PhoneStation, Moving the Telephone
onto the Virtual Desktop

Stephen A. Uhler — Bellcore

ABSTRACT

PhoneStation is a system that provides a Sun Microsystems SPARCstation with
complete control over an ordinary telephone line. It consists of a telephone line interface
unit with loop control and touch tone detection, a suite of supporting software libraries that
include digital signal processing for call progress monitoring, text-to-speech conversion,
telephone line control, and PhoneScript, a high level procedural language that uses TCL for

building interactive telephone based applications.

Introduction

For over a decade now, the workstation has
been viewed as an electronic desktop, with multiple
windows on the computer screen as the metaphor for
a desk [1]. This electronic desktop has become the
focus for dealing with office information. The tele-
phone, although an important component of an actual
desktop, has not yet been integrated into the modern
desktop environment.

It should be possible to receive audio telephone
messages as ordinary electronic mail (email), thereby
taking advantage of the many message management
capabilities we have become accustomed to in email
systems. A unified interface to handle voice mail
and email would eliminate the distinct and increas-
ingly more complex user interfaces to telephone
answering machines or voice mail systems, and pro-
vide the ready exchange of information between the
computer and the telephone.

With the telephone an integral part of the com-
puter desktop, many new applications come to mind.
While retrieving voice mail messages over the tele-
phone why not have the answering machine applica-
tion convert your regular email to speech, and read it
to you as well. If there is a fax machine available,
as is the usual case at a hotel or conference, you
could instruct the answering machine application to
have the workstation fax you your regular email.
Once on the phone, connected to your workstation,
why not fax that article you forgot to bring with you,
or that viewgraph you didn’t think you’d need.

This paper will describe the components of
PhoneStation, a system that provides a Sun SPARCs-
tation with complete control over an ordinary tele-
phone line. After briefly describing the PhoneSta-
tion hardware and basic software facilities, it will
describe in detail, PhoneScript, the PhoneStation
high level language for building interactive tele-
phone applications.

PhoneStation System Components

PhoneStation runs on a Sun Microsystems
SPARCstation. The system consists of some hardware
"glue" that enables the SPARCstation to interface to a
telephone line, a suite of software support libraries,
and PhoneScript, a language for building interactive
telephone applications. The software components of
PhoneStation are shown as boxes in Figure 1. The
basic support libraries are along the bottom. Appli-
cations programs are normally written in the
PhoneScript language, although they can be written
in C, and call the underlying library routines
directly.

PhoneStation Hardware

The SPARCstation hardware interface, called
STIM (SPARCstation Telephone Interface Module),
connects to the SPARCstation through a serial port
and the audio connector. It is assembled from off-
the-shelf components, and fits in a 2" x 4" x 4" box.
A block diagram of the STIM hardware is shown in
Figure 2.

The core of the STIM is the single chip com-
puter, a Zilog Z8 [2]. The Z8 has 16 individually
controllable I/O (input/output) lines, three of which
are configured as an rs232 serial port. The remain-
ing I/O lines are connected to a telephone line inter-
face hybrid, a touch-tone detection and generation
chip, a telephone loop current detection relay, and a
pair of audio switching relays. The telephone line
interface unit provides the required isolation from
the telephone line. In addition to inserting and
extracting audio signals from the telephone line, it
detects ringing, and can place the telephone line in
either the on-hook or off-hook state. The touch-tone
detection chip does just that; detect the presents of
touch-tones, which are converted to ASCII signals
by the Z8, and sent over the serial interface to the
SPARCstation. The loop sense relay monitors the
state of the telephone line to detect when a tele-
phone call has terminated. The audio switching
relays permit other audio devices to be connected to
the SPARCstation when the STIM is not in use.

1993 Winter USENIX - January 25-29, 1993 - San Diego, CA 131

‘Lhe program that runs in the Z8, written in
basic, communicates with a process on the SPARCsta-
tion using single letter ASCII commands via the
serial port. The digital-to-analog and analog-to-
digital conversion capabilities of the SPARCstation
are used to play and record digitized audio.

PhoneStation Software

The primary application interface to PhoneSta-
tion is PhoneScript, a command interpreter that uses
TCL (Tool Command Language) [3]. TCL, written
by John Ousterhout of Berkeley, is a freely available
library of C routines that provide a software system
with an embeddable shell-like command interpreter.
This command interpreter is combined with a suite
of software support libraries, written in C, providing
digital signal processing (DSP) for call progress
monitoring, a text to speech synthesizer using the
ORATOR® speech synthesizer [4], and some rela-
tional file management routines that facilitate the
storage and retrieval of data that may be required by
a telephone application.

