level Physical Memory Management
for Mach

Stuart Sechrest
Yoonho Park

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan

Abstract

We have developed an extended version of Mach 3.0 that allows physical
memory managers to run as user-level processes, and which allows the mem-
ory requirements of these managers to be balanced. Physical memory is a
resource for which there are a number of potential competitors whose diverse
uses of physical memory may require diverse management policies. Flexibility
in physical memory management policy is important to database managers,
multimedia file systems and persistent object storage managers. Our archi-
tecture allows the control of physical memory page frames to be assigned to
processes running outside the kernel, with page frame records shared between
the kernel and these managers. Control of page frames can be reassigned
among physical memory managers by a balance manager.

1 Motivation

Physical memory is a resource for which there are a number of potential competitors.
RAM is used not only as as backing store for processes’ virtual address spaces, but for
caches maintained by file systems, persistent object stores, and database systems,
as well. The diverse uses of physical memory may require diverse management
policies. Flexibility in physical memory management has been a concern of database
researchers [11, 1] for a number of years. We believe it will become a matter of
increasing concern in multimedia file systems and persistent object storage. As
Stonebraker {12] points out, buffer managers may be able to take advantage of
semantic knowledge about the data to make more effective use of physical memory.
An image data manager can, for example, retain images at reduced resolution, rather
than flushing them entirely.

We believe that a physical memory management system must balance the re-
quirements of these competitors for memory, while allowing effective management
policies to be implemented. Mach 3.0 does not address this need. We have there-
fore developed an extended Mach 3.0 system that allows multiple physical memory

USENIX Association Mach Symposium 189



managers to run as user-level processes, and allows the amounts of physical memory
assigned to these managers to be balanced dynamically.

Mach 3.0 maintains a list of free pages selected by a version of the global clock
page-replacement algorithm. This algorithm seeks to locate and free the least re-
cently referenced (global LRU) pages. This algorithm is widely used, but may make
inappropriate selections for particular types of data. It has been suggested, for ex-
ample, that for joins in relational database queries, one may want to replace the
most recently used page within a relation [1]. The division of physical memory
into pools can be used to protect one process from the paging of another, as in the
VAX/VMS operating system [4]. Our intention, however, is to use pool boundaries
to protect subsystems from one another and alter these boundaries through explicit
balancing operations. This is particularly important when the cost of storing data
to and retrieving data from permanent storage can differ significantly.

2 Related Work

Current systems generally have limited interfaces allowing a user to affect page
replacement choices. Mach 3.0 provides a call that allows certain pages to be pinned
in memory. SunOS 4.1 provides the call madvise(), allowing applications to advise
the kernel on the likely pattern of accesses in a region of the application’s address
space [7]. The application can state that access will be random or sequential, or
that certain pages should be held and others released. The kernel can take these
claims into consideration while implementing page replacement.

The QuickSilver operating system [3] placed important physical memory man-
agement responsibilities outside the kernel [14]. The QuickSilver kernel is extremely
small. Management of physical memory is therefore entrusted to a server process.
The page tables are shared between the kernel’s and the server’s address spaces.
To implement page replacement the server invokes a kernel call which locates the
(approximately) least recently used pages using a clock algorithm. Thus, only one
page replacement policy is supported.

PREMO [6], an extension of Mach 2.5, allows a user-level program to implement
its own page replacement policy by extending the external pager interface. The
external pager is consulted when one of its pages is to be placed on the free list,
and is allowed to substitute an alternative page. While this approach allows the
implementation of alternative replacement policies within a pool of pages controlled
by an external pager, the selection of the pool from which the victim is to be
drawn is still based on a global LRU strategy. The PREMO approach does not
take into account the differences between pools and may allow some pools to be
unfairly victimized. Sprite [8] began to address the problem of balancing competing
claims on physical memory by dividing memory between backing store for virtual

190 Mach Symposium USENIX Association



address spaces and file system buffer cache, but dynamically adjusting this division.
Performance was improved, provided that the virtual memory system was given
preference over the file system. The Sprite approach, however, was limited to two
pools, and it did not allow the implementation of new replacement policies in any
simple way.

