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Abstract

Security conscious users of �le systems re-
quire that deleted information and its associ-
ated meta-data are no longer accessible on the
underlying physical disk. Existing �le system
implementations only reset the �le system data
structures to re
ect the removal of data, leaving
both the actual data and its associated meta-
data on the physical disk. Even when this in-
formation has been overwritten, it may remain
visible to advanced probing techniques such as
magnetic force microscopy or magnetic force
scanning tunneling microscopy. Our project ad-
dresses this problem by adding support to the
Linux kernel for asynchronous secure deletion
of �le data and meta-data. We provide an im-
plementation for the Ext2 �le system; other
�le systems can be accommodated easily. An
asynchronous overwriting process sacri�ces im-
mediate security but ultimately provides a far
more usable and complete secure deletion fa-
cility. We justify our design by arguing that
user-level secure deletion tools are inadequate in
many respects and that synchronous deletion fa-
cilities are too time consuming to be acceptable
to users. Further, we contend that encrypting
�le information, either using manual tools or a
encrypted �le system, is not a suÆcient solution
to alleviate the need for secure data deletion.

1 Introduction

Secure deletion of data has been considered
for years, and di�erent implementations of se-
cure deletion facilities abound. However from
our survey of secure deletion techniques, no one
yet has implemented it completely and in a truly
usable fashion. After we explain our original
motivation and background material, we will
detail the shortcomings of existing techniques
for securely deleting information from disks.

Initially, our motivation stemmed from con-
sidering distributed access to sensitive data and
distributed �le systems. Users increasingly ac-
cess their data from remote locations including
home and oÆce machines, terminals in airports
and Internet cafes, and multiple workstations in
universities' computer clusters. Many applica-
tions and distributed �le systems cache sensitive
user data on the local disks to improve perfor-
mance. Distributed �le systems such as AFS
[11] may cache user data on the client machine
or users themselves may copy sensitive �les to
the local directories. Many web browsers cache
accessed information on the local drive. Even
when the web cache is cleared the data remains
on the underlying physical disk.

Users need assurances that their sensitive
data does not remain visible on every machine
they use. Sensitive data must be overwritten,
sometimes with multiple overwrite passes, mak-
ing the original data inaccessible even to ad-
vanced probing techniques. We have imple-
mented such a secure deletion mechanism in the
form of a con�gurable kernel daemon that asyn-
chronously overwrites disk blocks. The interface
to the daemon is general; any block-oriented �le
system can use the daemon to overwrite blocks
on a particular device. Once the overwrite pro-
cess is complete, the daemon invokes a regis-
tered callback that updates the �le system state.

Section 2 brie
y covers background informa-
tion explaining how data is stored on disk, how
it can be recovered even after it has been over-
written a limited number of times, and require-
ments for ensuring that deleted data cannot be
recovered. Section 3 discusses the shortcomings
of user-level secure deletion tools and problems
with relying solely upon cryptographic tech-
niques to prevent deleted data from being ac-
cessible. Section 4 details the design goals of
our system. Section 5 details our implementa-
tion and usage suggestions. Section 6 considers



the performance, ease of use, applicability, and
security of our system. Finally, Section 7 con-
cludes the paper.

2 Background

Recovering data deleted normally from a disk
drive is remarkably easy. Most users are not
aware that after they delete a �le it still re-
mains visible on the disk until overwritten by
new data. This may mean deleted data remains
on the disk for considerable lengths of time.
Many user space tools that recover deleted �les
exist both for Unix, Windows and Macintosh
machines[8]. The ability to recover supposedly
deleted �les is bene�cial to users who inadver-
tently remove important �les, but most people
would be shocked to learn that their deleted
data is still very accessible.

Even after data has been overwritten it may
still be accessible. Magnetic force microscopy
and (MFM) magnetic force scanning tunneling
microscopy (STM) are two techniques that en-
able the imaging of magnetization patterns with
remarkably high resolutions. Using MFM and a
knowledge of well documented disk formats an
image can be developed in under ten minutes
for older drives[10]. Data is stored on a disk as
patterns of varying magnetic strength and each
write of the disk head changes the magnetic �eld
strength at a position in a predictable manner.
Scanning tools can \peel back" layers of this
magnetic information recovering older data. (A
much more complete technical description of the
process can be found in the references[10, 12].)