PhoneStation consists of 5000 lines of C code
in the support libraries, and another 3000 lines of C
code to interface them with TCL. There is another
250 lines of Basic that runs on the Z8 microproces-
sor in the STIM, as well as 1500 lines of C code
that provides the development environment for pro-
gramming the Z8 and configuring the DSP code.

The telephone interface module provides a dev-
ice independent abstraction for interacting with the
telephone line. It interacts with the STIM over a
serial line. The software configures the SPARCstation
serial line same way as a modem that is set up to
permit both incoming and outgoing calls. An appli-
cation that is waiting for incoming telephone call
blocks (in open()) until a call arrives. When the
STIM detects ringing on the telephone line, the Data
Carrier Detect line of the serial interface is asserted,
causing the open() to complete, and the application
to continue. Additional information about the state
of the telephone line is then passed between the
STIM and the telephone interface module over the
serial interface. Applications wishing to place

Telephone

Application

PhoneScript || TCL

b=covcccsccne
—

— 1 —

Telephone Audio Digital Signal Speech File
Interface Interface Processing Synthesis Management
LA R A NI R X R NN NN!
: SPARCstation
:..... oeoesscse '.... .--......Q...........
: STIM :
. Control .
: :
...........= !
} STIM |

Bossssleccannserssnecssvoescsrrsecsacscannnccccssncenccasssasanenld

Figure 1: PhoneStation Software Components

132 1993 Winter USENIX - January 25-29, 1993 - San Diego, CA

outgoing calls can do so any time the telephone
interface is not already being used, even if another
application is waiting for an incoming call.

The audio interface module controls access to
the SPARCstation audio device. It set the play and
record volume levels, and controls the amount of
audio data in the audio device driver queues.
PhoneStation plays audio files by periodically send-
ing batches of audio to the device queue. Applica-
tion programs can change the batching interval to
obtain more time for other computations before the
next batch of audio is required.

The DSP module uses second order recursive
digital band pass filters and energy detectors [5],
running in software on the SPARCstation, to process
the incoming audio stream and determine the status
of a telephone call. Signaling tones used for
telephony are simple combinations of pure tones
(sine waves). The band pass filters isolate the sine
waves, then the energy detectors determine if a sig-
nal is present at the required frequency. The DSP
module identifies dial tone, ringing, and busy sig-
nals, which are used to monitor the progress of an
outgoing call. Modem tones and voice patterns are

recognized once the call has been completed. Rou-
tines are available to detect and decode touch-tones
as well, even though in the current version of
PhoneStation, the touch-tone detection can also be
done by the STIM in hardware. The signaling tones,
as well as various answering-machine like "beeps,"
are synthesized by the digital signal processing
module as needed.

The text-to-speech synthesizer runs as a back-
ground process, and has been optimized to pro-
nounce names and addresses accurately, although it
can synthesize arbitrary text quite well with a little
coaching. The synthesizer typically takes less time
to synthesize an utterance than it takes to speak it.
Synthesized output can either be sent to the tele-
phone directly, or saved in a file for later use.

The file management module provides a simple
relational abstraction of a file that integrates struc-
tured file access into the PhoneScript language. It
provides access to the files contents through TCL
variables, and supports the selection of items in the
files through the evaluation of TCL expressions con-
taining references to specific items.

Receive Off-Hook Teleot Ring
— elephone
Transmit Line Interface Logep Current
-~ Serial . Unit tection
Interface Ringing Tip
DCD
-—
—
Telepixone
Touch— Connection
Tone il CTON
Touch Tone ";.
Valid Tone Detection Receive
audio
and
Call Progress Generation e,
Send/Detect Transmit
audio
Output .
Enable Audio Output
Audio Switching
Input and Control Audio I
Ensble o nput
Micro- Status Light
controller T

Figure 2: STIM Hardware

1993 Winter USENIX - January 25-29, 1993 — San Diego, CA

133

The PhoneScript Language

Telephone applications are similar to many real
time process control applications. They have real
time constraints; the phone must be "answered"
within a certain time, or a touch-tone received from
the user must be processed before the next one
arrives. Time out conditions abound: how many
rings to wait before "answering” the telephone, how
long to wait for a dial tone, and how much time to
listen for a touch-tone, are examples of just a few.
Most of the inputs into the system come in the form
of asynchronous events, they can occur at any time,
and often do.

