
Self-Securing Storage:

Protecting Data in Compromised Systems

John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A.N. Soules

Gregory R. Ganger

Carnegie Mellon University

Abstract

Self-securing storage prevents intruders from unde-
tectably tampering with or permanently deleting
stored data. To accomplish this, self-securing stor-
age devices internally audit all requests and keep
old versions of data for a window of time, regard-
less of the commands received from potentially com-
promised host operating systems. Within the win-
dow, system administrators have this valuable in-
formation for intrusion diagnosis and recovery. Our
implementation, called S4, combines log-structuring
with journal-based metadata to minimize the per-
formance costs of comprehensive versioning. Exper-
iments show that self-securing storage devices can
deliver performance that is comparable with conven-
tional storage systems. In addition, analyses indi-
cate that several weeks worth of all versions can rea-
sonably be kept on state-of-the-art disks, especially
when di�erencing and compression technologies are
employed.

1 Introduction

Despite the best e�orts of system designers and im-
plementors, it has proven diÆcult to prevent com-
puter security breaches. This fact is of growing im-
portance as organizations �nd themselves increas-
ingly dependent on wide-area networking (providing
more potential sources of intrusions) and computer-
maintained information (raising the signi�cance of
potential damage). A successful intruder can obtain
the rights and identity of a legitimate user or admin-
istrator. With these rights, it is possible to disrupt
the system by accessing, modifying, or destroying
critical data.

Even after an intrusion has been detected and termi-
nated, system administrators still face two diÆcult
tasks: determining the damage caused by the intru-
sion and restoring the system to a safe state. Dam-
age includes compromised secrets, creation of back
doors and Trojan horses, and tainting of stored data.
Detecting each of these is made diÆcult by crafty in-
truders who understand how to scrub audit logs and

disrupt automated tamper detection systems. Sys-
tem restoration involves identifying a clean backup
(i.e., one created prior to the intrusion), reinitializ-
ing the system, and restoring information from the
backup. Such restoration often requires a signi�-
cant amount of time, reduces the availability of the
original system, and frequently causes loss of data
created between the safe backup and the intrusion.

Self-securing storage o�ers a partial solution to these
problems by preventing intruders from undetectably
tampering with or permanently deleting stored data.
Since intruders can take the identity of real users and
even the host OS, any resource controlled by the op-
erating system is vulnerable, including the raw stor-
age. Rather than acting as slaves to host OSes, self-
securing storage devices view them, and their users,
as questionable entities for which they work. These
self-contained, self-controlled devices internally ver-
sion all data and audit all requests for a guaranteed
amount of time (e.g., a week or a month), thus pro-
viding system administrators time to detect intru-
sions. For intrusions detected within this window,
all of the version and audit information is available
for analysis and recovery. The critical di�erence be-
tween self-securing storage and host-controlled ver-
sioning (e.g., Elephant [29]) is that intruders can no
longer bypass the versioning software by compromis-
ing complex OSes or their poorly-protected user ac-
counts. Instead, intruders must compromise single-
purpose devices that export only a simple storage
interface, and in some con�gurations, they may have
to compromise both.

This paper describes self-securing storage and our
implementation of a self-securing storage server,
called S4. A number of challenges arise when stor-
age devices distrust their clients. Most importantly,
it may be diÆcult to keep all versions of all data for
an extended period of time, and it is not acceptable
to trust the client to specify what is important to
keep. Fortunately, storage densities increase faster
than most computer characteristics (100%+ per an-
num in recent years). Analysis of recent workload
studies [29, 34] suggests that it is possible to ver-

sion all data on modern 30{100GB drives for several
weeks. Further, aggressive compression and cross-
version di�erencing techniques can extend the intru-
sion detection window o�ered by self-securing stor-
age devices. Other challenges include eÆciently en-
coding the many metadata changes, achieving secure
administrative control, and dealing with denial-of-
service attacks.

The S4 system addresses these challenges with a
new storage management structure. Speci�cally, S4
uses a log-structured object system for data ver-
sions and a novel journal-based structure for meta-
data versions. In addition to reducing space utiliza-
tion, journal-based metadata simpli�es background
compaction and reorganization for blocks shared
across many versions. Experiments with S4 show
that the security and data survivability bene�ts of
self-securing storage can be realized with reason-
able performance. Speci�cally, the performance of
S4-enhanced NFS is comparable to FreeBSD's NFS
for both micro-benchmarks and application bench-
marks. The fundamental costs associated with self-
securing storage degrade performance by less than
13% relative to similar systems that provide no data
protection guarantees.

The remainder of this paper is organized as follows.
Section 2 discusses intrusion survival and recovery
diÆculties in greater detail. Section 3 describes how
self-securing storage addresses these issues, identi-
�es some challenges inherent to self-securing storage,
and discusses design solutions for addressing them.
Section 4 describes the implementation of S4. Sec-
tion 5 evaluates the performance and capacity over-
heads of self-securing storage. Section 6 discusses
a number of issues related to self-securing storage.
Section 7 discusses related work. Section 8 summa-
rizes this paper's contributions.

2 Intrusion Diagnosis and Recovery

Upon gaining access to a system, an intruder has
several avenues of mischief. Most intruders attempt
to destroy evidence of their presence by erasing or
modifying system log �les. Many intruders also in-
stall back doors in the system, allowing them to gain
access at will in the future. They may also install
other software, read and modify sensitive �les, or
use the system as a platform for launching addi-
tional attacks. Depending on the skill with which
the intruders hide their presence, there will be some
detection latency before the intrusion is discovered
by an automated intrusion detection system (IDS)
or by a suspicious user or administrator. During this

time, the intruders can continue their malicious ac-
tivities while users continue to use the system, thus
entangling legitimate changes with those of the in-
truders. Once an intrusion has been detected and
discontinued, the system administrator is left with
two diÆcult tasks: diagnosis and recovery.

Diagnosis is challenging because intruders can usu-
ally compromise the \administrator" account on
most operating systems, giving them full control
over all resources. In particular, this gives them
the ability to manipulate everything stored on the
system's disks, including audit logs, �le modi�ca-
tion times, and tamper detection utilities. Recov-
ery is diÆcult because diagnosis is diÆcult and be-
cause user-convenience is an important issue. This
section discusses intrusion diagnosis and recovery in
greater detail, and the next section describes how
self-securing storage addresses them.

2.1 Diagnosis

Intrusion diagnosis consists of three phases: detect-
ing the intrusion, discovering what weaknesses were
exploited (for future prevention), and determining
what the intruder did. All are diÆcult when the
intruder has free reign over storage and the OS.

Without the ability to protect storage from compro-
mised operating systems, intrusion detection may
be limited to alert users and system administrators
noticing odd behavior. Examining the system logs
is the most common approach to intrusion detec-
tion [7], but when intruders can manipulate the log
�les, such an approach is not useful. Some intrusion
detection systems also look for changes to important
system �les [16]. Such systems are vulnerable to in-
truders that can change what the IDS thinks is a
\safe" copy.

Determining how an intruder compromised the sys-
tem is often impossible in conventional systems, be-
cause he will scrub the system logs. In addition,
any exploit tools (utilities for compromising com-
puter systems) that may have been stored on the
target machine for use in multi-stage intrusions are
usually deleted. The common \solutions" are to try
to catch the intruder in the act or to hope that he
forgot to delete his exploit tools.