3 Architecture

3.1 Physical memory management in Mach 3.0

In Mach 3.0 the majority of the physical memory of the system forms a single paging
pool used as a cache for memory objects [5]. Page frames are represented within the
kernel at two levels of abstraction. Machine-dependent details of the host memory
architecture are hidden beneath an idealized pmap interface. Machine-independent
records for page frames are kept in the resident page table. The kernel code respon-
sible for handling page faults and for managing physical memory manipulate the
resident page table information and make calls through the pmap interface.

The system virtual memory cache is managed by the kernel page-out daemon
using an approximate LRU algorithm. With the exception of the vm_pageable() call,
a privileged call that pins pages in memory, user-level programs have no control over
this algorithm. The system page-out daemon implements a global clock algorithm.
The available page frames are placed on an active, an inactive, or a free list. The
page-out daemon seeks to maintain the list of free page frames, by moving page
frames that have not been recently used from the active to the inactive list and
from the inactive to the free list. In doing so it relies on calls through the pmap
interface to access hardware maintained access information.

In addition to ordinary paging, page frames can be removed from the free list
for use as storage for kernel structures [9]. These pages are freed by placing them
on the active list, where the page-out daemon will eventually determine that they
can be freed.

3.2 User-level PODs

We have developed an extended version of Mach 3.0 that divides the physical mem-
ory into a number of pools, managed separately by processes called PODs (for
Page-Out Daemons). Because we want to explore physical memory management
policies for new areas such as multimedia file and database management systems,
we want to simplify the creation and configuration of systems implementing diverse
physical memory management policies. PODs therefore run as (trusted) user-level
programs, sharing access to kernel data structures (see Figure 1). As noted above,

USENIX Association Mach Symposium 191



the resident page table in the Mach 3.0 kernel is threaded with lists maintained by
the kernel’s page-out daemon. We allow the page table to be mapped into the ad-
dress spaces of user-level PODs. PODs can also run as part of the kernel, although
kernel PODs are not required. A balance manager running in the kernel shifts page
frames between the pools maintained by the various PODs.

Page faults on memory objects are handled by the kernel. Every memory object
is assigned to a POD, and its page faults will be satisfied from this POD’s page
frame pool. It is the responsibility of the POD to maintain a list of free page frames
within this pool. Figure 2 illustrates the relationship of memory cache objects, POD
records and the resident page table. The pool of page frames associated with a POD
need not (and in general will not) be contiguous. Instead the records for the frames
in a POD’s pool appear on one of two lists whose heads are in the POD record. The
in-use list contains page frames known by the POD to be in use, while the free list
contains the remainder of the pool’s frames.

A page frame on the free list is either free or allocated. (Figure 3 shows the state
transition diagram for a page frame.) The kernel allocates pages from a POD’s
free list. The new state of these page frames is recorded in the resident page table.
These pages, however, are not moved automatically to the in-use list. For short-lived
objects, these page frames may quickly be freed again. Their state recorded in the
resident page table will revert to free.

The state of a page frame on the in-use list is either in-use or must-free. When the
POD is awakened, allocated page frames are removed from the free list and placed
on a transfer list. This list is passed (by reference) to the POD, which incorporates
them on its in-use list. Their recorded state is changed to in-use. The kernel may
deallocate in-use page frames if, for example, an object terminates. In this case
they are left on the in-use list, but their state is changed to must-free. Must-free
pages and page frames deallocated by the POD are removed from the in-use by the
POD and placed on a transfer list. This “laundry list” is passed (by reference) to
the kernel.

The POD is awoken by the kernel both periodically and when its free-list falls
below an agreed upon low-water mark. In the extreme case, the POD can set
the low-water mark to empty and, thus, arrange to be called for every page frame
assignment. Ordinarily, however, page frame assignments can be made from the free
list without requiring a call to the POD. It is the POD’s responsibility to ensure
that the free-list size exceeds the low-water mark. When invoked the POD returns
to the kernel a list of page frames to flush along with any must-free page frames.
The kernel must remove the flushed pages from the memory objects to which they
belong and, possibly, invoke external pagers to save modifications. The policies
and data structures used to determine which page frames to flush are entirely the
concern of the POD.