A typical method for dealing with this type of
system in a language such as C, is to use an event
driven state machine. The program waits for an
event, acts upon it, transitions to the next state, and
waits for the next event to occur. Although state
machines can often be implemented efficiently, they
get complicated quickly, as even a simple applica-
tion can have many states. In those cases where
several things are happening at the same time, such
as playing instructions to the user while listening for
touch-tones, the complexity is compounded. The
complex code required to manage all of the events,
timeouts, and exceptions often obscures the primary
intent of the application code.

PhoneScript Language Design _, | >

PhoneScript was created to provide a program-
ming environment that makes writing interactive
telephone applications easy to do. To achieve this
end, the PhoneScript language was designed with
several goals in mind. Simple applications should
be short, and easy to write. More sophisticated
applications should be possible, with the basic struc-
ture of their simpler cousins retained. Adding just
one more feature to an application should not require
a complete re-write of the code, just a minor addi-
tion. When the application is completed, the basic
structure of the code should match its conceptual
structure. One shouldn’t have to be a contortionist
to translate the application into the language.
PhoneScript is a language intended for interactive
applications. Each complete interaction, or "transac-
tion" with the user, should be captured by a single
language construct. The design of interactive appli-
cations is hard to get right the first time. Conse-
quently its important that applications are easy to
debug and modify, with an incremental style of
application refinement encouraged. Finally, it should
be easy to interface telephone applications to exist-
ing systems and applications, such as Fax, electronic
mail, or graphical user interfaces.

PhoneScript consists of the 13 telephone inter-
face commands listed in Table 1. These commands
are used in conjunction with the built-in functions of
TCL. I will not fully describe the TCL language
here. Instead, I will note only the features of TCL

required to follow the PhoneScript example pro-
grams. TCL provides the typical expression evalua-
tion primitives, flow control constructs (such as for,
while, if-then-else and switch), and procedures typi-
cally found in procedural languages. TCL operates

Name Command Description

audio Low level control of the audio system

beep Play beeping tones

call Place an outgoing phone call

cnv2tt Convert an alphanumeric string to
touch-tones

db Structured file management com-
mands

debug Interactive debugging

hangup Hangup the telephone line

on event processing

phone Direct phone line interface manipula-
tion

play Play audio files and receive touch-
tones

prdate Date and time conversion and format-
ting

record Record an audio file

synth Text to speech conversion

Table 1: Summary of PhoneScript Commands

on white space separated lists of ASCII character
strings that are terminated by new lines or semi-
colons (;). The first string in a list is the command,
with the remaining strings passed to the command as
arguments. White space may be included in a string
enclosing it in quotes ("), or by surrounding the
string with braces ({}). The use of braces, which
may be nested, also prevents variable and command
substitution. Brackets ([]) are used for command
substitution where [command] in TCL is analogous
to ‘command‘ in the shell. The value of a variable
is obtained by $variable, or $variable(member) for
an array, where a backslash (\) can be used to
prevent the special meaning of §. TCL also pro-
vides a wealth of built-in string and list manipulation
commands. The PhoneScript functions in Table 1
are added to the core TCL commands to provide the
telephone application specific capabilities of
PhoneScript.

PhoneScript uses the notions of event handling
and implicit iteration to provide a framework for
straight forward application development. Since
PhoneScript is intended primarily for interactive
telephone based applications, all of the setup and ini-
tialization of the telephone, audio, and DSP sub-
systems is taken care of automatically, with many
configurable parameters set to useful default values.

As an interpreted language, PhoneStation
simplifies program development by allowing interac-
tive debugging of applications. The low level time

134 1993 Winter USENIX - January 25-29, 1993 — San Diego, CA

critical tasks are handied within compiled C code, so
actions that happen at the interpreter level are human
response kinds of actions. Several tenths of a
second response time for their execution is not
objectionable.

The PhoneScript main program manages most
of the required book keeping. It initializes the tele-
phone line interface, and the audio and text-to-
speech sub-systems. Application programs use spe-
cial global variables to customize the initialization of
the system. The semantics of TCL are extended to
permit command arguments of the form:
keyword=value. When included as a command
argument, they override the global value of the key-
word parameter for the duration of the command.
Applications can set useful default values at the top
of the program, then override them on a command
by command basis.

Sample PhoneScript Applications

The following PhoneScript examples, which are
complete, working PhoneScript programs, will be
used to illustrate the key features of the PhoneScript
language. In the examples, items printed in this
font represent PhoneScript code fragments or com-
mands.