The last step in diagnosing an intrusion is to discover
what was accessed and modi�ed by the intruder.
This is diÆcult, because �le access and modi�ca-
tion times can be changed and system log �les can
be doctored. In addition, checksum databases are
of limited use, since they are e�ective only for static
�les.

2.2 Recovery

Because it is usually not possible to diagnose an
intruder's activities, full system recovery generally
requires that the compromised machine be wiped
clean and reinstalled from scratch. Prior to erasing
the entire state of the system, users may insist that
data, modi�ed since the intrusion, be saved. The
more e�ort that went into creating the changes, the
more motivation there is to keep this data. Unfortu-
nately, as the size and complexity of the data grows,
the likelihood that tampering will go unnoticed in-
creases. Foolproof assessment of the modi�ed data
is very diÆcult, and overlooked tampering may hide
tainted information or a back door inserted by the
intruder.

Upon restoring the OS and any applications on the
system, the administrator must identify a backup
that was made prior to the intrusion; the most re-
cent backup may not be usable. After restoring data
from a pre-intrusion backup, the legitimately mod-
i�ed data can be restored to the system, and users
may resume using the system. This process often
takes a considerable amount of time|time during
which users are denied service.

3 Self-Securing Storage

Self-securing storage ensures information survival
and auditing of all accesses by establishing a secu-
rity perimeter around the storage device. Conven-
tional storage devices are slaves to host operating
systems, relying on them to protect users' data. A
self-securing storage device operates as an indepen-
dent entity, tasked with the responsibility of not only
storing data, but protecting it. This shift of stor-
age security functionality into the storage device's
�rmware allows data and audit information to be
safeguarded in the presence of �le server and client
system intrusions. Even if the OSes of these sys-
tems are compromised and an intruder is able to
issue commands directly to the self-securing storage
device, the new security perimeter remains intact.

Behind the security perimeter, the storage device
ensures data survival by keeping previous versions
of the data. This history pool of old data versions,
combined with the audit log of accesses, can be used
to diagnose and recover from intrusions. This sec-
tion discusses the bene�ts of self-securing storage
and several core design issues that arise in realizing
this type of device.

3.1 Enabling intrusion survival

Self-securing storage assists in intrusion recovery by
allowing the administrator to view audit information
and quickly restore modi�ed or deleted �les. The
audit and version information also helps to diagnose
intrusions and detect the propagation of maliciously
modi�ed data.

Self-securing storage simpli�es detection of an in-
trusion since versioned system logs cannot be im-
perceptibly altered. In addition, modi�ed system
executables are easily noticed. Because of this, self-
securing storage makes conventional tamper detec-
tion systems obsolete.

Since the administrator has the complete picture of
the system's state, from intrusion until discovery, it
is considerably easier to establish the method used
to gain entry. For instance, the system logs would
have normally been doctored, but by examining the
versioned copies of the logs, the administrator can
see any messages that were generated during the in-
trusion and later removed. In addition, any exploit
tools temporarily stored on the system can be recov-
ered.

Previous versions of system �les, from before the
intrusion, can be quickly and easily restored by res-
urrecting them from the history pool. This prevents
the need for a complete re-installation of the operat-
ing system, and it does not rely on having a recent
backup or up-to-date checksums (for tamper detec-
tion) of system �les. After such restoration, critical
data can be incrementally recovered from the history
pool. Additionally, by utilizing the storage device's
audit log, it is possible to assess which data might
have been directly a�ected by the intruder.

The data protection that self-securing storage pro-
vides allows easy detection of modi�cations, selec-
tive recovery of tampered �les, prevention of data
loss due to out-of-date backups, and speedy recov-
ery since data need not be loaded from an o�-line
archive.

3.2 Device security perimeter

The device's security model is what makes the abil-
ity to keep old versions more than just a user con-
venience. The security perimeter consists of self-
contained software that exports only a simple stor-
age interface to the outside world and veri�es each
command's integrity before processing it. In con-
trast, most �le servers and client machines run a
multitude of services that are susceptible to attack.
Since the self-securing storage device is a single-

function device, the task of making it secure is much
easier; compromising its �rmware is analogous to
breaking into an IDE or SCSI disk.

The actual protocol used to communicate with the
storage device does not a�ect the data integrity that
the new security perimeter provides. The choice of
protocol does, however, a�ect the usefulness of the
audit log in terms of the actions it can record and its
correctness. For instance, the NFS protocol provides
no authentication or integrity guarantees, therefore
the audit log may not be able to accurately link
a request with its originating client. Nonetheless,
the principles of self-securing storage apply equally
to \enhanced" disk drives, network-attached storage
servers, and �le servers.

For network-attached storage devices (as opposed to
devices attached directly to a single host system),
the new security perimeter becomes more useful if
the device can verify each access as coming from
both a valid user and a valid client. Such veri�cation
allows the device to enforce access control decisions
and partially track propagation of tainted data. If
clients and users are authenticated, accesses can be
tracked to a single client machine, and the device's
audit log can yield the scope of direct damage from
the intrusion of a given machine or user account.

3.3 History pool management

The old versions of objects kept by the device com-
prise the history pool. Every time an object is
modi�ed or deleted, the version that existed just
prior to the modi�cation becomes part of the his-
tory pool. Eventually an old version will age and
have its space reclaimed. Because clients cannot be
trusted to demarcate versions consisting of multiple
modi�cations, a separate version should be kept for
every modi�cation. This is in contrast to versioning
�le systems that generally create new versions only
when a �le is closed.

A self-securing storage device guarantees a lower
bound on the amount of time that a deprecated ob-
ject remains in the history pool before it is reclaimed.
During this window of time, the old version of the
object can be completely restored by requesting that
the drive copy forward the old version, thus mak-
ing a new version. The guaranteed window of time
during which an object can be restored is called the
detection window. When determining the size of this
window, the administrator must examine the trade-
o� between the detection latency provided by a large
window and the extra disk space that is consumed
by the proportionally larger history pool.

Although the capacity of disk drives is growing at
a remarkable rate, it is still �nite, which poses two
problems:

1. Providing a reasonable detection window in ex-
ceptionally busy systems.

2. Dealing with malicious users that attempt to
�ll the history pool. (Note that space ex-
haustion attacks are not unique to self-securing
storage. However, device-managed versioning
makes conventional user quotas ine�ective for
limiting them.)

In a busy system, the amount of data written could
make providing a reasonable detection window dif-
�cult. Fortunately, the analysis in Section 5.2 sug-
gests that multi-week detection windows can be pro-
vided in many environments at a reasonable cost.
Further, aggressive compression and di�erencing of
old versions can signi�cantly extend the detection
window.

Deliberate attempts to over
ow the history pool can-
not be prevented by simply increasing the space
available. As with most denial of service attacks,
there is no perfect solution. There are three
awed
approaches to addressing this type of abuse. The
�rst is to have the device reclaim the space held by
the oldest objects when the history pool is full. Un-
fortunately, this would allow an intruder to destroy
information by causing its previous instances to be
reclaimed from the over
owing history pool. The
second
awed approach is to stop versioning objects
when the history pool �lls; although this will allow
recovery of old data, system administrators would
no longer be able to diagnose the actions of an in-
truder or di�erentiate them from subsequent legiti-
mate changes. The third
awed approach is for the
drive to deny any action that would require addi-
tional versions once the history pool �lls; this would
result in denial of service to all users (legitimate or
not).