The architecture outlined here has certain assumptions that should be stated ex-

192 Mach Symposium USENIX Association



User—level

User-level
POD

Shared
Structures

Figure 1: User-level physical memory managers (PODs) share access to kernel data
structures

emory Resident
gd, POD Page Table
Objects Record (Page Frame Records)

States:
F - Free
A - Allocated
U-1InUse

M - Must Free ]

State
Bits

Figure 2: Memory architecture for user-level physical memory management

USENIX Association

Mach Symposium

193



Froe List in Use List

POD determines which pages to replace

Kernel allocation and deallocation
Kemel wakes up the POD
POD sends the kernel a laundry list

Figure 3: State diagram for page frame records

plicitly. First, since page records must be mapped into the kernel and into possibly
several tasks, virtual address aliasing must be allowed by the machine architecture.
While virtual address aliasing poses problems in some of today’s caching architec-
tures, we expect that future cache designs will address this problem [2, 13]. Second,
because the POD only has access to the software-maintained machine-independent
page records, and not the hardware-supported machine-dependent page tables, the
POD will not have rapid access to the latest values of the modified and referenced
bits. A kernel thread periodically updates the page-records. The absence of entirely
up-to-date information is not expected to seriously impact the ability of PODs to
manage memory effectively. Pages are flushed by the kernel, which does have access
to the pmap interface, so recently modified pages will not be mistaken for clean
pages. Third, the PODs share access to sensitive system data. They must therefore
be cooperative and correctly written programs. Any ill-behaved POD could eas-
ily disrupt the system. This assumption of cooperation and correctness, however,
must be made for the servers providing the infrastructure of any micro-kernel based
system.

3.3 Sharing information between the kernel and PODs

In our architecture the resident page table and POD records are all mapped into
the address space of every POD. Since PODs can both read and write sensitive data
structures, it follows that PODs must be components of trusted systems, such as
file and database management systems, rather than simple user applications. The
delegation of responsibility to trusted processes is consistent with the microkernel

194 Mach Symposium USENIX Association



philosophy. It is not possible, however, to protect the kernel from the PODs or the
PODS from one another.

The PODs operate on separate page frame lists and, when correctly programmed,
do not access the same page frame records. Each POD, however, shares access to
page frame records with the kernel and care must be taken that accesses are properly
synchronized. Page frames are therefore divided between the free and in-use lists.
The kernel does not access the in-use list. The POD does not access the free list.
Transfers from and to the free list are accomplished by the creation of a temporary
list whose head is passed to the POD or to the kernel via RPC. The POD accesses
only the records of those frames on the in-use list. The kernel alone changes the
state of a page frame on either list.

To implement a page replacement algorithm, a POD examines page frames on
the in-use list. A thread in the kernel periodically updates the modified and ref-
erenced bits for these page records using information received through the pmap
interface. For large page frame pools this information can be somewhat stale with-
out significantly effecting the effectiveness of the approximate LRU algorithm. The
kernel may also deallocate page frames on the in-use list (changing their state to
must-free). The kernel does not alter the pointers of the in-use list.

We have made a few small additions to the Mach kernel interface to support user-
level physical memory management. A POD registers with the kernel through the
phys-.mem_request() call. This call specifies the POD’s minimum number of pages,
the free-list low-water mark, and the periodic wakeup interval. The POD registers
objects to be backed by its page frame pool by calling phys.mem_register_object().
The kernel wakes up PODs through the phys.mem_pod_wakeup() call. A POD can
request that the kernel flush a list of pages through the phys_mem_flush_queue()
call. The kernel removes each page from the object to which it is attached. If the
page has been modified, the kernel invokes the pager through the current mem-
ory-object_data_write() interface.