#1/usr/local/bin/PhoneScript
place a call say: hello world

set usage "Usage: $argv(0) <number>"
if {$argc < 2} {
puts stderr Susage; exit 0 }
synth "Hello World."
call $argv(l)
play # until .
exit 0

Figure 3: PhoneScript Version of Hello World

The first example is shown in Figure 3. This is
the PhoneScript version of the Hello World program.
The PhoneScript version synthesizes the phrase
Hello world, places a phone call to the number
specified on the command line, and speaks hello
world when the called party answers the telephone.
PhoneScript imports the command line arguments
and the environment from the shell, so PhoneScript
programs can be run directly from the shell. The
synth command controls the text to speech syn-
thesizer. It works in the background, leaving the
resultant audio data on a queue when the synthesis is
complete. The call command places the telephone
call, and play sends the synthesized audio to the
telephone line. The °# instructs play to use the
synth queue, instead of looking for a pre-recorded
audio file. Although this example does quite a bit
more than the standard C language version of hello
world, it requires about the same amount of code.
The setup required to operate the telephone line is
handled automatically.

‘1he second example, shown in Figure 4, is a
simple, yet functional answering machine applica-
tion. When the telephone rings, PhoneScript waits
for 3 rings (the default), answers the telephone, then
plays a pre-recorded greeting message. After the
beep the caller can leave a message, which is saved
as digitized audio in a UNIX file, and forwarded via
electronic mail to the PhoneScript user. The
remaining examples will build upon this one to
enhance its functionality and to explore features of
the PhoneScript language.

The variables greeting, action, and
timelimit are initialized when the application
begins. The greeting variable contains the outgo-
ing greeting message, which can be recorded either
by using another PhoneScript application, or with
any of the standard audio applications that are avail-
able on the SPARCstation, such as soundtool [6]. The
variable action contains the name of the UNIX
command that will be invoked to deal with the mes-
sage left by the caller. The digitized audio represen-
tation of the message is available as the standard
input to that command. The timelimit wvariable
is one of many PhoneScript configuration parame-
ters. It sets the time to wait for the user to reply to
a greeting message before proceeding to the next
command. In this example, we with to start record-
ing a voice message as soon as the greeting is
finished playing, so the timelimit is set to zero.

set greeting $HOME/message.au
set action voice2mail
set timelimit 0

on call {
set msg msg.[prdate].au
exec touch $msg
play $greeting until #
beep
record $msg

}

on hangup {
exec < $msg S$action

}
Figure 4: Complete Answering Machine Program

record_timeout=450

Unlike the Hello World example, where each
statement is executed sequentially, the bulk of the
work in the answering machine is done by the event
handling constructs, on call and on hangup.
PhoneScript waits for a phone call to come in,
answers the telephone, then runs the body of the on
call command. The PhoneScript prdate com-
mand returns the UNIX time, which is used to name
the message file. The play command plays the
prerecorded audio message. By default, play plays
the audio message to completion. The until key-
word specifies a regular expression that causes play
to terminate immediately if the touch-tones keyed by

1993 Winter USENIX - January 25-29, 1993 — San Diego, CA 135

the user match the expression. In this case, keying
the ’# key on the telephone keypad will cause the
answering machine program to skip over the rest of
the greeting, beep, then start recording. After the
on call code is concluded, either because the
caller hung up, or the message time limit was
exceeded, PhoneScript hangs up the telephone, then
runs the body of the on hangup command. The
TCL built-in command Exec, calls voice2mail,
a short shell script that converts the digitized voice
message into a MIME format multi-media email mes-
sage [7] by encoding it in ASCII, prepending the
appropriate mail header lines, and forwarding it on
to sendmail [8] for delivery. After the on hangup
commands are finished, PhoneScript waits for the
next call to arrive.

In PhoneScript applications that answer tele-
phone calls, all but one time initialization code is in
the body of one of the on event conditions, which
are summarized in Table 2. The code associated
with each event is read and saved during the initial
scan of the PhoneScript program, but it is parsed and
executed only when the corresponding condition
occurs. This event handling mechanism in
PhoneScript allows applications to deal with the
asynchronous nature of the application domain in a
straight forward manner.

Name Event Description

on call A telephone call is answered

on endringing | The telephone stopped ringing
before the call was answered

on hangup The telephone call was ter-
minated

on int The PhoneScript program was
interrupted from the keyboard

on ringing The telephone started to ring

on signal The PhoneScript program was

signaled by another process

Table 2: Summary of PhoneScript Event Conditions

One of the primary benefits of PhoneStation is
its ability to use the telephone as simply another
user interface to the workings of the computer. If
the answering machine program is running all of the
time, there needs to be a mechanism for escaping
from the answering machine into more sophisticated
telephone based applications. One way to accom-
plish this is to have the user key in as touch-tones a
secret code while the answering machine is playing
its greeting, a common technique used in consumer
answering machines. In PhoneScript we can create
any number of applications, and assign each one its
own sequence of touch-tone codes. The name of
each application will be the code needed to invoke
it.