Our hybrid approach to this problem is to try to pre-
vent the history pool from being �lled by detecting
probable abuses and throttling the source machine's
accesses. This allows human intervention before
the system is forced to choose from the above poor
alternatives. Selectively increasing latency and/or
decreasing bandwidth allows well-behaved users to
continue to use the system even while it is under at-
tack. Experience will show how well this works in
practice.

Since the history pool will be used for intrusion di-
agnosis and recovery, not just recovering from acci-

dental destruction of data, it is diÆcult to construct
a safe algorithm that would save space in the his-
tory pool by pruning versions within the detection
window. Almost any algorithm that selectively re-
moves versions has the potential to be abused by
an intruder to cover his tracks and to successfully
destroy/modify information during a break-in.

3.4 History pool access control

The history pool contains a wealth of information
about the system's recent activity. This makes ac-
cessing the history pool a sensitive operation, since
it allows the resurrection of deleted and overwrit-
ten objects. This is a standard problem posed by
versioning �le systems, but is exacerbated by the
inability to selectively delete versions.

There are two basic approaches that can be taken
toward access control for the history pool. The �rst
is to allow only a single administrative entity to have
the power to view and restore items from the history
pool. This could be useful in situations where the
old data is considered to be highly sensitive. Having
a single tightly-controlled key for accessing historical
data decreases the likelihood of an intruder gaining
access to it. Although this improves security, it pre-
vents users from being able to recover from their
own mistakes, thus consuming the administrator's
time to restore users' �les. The second approach
is to allow users to recover their own old objects
(in addition to the administrator). This provides
the convenience of a user being able to recover their
deleted data easily, but also allows an intruder, who
obtains valid credentials for a given user, to recover
that user's old �le versions.

Our compromise is to allow users to selectively make
this decision. By choice, a user could thus delete an
object, version, or all versions from visibility by any-
one other than the administrator, since permanent
deletion of data via any other method than aging
would be unsafe. This choice allows users to en-
joy the bene�ts of versioning for presentations and
source code, while preventing access to visible ver-
sions of embarrassing images or unsent e-mail drafts.

3.5 Administrative access

A method for secure administrative access is needed
for the necessary but dangerous commands that a
self-securing storage device must support. Such
commands include setting the guaranteed detection
window, erasing parts of the history pool, and ac-
cessing data that users have marked as \unrecover-
able." Such administrative access can be securely

granted in a number of ways, including physical ac-
cess (e.g.,
ipping a switch on the device) or well-
protected cryptographic keys.

Administrative access is not necessary for users at-
tempting to recover their own �les from accidents.
Users' accesses to the history pool should be han-
dled with the same form of protection used for their
normal accesses. This is acceptable for user activity,
since all actions permitted for ordinary users can be
audited and repaired.

3.6 Version and administration tools

Since self-securing storage devices store versions of
raw data, users and administrators will need assis-
tance in parsing the history pool. Tools for travers-
ing the history must assist by bridging the gap be-
tween standard �le interfaces and the raw versions
that are stored by the device. By being aware of
both the versioning system and formats of the data
objects, utilities can present interfaces similar to
that of Elephant [29], with \time-enhanced" versions
of standard utilities such as ls and cp. This is ac-
complished by extending the read interfaces of the
device to include an optional time parameter. When
this parameter is speci�ed, the drive returns data
from the version of the object that was valid at the
requested time.

In addition to providing a simple view of data ob-
jects in isolation, intrusion diagnosis tools can utilize
the audit log to provide an estimate of damage. For
instance, it is possible to see all �les and directo-
ries that a client modi�ed during the period of time
that it was compromised. Further estimates of the
propagation of data written by compromised clients
are also possible, though imperfect. For example,
diagnosis tools may be able to establish a link be-
tween objects based on the fact that one was read
just before another was written. Such a link between
a source �le and its corresponding object �le would
be useful if a user determines that a source �le had
been tampered with; in this situation, the object �le
should also be restored or removed. Exploration of
such tools will be an important area of future work.

4 S4 Implementation

S4 is a self-securing storage server that transpar-
ently maintains an eÆcient object-versioning system
for its clients. It aims to perform comparably with
current systems, while providing the bene�ts of self-
securing storage and minimizing the corresponding
space explosion.

RPC Type Allows

Time-Based

Access

Description

Create no Create an object

Delete no Delete an object

Read yes Read data from an object

Write no Write data to an object

Append no Append data to the end of an object

Truncate no Truncate an object to a speci�ed length

GetAttr yes Get the attributes of an object (S4-speci�c and opaque)

SetAttr no Set the opaque attributes of an object

GetACLByUser yes Get an ACL entry for an object given a speci�c UserID

GetACLByIndex yes Get an ACL entry for an object by its index in the object's ACL

table

SetACL no Set an ACL entry for an object

PCreate no Create a partition (associate a name with an ObjectID)

PDelete no Delete a partition (remove a name/ObjectID association)

PList yes List the partitions

PMount yes Retrieve the ObjectID given its name

Sync not applicable Sync the entire cache to disk

Flush not applicable Removes all versions of all objects between two times

FlushO not applicable Removes all versions of an object between two times

SetWindow not applicable Adjusts the guaranteed detection window of the S4 device

Table 1: S4 Remote Procedure Call List { Operations that support time-based access accept a time in addition to the

normal parameters; this time is used to �nd the appropriate version in the history pool. Note that all modi�cations create new

versions without a�ecting the previous versions.

4.1 A self-securing object store

S4 is a network-attached object store with an in-
terface similar to recent object-based disk propos-
als [9, 24]. This interface simpli�es access control
and internal performance enhancement relative to a
standard block interface.

In S4, objects exist in a
at namespace managed
by the \drive" (i.e., the object store). When ob-
jects are created, they are given a unique identi�er
(ObjectID) by the drive, which is used by the client
for all future references to that object. Each object
has an access control structure that speci�es which
entities (users and client machines) have permission
to access the object. Objects also have metadata, �le
data, and opaque attribute space (for use by client
�le systems) associated with them.

To enable persistent mount points, a S4 drive sup-
ports \named objects." The object names are an
association of an arbitrary ASCII string with a par-
ticular ObjectID. The table of named objects is im-
plemented as a special S4 object accessed through

dedicated partition manipulation RPC calls. This
table is versioned in the same manner as other ob-
jects on the S4 drive.

4.1.1 S4 RPC interface

Table 1 lists the RPC commands supported by the
S4 drive. The read-only commands (read, getattr,
getacl, plist, and pmount) accept an optional time

parameter. When the time is provided, the drive
performs the read request on the version of the ob-
ject that was \most current" at the time speci�ed,
provided that the user making the request has suÆ-
cient privileges.

The ACLs associated with objects have the tradi-
tional set of
ags, with one addition|the Recovery

ag. The Recovery
ag determines whether or not a
given user may read (recover) an object version from
the history pool once it is overwritten or deleted.
When this
ag is clear, only the device administrator
may read this object version once it is pushed into

the history pool. The Recovery
ag allows users to
decide the sensitivity of old versions on a �le-by-�le
basis.