3.4 Balancing demands for physical pages

The assignment of control over particular page frames to a POD is not permanent.
Page frames can be reassigned to meet changing patterns of use. New PODs can also
be created dynamically. The assignment of page frames to PODs is the responsibility
of a balance manager. Each POD reflects its “satisfaction” with its current memory
allotment through a parameter provided to the balance manager through the POD
record. Each POD has a declared minimum page requirement (the POD cannot
be started if this requirement cannot be met). Subject to these constraints, the
balance manager can shift free page frames from the free-list of one POD to that
of another. The computation of satisfaction parameters is specific to managers and
their proper computation is a subject for future research. Likewise, the balancing

USENIX Association Mach Symposium 195



of their requests will have to be examined in future work. Our present mechanism
simply provides the framework. In our initial design, the balance manager attempts
to maximize a weighted sum of these satisfaction parameters.

4 Implementation and Performance

In our initial implementation we have created user-level PODs implementing sim-
ple page replacement strategies. While our primary purpose is to create physical
memory managers for file and database management systems rather than for virtual
memory systems, we can run our system using a user-level POD to manage backing
store for virtual memory. In this case we change the default POD from a kernel
thread to one running at the user level.

Our implementation required some modifications of existing kernel data struc-
tures and their use, as well as the addition of some new structures. The principal
modifications include

e The kernel and PODs need to share two sets of data structures, the resident
page table and POD records (as shown in Figure 1). To allow this sharing,
an object containing both the resident page table and all POD records is
created during physical memory initialization. This object is mapped into a
POD’s address space as part of its registration through phys_mem_request().
For simplicity we decided to keep the object’s size static. This means that the
number of POD records and the size of the resident page table remains fixed.

e In the original Mach kernel, a page frame can be found in one of four places:
the free list, the active list, the inactive list, or a zone. In our kernel, a page
frame belongs to a POD’s free list, a POD’s in-use list, or to a zone. The
change in page frame states (and possible page moves) made it necessary to
change the page frame data structure and a number of kernel routines.

e When waiting for a page frame to be initialized by a pager during a page
fault, a fictitious page frame record is used as a place-holder pointed to by a
memory cache object. A fictitious page frame record does not point to any
physical page frame. In the original kernel, the page frame pointers of a real
and a fictitious page frame records are swapped once a new page has been
initialized, essentially exchanging the roles of the two records. For simplicity
we decided to map only real page frame records into the PODs’ address spaces.
Fictitious and real page frame records therefore cannot change roles. Instead
the record pointed to by the memory cache object is changed.

The principal additions to the kernel were the POD data structure and maps allow-
ing the POD to be found.

196 Mach Symposium USENIX Association



e The POD records mentioned above contain the following information: POD’s
task, POD’s port, free list pointer, free count, free list lock, transfer list pointer,
in-use list pointer, minimum free list size, free list low water mark, restart
interval, and time to next restart. In our current implementation, the ‘restart
interval’ and ‘time to next restart’ are not used.

e When a pager registers an object with the kernel, the kernel creates an object—
POD mapping (which is hashed according to the object). When the object is
actually mapped into an address space and created, the kernel fills the object’s
POD field from this mapping. Then, when the kernel needs to service a page
fault for the object, the kernel is able to allocate a page from the appropriate
POD’s pool.

Our initial implementation runs on a Sun 3/60 with 12 Mbytes of memory. For
our system, the cost of faulting on a zero-filled page supplied by an external pager
is about 3.2 ms. Consulting with the POD to find a free page at the time of the
fault adds an over head of approximately 14%. This is on the order of the cost
of consulting the external pager, and accords well with McNamee and Armstrong’s
10% overhead for consulting the external pager to obtain a free page [6]. In our case,
however, this overhead is a worst-case figure. Since the POD attempts to maintain
a free-list available to the kernel, it need not be consulted synchronously on every
page fault.

If a POD maintains a free list by freeing bursts of pages when invoked, most page
faults can be handled without invoking the POD synchronously. Consequently, the
cost of consulting a user-level POD rather than the current kernel page-out daemon
has little effect on the time taken to run a significant application. A series of compiles
while remaking the kernel, for example, consulted the POD between 35 and 39 times
over five runs, each taking nearly three minutes of wall clock time and approximately
102 seconds of combined system and user time. Thus the POD is consulted only
once every four to five seconds of real time and less than once every two to three
seconds of compute time. Not surprisingly, the differences in times between several
runs using the kernel page-out daemon and several runs with a user-level POD were
negligible. Frequent accesses to the POD can be artificially induced by creating
processes that access large amounts of memory randomly. In this case the critical
factor is disk I/O activity, rather than context switches between kernel and POD.