To accomplish this, the commands in Figure 4
are replaced by the code in Figure 5. The lines that
have been emboldened mark the changes.

set greeting $HOME/message.au
set action voice2mail
set timelimit 0

on call {

set msg msg.[prdate].au

exec touch $msg

play S$greeting until # unless {
if {$unless(tone) == "*"} hangup
continue '
}

catch {source $tones.tcl}

beep

record $msg

}

on hangup {
exec < $msg S$action
set tod [prdate "%A, %1 M %p."]
synth $tod to $msg.tod
}

record_timeout=450

Figure 5: Revised Play Command

Until now, play has been used to play an audio file
and (optionally) stop after receiving a touch-tone. In
the general case, a single play command can be
used to support an entire transaction with the user,
playing many audio files, and using touch-tones
keyed by the user to guide the sequence in which the
files are played. The unless option to play
causes the TCL expression after the unless to be
run any time a touch-tone is keyed by the user.
While in the unless expression, a number of spe-
cial PhoneScript variables that describe the current
state of the play command are available, and can
be examined or changed to customize the action of
play. Using this technique, the special cases and
exceptions can be handled from within a single
play command, eliminating the need to bury a sin-
gle user interface transaction in a maze of ifs and
elses that would ordinarily be required to manage the
special cases.

The TCL array unless contains a member for
each of the variables passed by play to the
unless expression. The just keyed touch-tone is
stored in unless(tone). and the accumulation
of touch-tones keyed in so far is stored in
unless(tones). With this wvariation of the
answering machine, when the user keys a **’ on
the telephone keypad, the answering machine pro-
gram executes a hangup, which immediately
hangs-up the telephone line. This is invaluable in
those cases where the answering machine picks up
the call just as you are about to. When the greeting
message is finished playing (or the user keyed a ’#’),
the variable tones, which is set by play as it
finishes, contains the list of touch-tones entered

136 1993 Winter USENIX - January 25-29, 1993 — San Diego, CA

while the play command was running. Normally
play will stop playing voice files whenever a
touch-tone is entered, as this is usually the desired
behavior. In this application, the continue com-
mand instructs play to continue playing the message
file even though a tone has been received. However,
the *# tone will still skip the rest of the greeting
message, and proceed directly to the beep.

After the play command is finished, the TCL
source command runs the application program (if
any) whose name matches the tones entered. If the
user keys the touch-tones 123#, the answering
machine program will attempt to include the pro-
gram 123#.tcl. The TCL catch command
prevents the answering machine from flagging the
error if the file 123#.1cl does not exist.

Planning ahead for the next example, two addi-
tional commands are added to the on hangup
expression, that will cause a time of day file to be
created with each voice message. As before,
prdate formats the current time and day, this time
in a manner that can be easily read aloud. The argu-
ment to prdate calls the UNIX strftime() function,
which replaces the %X constructs with the appropri-
ate date and time strings. The Synth command
converts the time and date string to speech, and
saves it in a file. If the file is later played, it will
say something like Tuesday, eight forty-six PM.

This example demonstrates the PhoneScript
notion of implicit iteration. The behavior of the
play command is guided by user input. As new
features are added to the interaction, the additional
functionality is expressed from within play, with
out having to restructure the code. With this added
functionality, the answering machine application
functions as a gateway to many other applications.
New features are added to the answering machine by
creating the functionality as a separate PhoneScript
program fragment. The user accesses the function
simply by entering its name.

The next example, in Figure 6, a voice message
browser named 123#.tcl, is accessed from within the
answering machine by entering the touch tones 123#
while the greeting message is playing. This example
shows how a single play command can be used to
manage a complex transaction with the user.

First we use the TCL builtin glob, that works
like the c¢sh command of the same name to create a
list of the current voice mail messages. The files
intro.au and done.au are pre-recorded messages, that
contain the audio equivalent of Playing voice mail
messages and Done playing messages respectively.
The play command plays the introductory message,
followed by the voice mail messages, then the con-
cluding message in sequence. Touch tones keyed in
by the user are used to alter the playback sequence,
as controlled by the unless expression.

set msgs [glob "{intro,msg.*,done}.au"}
set reason=tf; gset timelimit=0

play $msgs until "9" unless {
case $unless(tone) in (
"#" {incr unless(file); beep}
"0" {play $unless(file_name).tod}
"1" {incr unless(file) -1; beep}
"*+" {incr unless(file pos) -16000}
"" {beep}
}
continue
}
hangup

Figure 6: Program 123#.tcl — A Message Browser

The touch-tones ’#°, ’0’, ’1’, and ’*’ cause
play to alter the default sequential playing of the
messages. A ’# causes a skip to the next message,
by incrementing the play variable unless(file), the
current file in the message list. A ’0’ causes play
to chime in with the time and date that the voice
message was recorded, by playing the time of day
file that was created when the message was
recorded. A ’1’ causes the playback to skip back-
ward to the previous message. Finally, pressing **’
causes the previous two seconds of the message to
be re-played, providing another opportunity to write
down the phone number you missed the first time.
The little details, such as trying to skip backward
before the first message, are dealt with automatically
by PhoneScript.