4.1.2 S4/NFS translation

Since one goal of self-securing storage is to provide
an enhanced level of security and convenience on
existing systems, the prototype minimizes changes
to client systems. In keeping with this philosophy,
the S4 drive is network-attached and an \S4 client"
daemon serves as a user-level �le system transla-
tor (Figure 1a). The S4 client translates requests
from a �le system on the target OS to S4-speci�c
requests for objects. Because it runs as a user-level
process, without operating systemmodi�cations, the
S4 client should port to di�erent systems easily.

The S4 client currently has the ability to trans-
late NFS version 2 requests to S4 requests. The
S4 client appears to the local workstation as a NFS
server. This emulated NFS server is mounted via
the loopback interface to allow only that worksta-
tion access to the S4 client. The client receives the
NFS requests and translates them into S4 opera-
tions. NFSv2 was chosen over version 3 because its
client is well-supported within Linux, and its lack of
write caching allows the drive to maintain a detailed
account of client actions.

Figure 1 shows two approaches to using the S4 client
to serve NFS requests with the S4 drive. The �rst
places the S4 client on the client system, as described
previously, and uses the S4 drive as a network-
attached storage device. The second incorporates
the S4 client functionality into the server, as a NFS-
to-S4 translator. This con�guration acts as a S4-
enhanced NFS server (Figure 1b) for normal �le sys-
tem activity, but recovery must still be accomplished
through the S4 protocol since the NFS protocol has
no notion of \time-based" access.

The implementation of the NFS �le system overlays
�les and directories on top of S4 objects. Objects
used as directories contain a list of ASCII �lenames
and their associated NFS �le handles. Objects used
as �les and symlinks contain the corresponding data.
The NFS attribute structure is maintained within
the opaque attribute space of each object.

When the S4 client receives a NFS request, the NFS
�le handle (previously constructed by the S4 client)
can be directly hashed into the ObjectID of the di-
rectory or �le. The S4 client can then make requests
directly to the drive for the desired data.

S4 DriveApplication
Client

Kernel

Client

S4 Client

S4 RPCNFS

Kernel

RPC

S4 RPC

Drive

(a) Baseline S4 (network-attached object store)

Client Drive

Kernel Kernel

Application S4 Drive

NFS

S4 RPCNFS S4 RPC

Client S4-NFS
Translator

(b) S4-enhanced NFS server

Figure 1: Two S4 Con�gurations { This �gure shows two
S4 con�gurations that provide self-securing storage via a NFS

interface. (a) shows S4 as a network-attached object store

with the S4 client daemon translating NFS requests to S4-

speci�c RPCs. (b) shows a self-securing NFS server created

by combining the NFS-to-S4 translation and the S4 drive.

To support NFSv2 semantics, the client sends an ad-
ditional RPC to the drive to
ush bu�ered writes to
the disk at the end of each NFS operation that mod-
i�es the state of one or more objects. Since this RPC
does not return until the synchronization is com-
plete, NFSv2 semantics are supported even though
the drive normally caches writes.

Because the client overlays a �le system on top of
the
at object namespace, some �le system oper-
ations require several drive operations (and hence
RPC calls). These sets of operations are analogous
to the operations that �le systems must perform
on block-based devices. To minimize the number
of RPC calls necessary, the S4 client aggressively
maintains attribute and directory caches (for reads
only). The drive also supports batching of setattr,
getattr, and sync operations with create, read,
write, and append operations.

4.2 S4 drive internals

The main goals for the S4 drive implementation
are to avoid performance overhead and to minimize
wasted space, while keeping all versions of all objects
for a given period of time. Achieving these goals re-

quires a combination of known and novel techniques
for organizing on-disk data.

4.2.1 Log-structuring for eÆcient writes

Since data within the history pool cannot be over-
written, the S4 drive uses a log structure similar to
LFS [27]. This structure allows multiple data and
metadata updates to be clustered into fewer, larger
writes. Importantly, it also obviates any need to
move previous versions before writing.

In order to prune old versions and reclaim unused
segments, S4 includes a background cleaner. While
the goal of this cleaner is similar to that of the LFS
cleaner, the design must be slightly di�erent. Specif-
ically, deprecated objects cannot be reclaimed unless
they have also aged out of the history pool. There-
fore, the S4 cleaner searches through the object map
for objects with an oldest time greater than the de-
tection window. Once a suitable object is found,
the cleaner permanently frees all data and meta-
data older than the window. If this clears all of
the resources within a segment, the segment can be
marked as free and used as a fresh segment for fore-
ground activity.

4.2.2 Journal-based metadata

To eÆciently keep all versions of object metadata,
S4 uses journal-based metadata, which replaces most
instances of metadata with compact journal entries.

Because clients are not trusted to notify S4 when
objects are closed, every update creates a new ver-
sion and thus new metadata. For example, when
data pointed to by indirect blocks is modi�ed, the
indirect blocks must be versioned as well. In a con-
ventional versioning system, a single update to a
triple-indirect block could require four new blocks
as well as a new inode. Early experiments with this
type of versioning system showed that modifying a
large �le could cause up to a 4x growth in disk us-
age. Conventional versioning �le systems avoid this
performance problem by only creating new versions
when a �le is closed.

In order to signi�cantly reduce these problems, S4
encodes metadata changes in a journal that is main-
tained for the duration of the detection window. By
persistently keeping journal entries of all metadata
changes, metadata writes can be safely delayed and
coalesced, since individual inode and indirect block
versions can be recreated from the journal. To avoid

����
����
����
����

���
���
���
���

���
���
���
���

Block
Data

Block
Indirect

Block
Data

Block
Indirect

Block
Data

Block
Indirect

Log
Inode

Block
New

Indirect
New

Inode
New

Block
New

Sector
Journal

Inode

InodeInode

Original state

Journal-based MetadataConventional Versioning

Figure 2: EÆciency of Metadata Versioning { The

above �gure compares metadata management in a conven-

tional versioning system to S4's journal-based metadata ap-

proach. When writing to an indirect block, a conventional

versioning system allocates a new data block, a new indirect

block, and a new inode. Also, the identity of the new in-

ode must be recorded (e.g., in an Elephant-like inode log).

With journal-based metadata, a single journal entry suÆces,

pointing to both the new and old data blocks.

rebuilding an object's current state from the jour-
nal during normal operation, an object's metadata
is checkpointed to a log segment before being evicted
from the cache. Unlike conventional journaling, such
checkpointing does not prune journal space; only ag-
ing may prune space. Figure 2 depicts the di�erence
in disk space usage between journal-based metadata
and conventional versioning when writing data to an
indirect data block.

In addition to the entries needed to describe meta-
data changes, a checkpoint entry is needed. This
checkpoint entry denotes writing a consistent copy
of all of an object's metadata to disk. It is necessary
to have at least one checkpoint of an object's meta-
data on disk at all times, since this is the starting
point for all time-based and crash recovery recre-
ations.

Storing an object's changes within the log is done us-
ing journal sectors. Each journal sector contains the
packed journal entries that refer to a single object's
changes made within that segment. The sectors are
identi�ed by segment summary information. Jour-
nal sectors are chained together backward in time to
allow for version reconstruction.