5 Conclusions

Systems in the future will have to handle a more diverse workload than they do
today. This workload will include managing very large data objects such as images,
audio streams, and video streams, as well as an increasing number of sophisticated

USENIX Association Mach Symposium 197



object managers and their underlying data management systems. All of these sys-
tems will rely on sophisticated use of caching for performance. It is therefore impor-
tant for operating systems to provide to incorporate mechanisms allowing diverse
memory management policies to be implemented, and to provide mechanisms for
mediating contention for memory among these subsystems.

Our design exposes important data structures to selected user-level processes.
This allows subsystems to take a direct role in managing physical memory assigned
to them. Our design provides an interface through which physical memory managers
can monitor the use of the page frames assigned to them and determine which pages
to flush. In other work, we are evaluating the demands placed on file system buffers
when handling photographic image files [10] to test the usefulness of this interface.
Our design allows memory to be shifted among pools at the command of a balance
manager within the kernel. We are investigating appropriate balancing policies.

References

[1] Hong-Tai Chou and David J. DeWitt. An evaluation of buffer management
strategies for relational database systems. In Proceedings of VLDB ’85, pages
127-141, Stockholm, Sweden, 1985.

[2] James R. Goodman. Coherency for multiprocessor virtual address caches. In
Proceedings of the 2nd International Conference on Architectural Support for
Programming Languages and Operating Systems, Palo Alto, California, October
1987.

[3] Roger Haskin, Yoni Malachi, Wayne Sawdon, and Gregory Chan. Recovery
management in QuickSilver. ACM Transactions on Computer Systems, 6(1):82—
108, February 1988.

[4] H. Levy and P. Lipman. Virtual memory management in the VAX/VMS op-
erating system. IEEE Computer, 22(3):35-41, March 1982.

[5] Keith Loepere. MACH 8 Kernel Principles. Open Software Foundation and
Carnegie Mellon University, 1991.

[6] Dylan McNamee and Katherine Armstrong. Extending the Mach external pager
interface to accommodate user-level page replacement policies. In Proceedings
of the USENIX Association Mach Workshop, pages 17-29, Burlington, Vermont
(USA), October 1990. USENIX Association.

[7] Sun Microsystems. SunOS 4.1 Programmer’s Manual. Sun Microsystems, Inc,
Mountainview, California, 1990.

198 Mach Symposium USENIX Association



[8] Michael N. Nelson. Virtual memory vs. the file system. Research Report 90/4,
Digital Western Research Laboratory, March 1990.

[9] James Van Sciver and Richard F. Rashid. Zone garbage collection. In Pro-
ceedings of the USENIX Association Mach Workshop, pages 1-15, Burlington,
Vermont (USA), October 1990. USENIX Association.

[10] Stuart Sechrest, Khaled Charif, and Wu-Chi Feng. File block costs of zooming
and panning in JPEG compressed images. Technical Report CSE-TR-98-91,
University of Michigan, 1991.

[11] Michael Stonebraker. Operating system support for database management.
Communications of the ACM, 24(7):412-418, July 1981.

[12] Michael Stonebraker. Managing persistent objects in a multi-level store. In
Proceedings of the 1991 ACM SIGMOD International Conference on Manage-
ment of Data, pages 2-11, Denver, Colorado (USA), June 1991. ACM, New
York (USA).

[13] Wen-Hann Wang, Jean-Loup Baer, and Henry M. Levy. Organization and
performance of a two-level virtual-real cache hierarchy. In Proceedings of the
16th Annual International Symposium on Computer Architecture, pages 140-
148, Jerusalem, Israel, June 1989.

[14] James Wyllie. Personal communication, October 1991.

USENIX Association Mach Symposium 199