Normally the unless expression runs only
when a touch tone is entered by the user. However
the configuration variable reason is set to alter the
conditions that cause unless to run. In this exam-
ple, when a message is finished playing, and the next
one is about to start, the unless expression is run.
The last case of the case statement, for which there
is no touch tone, is taken when one of the audio files
finishes, causing a beep, informing the user that the
current message file has finished playing. Additional
features of the message browser, such as deleting
messages, or forwarding them to other programs, are
easily added within this framework, by adding new
cases into the case statement. The continue state-
ment prevents play from terminating when the first
tone is entered.

Once the voice mail message browsing is com-
plete, it is unlikely that returning to the answering
machine program to record a voice message is still
desired. The hangup command causes the message
browser to hang up the phone at once, skipping the
message taking part of the answering machine.

Although this answering machine does the job,
the on ringing event of PhoneScript, activated
just as the telephone begins to ring, enables an appli-
cation to made decisions about a telephone call
before the answering the telephone. For example, if
Calling Number Delivery [9] (sometimes called

1993 Winter USENIX - January 25-29, 1993 — San Diego, CA 137

caller-id) is available, the TCL variable number
contains the calling number when the on ringing
section is run, so actions can be taken selectively
based on the telephone number of the calling party.
The code in Figure 7 is added to the answering
machine program in Figure 5.

set caller_id 1
on ringing {
if {{catch {source $number.tcl}]}
set greeting $HOME/message.au
set action voice2mail
set rings 3
}
}

Figure 7: Select Actions Based on Calling Number

The variable caller_id is set to turn on Calling
Number Delivery, currently implemented by a
readily available Calling Number Delivery interface,
connected to the other serial port of the SPARCsta-
tion. When the telephone begins to ring, the on
ringing code is executed before PhoneStation
answers the call. As with the message browser in
the previous example, if a file name matches the cal-
ling number, its contents are read and executed as
part of the application. If no file exists, the greeting
and action are reset to their default values. The
variable rings is the count of rings to wait before
PhoneScript answers the telephone. By creating a
file whose name is the telephone number of the boss,
a special message is played only when the boss
calls. The contents of that file might contain:

set rings 1
set greeting boss.au

set action "page_me ’‘'The boss called’"

If it is the telephone number for the collection
agency instead, the file might contain:

set rings 99
even they don’t have that much patience.

If Calling Name delivery is not available, the
answering machine can still be programmed to
choose different messages. This time the answering
machine will be coupled with a configuration file to
allow the greeting message and number of rings to
wait before picking up the call to be chosen, based
on the time of day and the day of the week. For
example, the caller can be made to wait for 3 rings
and be greeted with good morning on Tuesday morn-
ings. If answering the telephone is not desired,
PhoneStation can pick up the telephone at the first
hint of ringing to play an appropriate message.

This feature is implemented in PhoneScript
using a structured file. An example of which is
shown in Figure 8. A structured file in PhoneScript
consists of 1 or more line of text, each containing
semi-colon terminated fields. The first line in the
file names the fields, whose values are accessed via

TCL variables of the same name. The remaining
lines are the data. This configuration file has six
fields. The first, days contains a range of days, 0 for
Sunday, 1 for Monday etc. The next two fields give
a range of times, in military time, for which this line
applies. The fourth and fifth fields give the names
of two pre-recorded message files that are played
consecutively as the greeting message. The first
message is used for a salutation, such as good morn-
ing and the other one for instructions, such as Please
leave a message at the beep. The final field
specifies the number of rings to wait before picking
up the telephone. '

days;start;end;greeting;message;no_rings;
0-6;630;1200;morning.au;;;
0-6;1200;1630;afternoon.au;;;
0-6;1630;1830;evening.au;;;
1-5;630;830;;;5;

1-5;830;1630; ;work.au;2;

06;900;2100; ;weekend.au;4;
0-6;0;2400;0ff_hours.au;default.au;1;