Journal-based metadata can also simplify cross-
version di�erential compression [3]. Since the blocks
changed between versions are noted within each en-
try, it is easy to �nd the blocks that should be com-

pared. Once the di�erencing is complete, the old
blocks can be discarded, and the di�erence left in
its place. For subsequent reads of old versions, the
data for each block must be recreated as the en-
tries are traversed. Cross-version di�erencing of old
data will often be e�ective in reducing the amount
of space used by old versions. Adding di�erencing
technology into the S4 cleaner is an area of future
work.

4.2.3 Audit log

In addition to maintaining previous object versions,
S4 maintains an append-only audit log of all re-
quests. This log is implemented as a reserved object
within the drive that cannot be modi�ed except by
the drive itself. However, it can be read via RPC op-
erations. The data written to the audit log includes
command arguments as well as the originating client
and user. All RPC operations (read, write, and ad-
ministrative) are logged. Since the audit log may
only be written by the drive front end, it need not
be versioned, thus increasing space eÆciency and de-
creasing performance costs.

5 Evaluation of self-securing storage

This section evaluates the feasibility of self-securing
storage. Experiments with S4 indicate that compre-
hensive versioning and auditing can be performed
without a signi�cant performance impact. Also, es-
timates of capacity growth, based on reported work-
load characterizations, indicate that history win-
dows of several weeks can easily be supported in
several real environments.

5.1 Performance

The main performance goal for S4 is to be compara-
ble to other networked �le systems while o�ering en-
hanced security features. This section demonstrates
that this goal is achieved and also explores the over-
heads speci�cally associated with self-securing stor-
age features.

5.1.1 Experimental Setup

The four systems used in the experiments had the
following con�gurations: (1) a S4 drive running
on RedHat 6.1 Linux communicating with a Linux
client over S4 RPC through the S4 client module
(Figure 1a), (2) a S4-enhanced NFS server running

on RedHat 6.1 Linux communicating with a Linux
client over NFS (Figure 1b), (3) a FreeBSD 4.0
server communicating with a Linux client over NFS,
and (4) a RedHat 6.1 Linux server communicating
with a Linux client over NFS. Since Linux NFS does
not comply with the NFSv2 semantics of commit-
ting data to stable storage before operation com-
pletion, the Linux server's �le system was mounted
synchronously to approximate NFS semantics. In all
cases, NFS was con�gured to use 4KB read/write
transfer sizes, the only option supported by Linux.
The FreeBSD NFS con�guration exports a BSD FFS
�le system, while the Linux NFS con�guration ex-
ports an ext2 �le system. All experiments were run
�ve times and have a standard deviation of less than
3% of the mean. The S4 drives were con�gured with
a 128MB bu�er cache and a 32MB object cache. The
Linux and FreeBSD NFS servers' caches could grow
to �ll local memory (512MB).

In all experiments, the client system has a 550MHz
Pentium III, 128MB RAM, and a 3Com 3C905B
100Mb network adapter. The servers have a 600MHz
Pentium III, 512MB RAM, a 9GB 10; 000RPM Ul-
tra2 SCSI Seagate Cheetah drive, an Adaptec AIC-
7896/7 Ultra2 SCSI controller, and an Intel Ether-
Express Pro100 100Mb network adapter. The client
and server are on the same subnet and are connected
by a 100Mb network switch. All versions of Linux
use an unmodi�ed 2.2.14 kernel, and the BSD sys-
tem uses a stock FreeBSD 4.0 installation.

To evaluate performance for common workloads,
results from two application benchmarks are pre-
sented: the PostMark benchmark [14] and the SSH-
build benchmark [36]. These benchmarks crudely
represent Internet server and software development
workloads, respectively.

PostMark was designed to measure the performance
of a �le system used for electronic mail, netnews,
and web based services. It creates a large num-
ber of small randomly-sized �les (between 512B and
9KB) and performs a speci�ed number of transac-
tions on them. Each transaction consists of two sub-
transactions, with one being a create or delete and
the other being a read or append. The default con-
�guration used for the experiments consists of 20,000
transactions on 5,000 �les, and the biases for trans-
action type are equal.

The SSH-build benchmark was constructed as a
replacement for the Andrew �le system bench-
mark [12]. It consists of 3 phases: The unpack phase,
which unpacks the compressed tar archive of SSH
v1.2.27 (approximately 1MB in size before decom-

Transaction Time Creation Time
0

100

200

300

400

500

600

700

800

900

T
im

e
(S

ec
on

ds
)

S4
S4−NFS
BSD−NFS
Linux−NFS

Figure 3: PostMark Benchmark

pression), stresses metadata operations on �les of
varying sizes. The con�gure phase consists of the
automatic generation of header �les and Make�les,
which involves building various small programs that
check the existing system con�guration. The build
phase compiles, links, and removes temporary �les.
This last phase is the most CPU intensive, but it
also generates a large number of object �les and a
few executables.

5.1.2 Comparison of the servers

To gauge the overall performance of S4, the four
systems described earlier were compared. As hoped,
S4 performs comparably to the existing NFS servers.

Figure 3 shows the results of the PostMark bench-
mark. The times for both the creation (time to cre-
ate the initial 5000 �les) and transaction phases of
PostMark are shown for each system. The S4 sys-
tems' performance is similar to both BSD and Linux
NFS performance, doing slightly better due to their
log structured layout.

The times of SSH-build's three phases are shown
in Figure 4. Performance is similar across the S4
and BSD con�gurations. The superior performance
of the Linux NFS server in the con�gure stage is due
to a much lower number of write I/Os than in the
BSD and S4 servers, apparently due to a
aw in the
synchronous mount option under Linux.

Unpack Configure Build
0

50

100

150

T
im

e
(s

ec
on

ds
)

S4
S4−NFS
BSD−NFS
Linux−NFS

Figure 4: SSH-build Benchmark

5.1.3 Overhead of the S4 cleaner

In addition to the more visible process of creating
new versions, S4 must eventually garbage collect
data that has expired from the history pool. This
garbage collection comes at a cost. The potential
overhead of the cleaner was measured by running
the PostMark benchmark with 50,000 transactions
on increasingly large sets of initial �les. For each set
of initial �les, the benchmark was run once with the
cleaner disabled and once with the cleaner compet-
ing with foreground activity.

The results shown in Figure 5 represent PostMark
running with the initial set of �les �lling between
2% and 90% of a 2GB disk. As expected, when the
working set increases, performance of the normal S4
system degrades due to increasingly poor cache and
disk locality. The sharp drop in the graph from 2%
to 10% is caused by the fact that the set of �les
and data expands beyond the bounds of the drive's
cache.

Although the S4 cleaner is slightly di�erent, it was
expected to behave similarly to a standard LFS
cleaner, which has up to an approximate 34% de-
crease in performance [30]. The S4 cleaner is slightly
more intrusive, degrading performance by approxi-
mately 50% in the worst case. The greater degra-
dation is attributed mainly to the additional reads
necessary when cleaning objects rather than seg-
ments. In addition, the S4 cleaner has not been
tuned and does not include known techniques for
reducing cleaner performance problems [21].

 0% 20% 40% 60% 80% 100%
0

5

10

15

20

25

30

35

40

45

T
ra

ns
ac

tio
ns

/S
ec

on
d

Disk capacity utilization

No Cleaner
Cleaner

Figure 5: Overhead of foreground cleaning in S4 {

This �gure shows the transaction performance of S4 running

the PostMark benchmark with varying capacity utilizations.

The solid line shows system performance on a system without

cleaning. The dashed line shows system performance in the

presence of continuous foreground cleaner activity.

5.1.4 Overhead of the S4 audit log

In addition to versioning, self-securing storage de-
vices keep an audit log of all connections and com-
mands sent to the drive. Recording this audit log
of events has some cost. In the worst case, all data
written to the disk belongs to the audit log. In this
case, one disk write is expected approximately ev-
ery 750 operations. In the best case, large writes,
the audit log overhead is almost non-existent, since
the writes of the audit log blocks are hidden in
the segment writes of the requests. For the macro-
benchmarks, the performance penalty ranged be-
tween 1% and 3%.

For a more focused view of this overhead, a set of
micro-benchmarks were run with audit logging en-
abled and disabled. The micro-benchmarks proceed
in three phases: creation of 10,000 1KB �les (split
across 10 directories), reads of the newly created �les
in creation order, and deletion of the �les in creation
order.

Figure 6 shows the results. The create and delete
phases exhibit a 2.8% and 2.9% decrease in perfor-
mance, respectively, and the read phase exhibits a
7.2% decrease in performance. Read performance
su�ers a larger penalty because the audit log blocks
become interwoven with the data blocks in the create
phase. This reduces the number of �les packed into
each segment, which in turn increases the number of
segment reads required.

Creates Reads Deletes
0

50

100

150

200

250

300

350

400

10,000 1KB File Accesses

F
ile

s/
S

ec
on

d

Auditing
No Auditing

Figure 6: Auditing Overhead in S4 { This �gure shows

the impact on small �le performance caused by auditing in-

coming client requests.

5.1.5 Fundamental performance costs

There are three fundamental performance costs
of self-securing storage: versioning, auditing, and
garbage collection. Versioning can be achieved at
virtually no cost by combining journal-based meta-
data with the LFS structure. Auditing creates a
small performance penalty of 1% to 3%, according
to application benchmarks. The �nal performance
cost, garbage collection, is more diÆcult to quantify.
The extra overhead of S4 cleaning in comparison to
standard LFS cleaning comes mainly from the dif-
ference in utilized space due to the history pool.

The worst-case performance penalty for garbage col-
lection in S4 can be estimated by comparing the
cleaning overhead at two space utilizations: the
space utilized by the active set of objects and the
space utilized by the active set combined with the
history pool. For example, assume that the active
set utilizes 60% of the drive's space and the history
pool another 20%. For PostMark, the cleaning over-
head is the di�erence between cleaning performance
and standard performance seen at a given space uti-
lization in Figure 5. For 60% utilization, the clean-
ing overhead is 43%. For 80% utilization, it is 53%.
Thus, in this example, the extra cleaning overhead
caused by keeping the history pool is 10%.

There are several possibilities for reducing cleaner
overhead for all space utilizations. With expected
detection windows ranging into the hundreds of
days, it is likely that the history pool can be ex-
tended until such a time that the drive becomes idle.
During idle time, the cleaner can run with no observ-

0 100 200 300 400 500

AFS 96

HPUX 99

NT 99

Time in Days

Base
Differencing
Compression

Figure 7: Projected Detection Window { The expected

detection window that could be provided by utilizing 10GB

of a modern disk drive. This conservative history pool would

consume only 20% of a 50GB disk's total capacity. The base-

line number represents the projected number of days worth of

history information that can be maintained within this 10GB

of space. The gray regions show the projected increase that

cross-version di�erencing would provide. The black regions

show the further increase expected from using compression in

addition to di�erencing.

able overhead [2]. Also, recent research into tech-
nologies such as freeblock scheduling o�er standard
LFS cleaning at almost no cost [18]. This technique
could be extended for cleaning in S4.

5.2 Capacity Requirements

To evaluate the size of the detection window that
can be provided, three recent workload studies were
examined. Figure 7 shows the results of approxi-
mations based on worst-case write behavior. Spa-
sojevic and Satyanarayanan's AFS trace study [32]
reports approximately 143MB per day of write traf-
�c per �le server. The AFS study was conducted us-
ing 70 servers (consisting of 32; 000 cells) distributed
across the wide area, containing a total of 200GB of
data. Based on this study, using just 20% of a mod-
ern 50GB disk would yield over 70 days of history
data. Even if the writes consume 1GB per day per
server, as was seen by Vogels' Windows NT �le us-
age study [34], 10 days worth of history data can be
provided. The NT study consisted of 45 machines
split into personal, shared, and administrative do-
mains running workloads of scienti�c processing, de-
velopment, and other administrative tasks. Santry,
et al. [29] report a write data rate of 110MB per
day. In this case, over 90 days of data could be
kept. Their environment consisted of a single �le
system holding 15GB of data that was being used

by a dozen researchers for development.

Much work has been done in evaluating the eÆciency
of di�erencing and compression [3, 4, 5]. To brie
y
explore the potential bene�ts for S4, its code base
was retrieved from the CVS repository at a single
point each day for a week. After compiling the code,
both di�erencing and di�erencing with compression
were applied between each tree and its direct neigh-
bor in time using Xdelta [19, 20]. After applying
di�erencing, the space eÆciency increased by 200%.
Applying compression added an additional 200% for
a total space eÆciency of 500%. These results are in
line with previous work. Applying these estimates to
the above workloads indicates that a 10GB history
pool can provide a detection window of between 50
and 470 days.

6 Discussion

This section discusses several important implications
of self-securing storage.

Selective versioning: There are data that users
would prefer not to have backed up at all. The com-
mon approach to this is to store them in directories
known to be skipped by the backup system. Since
one of the goals of S4 is to allow recovery of exploit
tools, it does not support designating objects as non-
versioned. A system may be con�gured with non-S4
partitions to support selective versioning. While this
would provide a way to prevent versioning of tempo-
rary �les and other non-critical data, it would also
create a location where an intruder could temporar-
ily store exploit tools without fear that they will be
recovered.

Versioning vs. snapshots: Self-securing stor-
age can be implemented with frequent copy-on-write
snapshots [11, 12, 17] instead of versioning, so long
as snapshots are kept for the full detection window.
Although the audit log can still provide a record of
what blocks are changed, snapshots often will not al-
low administrators to recover short-lived �les (e.g.,
exploit tools) or intermediate versions (e.g., system
log �le updates). Also, legitimate changes are only
guaranteed to survive malicious activity if they sur-
vive to the next snapshot time. Of course, the po-
tential scope of such problems can be reduced by
shrinking the time between snapshots. The compre-
hensive versioning promoted in this paper represents
the natural end-point of such shrinking|every mod-
i�cation creates a new snapshot.