Figure 8: Greeting Message Configuration File

This structured file is accessed through the
PhoneScript db command, by including the code
from Figure 9 into the answering machine program
in Figure 5 instead of the Calling Name Delivery
code.

on ringing {
set day [prdate iw]
set hour [prdate $k&M])
set msgl ""; set msg2 ""; set rings ""
db select {[string match \[$days\] $day]}
db select and "\$end > $hour"
db select and "\§$start <= $hour"
db process {
if {$msgl$greeting == $greeting)} {
set msgl $greeting }
if {$msg2$message == S$message} {
set mag2 $message }
if {$rings$no_rings == $no_rings} {
set rings $no_rings }

}
set greeting "$msgl $msg2"
Figure 9: Greeting Message Selection

The plan is to choose two different greeting mes-
sages, to be played consecutively, and the number of
rings to wait until the telephone is answered. The
first two set commands figure out the current day of
the week and hour of the day. The variables msg1l
and msg2, which will contain the two greeting mes-
sages, start off empty, as will rings. The db
select command evaluates its argument as a TCL
expression for each line of the configuration file,
with the TCL variables corresponding to each field
name containing the value for the current row. Only
those rows for which the expression is true remain
selected. After the three db select commands
are finished, only those rows in the database that
match the current time and day will be selected.

138 1993 Winter USENIX — January 25-29, 1993 — San Diego, CA

‘The code in the db process command gets
executed once for each selected row in the database.
The first selected row in which either of the mes-
sages or the number of rings is specified, causes the
appropriate value to be filled in. The final set
command sets the greeting message to the concate-
nation of the two message files. The message files
contain pre-recorded messages.

Interactively edit a procedure

proc editproc {name} {
global pid argv

if {[info procs $name] == ""} {
echo "$name not found"; return }
set file /tmp/$name.$pid.tcl
set fd [open $file "w"]
set args [info args $name]
set body [info body $name]
puts $fd "# $Sargv(0) [prdate {%D %T}]\n"
puts $fd "proc $name \{$args\} \{$body\}"
close $fd
exec vi $file < /dev/tty > /dev/tty
uplevel "source $file"

}

Figure 10: Interactively Edit a PhoneScript Pro-
cedure

The sample applications shown so far have
been simple, and chances are good that they could
be typed in and work on the first try. More complex
applications can be debugged interactively using the
built-in debugging features of PhoneScript.
PhoneScript is normally run in batch mode, by run-
ning an existing PhoneScript program. PhoneScript
may also be run interactively, like the shell. The
user is prompted for commands from the keyboard.
This is a useful way to test fragments of an applica-
tion. This can be a tedious way to develop entire
applications, however. The PhoneScript command
debug causes PhoneScript to enter interactive mode
from within a batch file, accepting TCL and
PhoneScript commands from the keyboard. If the
TCL variable debug is set, then PhoneScript will
automatically enter interactive mode when a
PhoneScript command fails. The error can be
corrected interactively by retyping the command, and
batch mode resumed by typing exit from the key-
board. The use of debug can be further enhanced
with a TCL procedure such as TCL procedure
edit_proc, shown in Figure 10, that can invoked
interactively with the name of a (presumably errant)
procedure. The edit_proc procedure writes the
procedure provided as an argument into a file, starts
up a text editor with that file, then reads the pro-
cedure back into the running PhoneScript program.
Using this facility, the core of an application can be
written in advance, and the remainder while the
application is running. A missing feature will cause
an error, interactive mode will begin, the new
feature can be added, and execution of the program
resumed.

As a final debugging aid, each PhoneScript
command is assigned a letter that causes it to display
various diagnostic and debugging information, when
that letter is contained in the value of the debug
variable. The various types of diagnostics may be
enabled or disabled simply by changing the value of
debug.

Related Work

The BerTel computer controlled telephone
switch [10, 11] demonstrated that telephone and
computers can talk to each other. The system also
pointed out there needs to be a better way of con-
structing new telephone based services. The Expect
[12] language shows how interactive programs can
be tied together with a procedural language that has
a built in notion of timeouts as expected conditions.
The TCL embeddable command interpreter proved to
be easy enough to use, that its simpler to build the
right tool for a particular task, than it is to force the
wrong one into service. Finally, the availability of
multi-media mail transport facilities [13] and multi-
media email user interfaces [14] provide PhoneSta-
tion with a connection into the workstation environ-
ment.

Summary and Conclusions

In addition to assorted answering machine pro-
grams, PhoneStation has been used to construct a
directory assistance service, a survey system, an
automatic scheduling program, and a fax document
server. The survey system, used to evaluate the
quality of the ORATOR® speech synthesizer under
varying speaking parameters [15] was constructed in
PhoneScript by a summer student with no prior UNIX
experience in a couple of weeks. PhoneStation is in
continuous service as part of the multimedia email
system, providing users without audio capabilities on
their workstations the ability to generate audio
email, and to receive the audio portions of multi-
media email messages over the telephone.

The ease of incorporation of TCL into the
PhoneStation environment for the creation of
PhoneScript is a tribute to the design of TCL. New
flow control constructs, such as the PhoneScript
event handling, and the extension of the continue
semantics within the play command were easy to
implement, eliminating the need to build a special
purpose command interpreter for PhoneStation. As
new technologies become available, such as speech
recognition, new PhoneScript commands can be
added to extend its functionality while maintaining
the existing framework. Several applications,
including the automated directory assistance system,
were written twice, once in C using the library inter-
face, and again directly in PhoneScript. In all cases
the PhoneScript applications were shorter, easier to
write, and took less time to get working than the C

1993 Winter USENIX - January 25-29, 1993 - San Diego, CA 139

language versions. The interactive response of both
versions is essentially the same.

PhoneStation demonstrates that the telephone,
which has been traditionally ignored as a component
of a workstation environment, can be integrated suc-
cessfully, and provides not only better control of the
telephone than an ordinary telephone, but extends
the capabilities of the workstation as well.

References

[1] Goldberg, A., (ed) A History of Personal
Workstations ACM Press, 1988 pp 316.

[2] ZILOG. Z8 Family Design Handbook Camp-
bell Ca., 1989

[3] Ousterhout, J. TCL: An Embedded Command
Language USENIX Winter conference proceed-
ings, January, 1990, pp 133-146.

[4] Spiegel, M.F., Macchi, M.J., and Gollhardt,
K.D. Synthesis of names by a demisyllable-
based speech synthesizer (ORATOR®), Euros-
peech 89 Conference Proceedings, September
26-28, 1989, pp 117-120.

[5] Kaiser, J. Algorithms for Second Order Recur-
sive Digital Filter Design Unpublished
Memorandum, 1992,

[6] Sun Microsystems Soundtool Manual Page
SunOS Reference Manual March 1990, pp
1782-1784.

[7] Borenstein, N., and Freed, N. MIME (Mul-
tipurpose Internet Mail Extensions): Mechan-
isms for Specifying and Describing the Format
of Internet Message Bodies RFC 1341, Internet
Advisory Board, June, 1992.]

[8] Sun Microsystems Sendmail Manual Page
SunOS Reference Manual March 1990, pp
2100-2102.

[9] Bellcore CLASS Feature: Calling Number
Delivery Bellcore Technical Reference TR-
TSY-000031 Issue 3, January, 1990

[10] Redman, B. Who Answers Your Telephone
When You’re in the Information Age? Summer
1985 USENIX Conference Proceedings Port-
land, OR, pp 569-576.

[11] Redman, B. A User Programmable Telephone
Switch Unpublished internal Bellcore memoran-
dum, April, 1988.

[12] Libes, D. Expect, Curing those Uncontrollable
Fits of Interaction USENIX Summer confer-
ence proceedings, June 1990, pp 11-15.

[13] Borenstein, N. Multi-media mail from the bot-
tom up or Teaching Dumb Mailers to Sing
Winter Usenix Conference proceedings, Janu-
ary, 1992, pp 79-91.

[14] Uhler, S. MUI, a Window Based User Inter-
face for Multi-Media Mail Proceedings of the
Bellcore/BCC Symposium on User Centered
Design, Bellcore Special Report SR-OPY-
002130, November, 1991, pp 171-175.

[15] Macchi, M. J. et al Intelligibility and Natural-
ness as a Function of Speaking Rate and Word
Boundary Strength in the ORATOR® System
Presented as a talk at the IEEE Workshop on
Interactive Voice Technology for Telecommun-
ications Applications. October 19, 1992

Author Information

Stephen Uhler joined Bell Communications
Research at its inception in 1984, where he is a
Member of the Technical Staff in the Computer Sys-
tems Research division. He has worked on comput-
ing environments and user interfaces for much of
that time, and is the author of the MGR window sys-
tem. Before joining Bellcore, Stephen was a
Member of the Technical Staff at Bell Laboratories
in Whippany N.J. where he worked on user inter-
face management systems. He received an M.S.
degree from Case Western Reserve University.
Stephen can be reached via electronic mail at:
sau@bellcore.com or uunet!bellcore!sau.

140 1993 Winter USENIX - January 25-29, 1993 - San Diego, CA