Versioning �le systems vs. self-securing stor-
age: Versioning �le systems excel at providing users

with a safety net for recovery from accidents. They
maintain old �le versions long after they would be
reclaimed by the S4 system, but they provide lit-
tle additional system security. This is because they
rely on the host's OS for security and aggressively
prune apparently insigni�cant versions. By combin-
ing self-securing storage with long-term landmark
versioning [28], recovery from users' accidents could
be enhanced while also maintaining the bene�ts of
intrusion survival.

Self-securing storage for databases: Most
databases log all changes in order to protect internal
consistency in the face of system crashes. Some in-
stitutions also retain these logs for long-term audit-
ing purposes. All information needed to understand
and recover from malicious behavior can be kept, in
database-speci�c form, in these logs. Self-securing
storage can increase the post-intrusion recoverabil-
ity of database systems in two ways: (1) by prevent-
ing undetectable tampering with stored log records,
and (2) by preventing undetectable changes to data
that bypass the log. After an intrusion, self-securing
storage allows a database system to verify its log's
integrity and con�rm that all changes are correctly
re
ected in the log|the database system can then
safely use its log for subsequent recovery.

Client-side cache e�ects: In order to improve ef-
�ciency, most client systems use caches to minimize
storage latencies. This is at odds with the desire
to have storage devices audit users' accesses and
capture exploit tools. Client-side read caches hide
data dependency information that would otherwise
be available to the drive in the form of reads followed
quickly by writes. However, this information could
be provided by client systems as (questionable) hints
during writes. Write caches cause a more serious
problem when �les are created then quickly deleted,
thus never being sent to the drive. This could cause
diÆculties with capturing exploit tools, since they
may never be written to the drive. Although client
cache e�ects may obscure some of the activity in the
client system, data that are stored on a self-securing
storage device are still completely protected.

Object-based vs. block-based storage: Imple-
menting a self-securing storage device with a block
interface adds several diÆculties. Since objects are
designed to contain one data item (�le or directory),
enforcing access control at this level is much more
manageable than attempting to assign permissions
on a per-block basis. In addition, maintaining ver-
sions of objects as a whole, rather than having to col-
lect and correlate individual blocks, simpli�es recov-
ery tools and internal reorganization mechanisms.

Multi-device coordination: Multi-device coordi-
nation is necessary for operations such as striping
data or implementing RAID across multiple self-
securing disks or �le servers. In addition to the co-
ordination necessary to ensure that multiple copies
of data are synchronized, recovery operations must
also coordinate old versions. On the other hand,
clusters of self-securing storage devices could main-
tain a single history pool and balance the load of
versioning objects. Note that a self-securing storage
device containing several disks (e.g., a self-securing
disk array) does not have these issues. Additionally,
it has the ability to keep old versions and current
data on separate disks.

7 Related Work

Self-securing storage and S4 build on many ideas
from previous work. Perhaps the clearest example is
versioning: many versioned �le systems have helped
their users to recover from mistakes [22, 10]. Santry,
et al., provide a good discussion of techniques for
traversing versions and deciding what to retain [29].
S4's history pool corresponds to Elephant's \keep
all" policy (during its detection window), and it uses
Elephant's time-based access. The primary advan-
tage of S4 over such systems is that it has been par-
titioned from client operating systems. While this
creates another layer of abstraction, it adds to the
survivability of the storage.

A self-securing disk drive would be another instance
of many recent \smart disk" systems [1, 8, 15, 26,
35]. All of these exploit the increasing computation
power of such devices. Some also put these devices
on networks and exploit an object-based interface.
There is now an ANSI X3T10 (SCSI) working group
looking to create a new standard for object-based
storage devices. The S4 interface is similar to these.

The standard method of intrusion recovery is to keep
a periodic backup of �les on trusted storage. Sev-
eral �le systems simplify this process by allowing a
snapshot to be taken of a �le system [11, 12, 17].
This snapshot can then be backed-up with standard
�le system tools. Spiralog [13] uses a log-structured
�le system to allow for backups to be made during
system operation by simply recording the entire log
to tertiary storage. While these systems are e�ective
in preventing the loss of long-existing critical data,
the window of time in which data can be destroyed
or tampered with is much larger than in S4|often
24 hours or more. Also, these systems are generally
reliant upon a system administrator for operation,
with a corresponding increase in cost and potential

for human error. In addition, intrusion diagnosis is
extremely diÆcult in such systems. Permanent �le
storage [25] provides an unlimited set of puncture-
proof backups over time. These systems are unlikely
to become the �rst-line of storage because of lengthy
access times.

S4 borrows on-disk data structures from several sys-
tems. Unlike Elephant's FFS-like layout [23], the
disk layout of S4 more closely resembles that of a
log structured �le system [27]. Many �le systems
use journaling to improve performance while main-
taining disk consistency [6, 31, 33]. However, these
systems delete the journal information once check-
points ensure that the corresponding blocks are all
on disk. S4's journal-based metadata persistently
stores metadata versions in a space-eÆcient man-
ner.

8 Conclusions

Self-securing storage ensures data and audit log sur-
vival in the presence of successful intrusions and even
compromised host operating systems. Experiments
with the S4 prototype show that self-securing stor-
age devices can achieve performance that is com-
parable to existing storage appliances. In addition,
analysis of recent workload studies suggest that com-
plete version histories can be kept for several weeks
on state-of-the-art disk drives.

Acknowledgments

We thank Brian Bershad, David Petrou, Garth Gib-
son, Andy Klosterman, Alistair Veitch, Jay Wylie,
and the anonymous reviewers for helping us re�ne
this paper. We thank the members and companies
of the Parallel Data Consortium (including CLARi-
iON, EMC, HP, Hitachi, In�neon, Intel, LSI Logic,
MTI, Novell, PANASAS, Procom, Quantum, Sea-
gate, Sun, Veritas, and 3Com) for their interest, in-
sights, and support. We also thank IBM Corpora-
tion for supporting our research e�orts. This work
is partially funded by the National Science Founda-
tion via CMU's Data Storage Systems Center and
by DARPA/ISO's Intrusion Tolerant Systems pro-
gram (Air Force contract number F30602-99-2-0539-
AFRL). Craig Soules is supported by a USENIX
scholarship.

References

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active
disks: programming model, algorithms and evaluation.
Architectural Support for Programming Languages and

Operating Systems (San Jose, California), pages 81{91.
ACM, 3{7 October 1998.

[2] Trevor Blackwell, Je�rey Harris, and Margo Seltzer.
Heuristic cleaning algorithms in log-structured �le sys-
tems. Annual USENIX Technical Conference (New Or-
leans), pages 277{288. Usenix Association, 16{20 Jan-
uary 1995.

[3] Randal C. Burns. Di�erential compression: a general-

ized solution for binary �les. Masters thesis. University
of California at Santa Cruz, December 1996.

[4] M. Burrows and D. J. Wheeler. A block-sorting lossless

data compression algorithm. 124. Digital Equipment
Corporation Systems Research Center, Palo Alto, CA,
10 May 1994.

[5] Michael Burrows, Charles Jerian, Butler Lampson, and
Timothy Mann. On-line data compression in a log-
structured �le system. Architectural Support for Pro-

gramming Languages and Operating Systems (Boston,
MA, 12{15 October 1992). Published as Computer Ar-
chitecture News, 20(special issue):2{9, October 1992.

[6] Sailesh Chutani, Owen T. Anderson, Michael L. Kazar,
Bruce W. Leverett, W. Anthony Mason, and Robert N.
Sidebotham. The Episode File System. Annual USENIX
Technical Conference (San Francisco, CA), pages 43{60,
Winter 1992.

[7] Dorothy Denning. An intrusion-detection model. IEEE
Transactions on Software Engineering, SE-13(2):222{
232, February 1987.

[8] Garth A. Gibson, David F. Nagle, Khalil Amiri, Je� But-
ler, Fay W. Chang, Howard Gobio�, Charles Hardin,
Erik Riedel, David Rochberg, and Jim Zelenka. A cost-
e�ective, high-bandwidth storage architecture. Architec-
tural Support for Programming Languages and Operat-

ing Systems (San Jose, CA, 3{7 October 1998). Pub-
lished as SIGPLAN Notices, 33(11):92{103, November
1998.

[9] Garth A. Gibson, David F. Nagle, William Courtright
II, Nat Lanza, Paul Mazaitis, Marc Unangst, and Jim
Zelenka. NASD scalable storage systems. USENIX.99

(Monterey, CA., June 1999), 1999.

[10] Robert Hagmann. Reimplementing the Cedar �le sys-
tem using logging and group commit. ACM Symposium

on Operating System Principles (Austin, Texas, 8{11
November 1987). Published as Operating Systems Re-

view, 21(5):155{162, November 1987.

[11] David Hitz, James Lau, and Michael Malcolm. File
system design for an NFS �le server appliance. Win-

ter USENIX Technical Conference (San Francisco, CA).
Published as Proceedings of USENIX, pages 235{246.
USENIX Association, 19 January 1994.

[12] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale and performance in
a distributed �le system. ACM Transactions on Com-

puter Systems, 6(1):51{81, February 1988.

[13] James E. Johnson andWilliamA. Laing. Overview of the
Spiralog �le system. Digital Technical Journal, 8(2):5{
14, 1996.

[14] Je�rey Katcher. PostMark: a new �le system bench-

mark. TR3022. Network Appliance, October 1997.

[15] Kimberly Keeton, David A. Patterson, and Joseph M.
Hellerstein. A case for intelligent disks (IDISKs). SIG-
MOD Record, 27(3):42{52, September 1998.

[16] Gene H. Kim and Eugene H. Spa�ord. The design
and implementation of Tripwire: a �le system integrity

checker. Conference on Computer and Communications

Security (Fairfax, Virginia), pages 18{29, 2{4 November
1994.

[17] Edward K. Lee and Chandramohan A. Thekkath. Petal:
distributed virtual disks. Architectural Support for

Programming Languages and Operating Systems (Cam-
bridge, MA). Published as SIGPLAN Notices, 31(9):84{
92, 1{5 October 1996.

[18] Christopher Lumb, Jiri Schindler, Gregory R. Ganger,
David F. Nagle, and Erik Riedel. Towards higher disk
head utilization: Extracting \free" bandwidth from busy
disk drives. Symposium on Operating Systems Design

and Implementation (San Deigo, CA, 23{25 October
2000). ACM, October 2000.

[19] Josh MacDonald. File system support for delta compres-

sion. Masters thesis. Department of Electrical Engineer-
ing and Computer Science, University of California at
Berkeley, 2000.

[20] Josh MacDonald, Paul N. Hil�nger, and Luigi Se-
menzato. PRCS: The project revision control system.
European Conference on Object-Oriented Programming

(Brussels, Belgium, July, 20{21). Published as Proceed-
ings of ECOOP, pages 33{45. Springer-Verlag, 1998.

[21] Jeanna Neefe Matthews, Drew Roselli, Adam M.
Costello, Randolph Y. Wang, and Thomas E. Ander-
son. Improving the performance of log-structured �le
systems with adaptive methods. ACM Symposium on

Operating System Principles (Saint-Malo, France, 5{8
October 1997). Published as Operating Systems Review,
31(5):238{252. ACM, 1997.

[22] K. McCoy. VMS �le system internals. Digital Press,
1990.

[23] Marshall K. McKusick, William N. Joy, Samuel J. Lef-

er, and Robert S. Fabry. A fast �le system for UNIX.
ACM Transactions on Computer Systems, 2(3):181{197,
August 1984.

[24] Object based storage devices: a command set proposal.
Technical report. October 1999. http://www.T10.org/.

[25] Rob Pike, Dave Presotto, Ken Thompson, and Howard
Trickey. Plan 9 from Bell Labs. UKUUG Summer (Lon-
don), pages 1{9. United Kingdom UNIX systems User
Group, Buntingford, Herts, 9{13 July 1990.

[26] Erik Riedel and Garth Gibson. Active disks|remote

execution for network-attached storage. TR CMU-CS-
97-198. December 1997.

[27] Mendel Rosenblum and John K. Ousterhout. The de-
sign and implementation of a log-structured �le system.
ACM Transactions on Computer Systems, 10(1):26{52,
February 1992.

[28] Douglas J. Santry, Michael J. Feeley, and Norman C.
Hutchinson. Elephant: the �le system that never forgets.
Hot Topics in Operating Systems (Rio Rico, AZ, 29{30
March 1992). IEEE Computer Society, 1999.

[29] Douglas S. Santry, Michael J. Feeley, Norman C.
Hutchinson, Ross W. Carton, Jacob O�r, and Alistair C.
Veitch. Deciding when to forget in the Elephant �le sys-
tem. ACM Symposium on Operating System Principles

(Kiawah Island Resort, South Carolina). Published as
Operating Systems Review, 33(5):110{123. ACM, 12{15
December 1999.

[30] Margo Seltzer, Keith A. Smith, Hari Balakrishnan,
Jacqueline Chang, Sara McMains, and Venkata Padman-
abhan. File system logging versus clustering: a perfor-
mance comparison. Annual USENIX Technical Confer-

ence (New Orleans), pages 249{264. Usenix Association,

16{20 January 1995.

[31] Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick,
Keith A. Smith, Craig A. N. Soules, and Christopher A.
Stein. Journaling versus Soft Updates: Asynchronous
Meta-data Protection in File Systems. USENIX Annual

Technical Conference (San Diego, CA), 18{23 June 2000.

[32] M. Spasojevic and M. Satyanarayanan. An empirical-
study of a wide-area distributed �le system. ACM Trans-

actions on Computer Systems, 14(2):200{222, May
1996.

[33] Adam Sweeney. Scalability in the XFS �le system.
USENIX. (San Diego, California), pages 1{14, 22{26
January 1996.

[34] Werner Vogels. File system usage in Windows NT 4.0.
ACM Symposium on Operating System Principles (Ki-
awah Island Resort, Charleston, South Carolina, 12{15
December 1999). Published as Operating System Review,
33(5):93{109. ACM, December 1999.

[35] Randolph Y. Wang, David A. Patterson, and Thomas E.
Anderson. Virtual log based �le systems for a pro-
grammable disk. Symposium on Operating Systems

Design and Implementation (New Orleans, LA, 22{25
February 1999), pages 29{43. ACM, Winter 1998.

[36] Tatu Ylonen. SSH | Secure login connections over the
internet. USENIX Security Symposium (San Jose, CA).
USENIX Association, 22{25 July 1996.