On older disks the encoding patterns are re-
ferred to as run-length-limited encodings (RLL)
since they limit the number of consecutive
ones and zeros appearing in the encoding pat-
terns. Modern drives use a di�erent encod-
ing scheme called Partial-Response Maximum-
Likelihood (PRML) encoding. The di�erence is
in the constraints placed on the encoding data
patterns. To most e�ectively overwrite a por-
tion of a disk each magnetic domain on the disk
should be 
ipped a number of times. While
older drives could be overwritten more e�ec-
tively by employing particular overwrite pat-
terns, speci�c patterns have not been designed
for the existing PRML encoding techniques.

There is considerable controversy regarding
the capability to recover data that has been
overwritten. Prevailing attitudes among some
Internet communities seems to be that various
government agencies have the ability to recover
data from drives even if the data has been over-
written any number of times. Numerous anec-
dotal stories regarding these supposed capabili-
ties can be found on the web. Though still heav-
ily referenced, the Department of Defense stan-
dard DOD 5220.22-M [16] is outdated and does
not re
ect current drive technology. It man-
dates that seven random read/write passes be
made over data before it is considered securely
destroyed. This compels many users to believe
that large numbers of overwrite passes are re-
quired.

Twenty commercial data recovery companies
were contacted during this project. Each was
asked if they could recover a 100KB data �le
that had been accidentally completely overwrit-
ten once with random data. All but one indi-
cated that they could not recover the data if
it had really been overwritten. One company
[2] that did possess appropriate tools and was
willing to try casually estimated the chance of
success at "less than one percent."

It is diÆcult to ascertain what truly is pos-
sible. Given the wide variety of opinions and
desires, our approach is to let users select the
deletion procedures they feel most comfortable
using. We strongly suspect that users will have
made the recovery task impossible with a small
number of overwriting passes at least for mod-
ern disk drives. For older drives, additional
overwrite passes should be employed[10].

3 Limitations of Alternative Ap-

proaches

User-level secure deletion tools and crypto-
graphic techniques attempt to provide some
guarantees that sensitive data will not be re-
coverable once it is deleted. These approaches
are useful in many respects, but are not always
an appropriate solution. Secure data deletion
implemented at the �le system level is still re-
quired. This section details the limitations of
user space tools and cryptographic techniques
for secure data deletion.



3.1 User Space Deletion Tools

Any implementation of secure deletion at the
user-level will be inadequate. Numerous user-
level secure deletion tools already exist (for ex-
ample [5, 17, 19, 21].) While these tools can be
used productively for immediate synchronous
overwriting of individual �les, they do not pro-
vide a complete usable solution. All user space
programs face the following problems that can-
not be addressed e�ectively.

1. File meta-data cannot be overwritten

completely at the user level: The sen-
sitive information in a �le system includes
the contents of a �le and the �le meta-
data including the name, size, owner in-
formation, and creation, modi�cation, ac-
cess, and deletion times. User-level pro-
grams overwrite only the �le data itself.
Although parts of the meta-data could be
overwritten using touch to set the �le ac-
cess, creation, and modi�cation times and
renaming the �le to obfuscate the �le name,
such techniques are cumbersome and inef-
�cient. Even with such a workaround, im-
portant �le meta-data information such as
what blocks the �le contained, user and
group ownerships, and deletion time could
not be removed.

2. Secure deletion tools cannot be in-

terposed between all �le operations:

Although it is possible to replace obvious
�le removal programs such as rm with a
user-level secure deletion tool, this does
not work with other less obvious means of
deleting �le data, such as replacing a �le
with the contents of another.

cp <file> <existingfile>

To be used with a user-level secure dele-
tion mechanism, these commands would
have to be wrapped with scripts that would
�rst securely overwrite the existing �le be-
fore proceeding with the normal �le op-
eration. Further, and particularly prob-
lematic, a user-level deletion tool would
have to be integrated with every applica-
tion that handles its own �le management.
While dynamically linked libraries could be
changed appropriately, statically linked bi-
naries would remain a problem.

3. File truncation cannot be handled ef-

fectively: User-level deletion programs
only overwrite an entire �le and thus do
not handle �le truncation. If someone uses
an editor to delete half a �le, causing some
blocks to be returned to the list of free
blocks, that information will not be se-
curely overwritten and will remain visible
on the disk. One might imagine handing o�
a �le to a secure deletion tool and telling it
to overwrite past a particular o�set. How-
ever, this interferes with any correctness
notions an application might have about
�le contents and is ineÆcient if the trun-
cation would not actually return a block to
the free list. Fundamentally applications
calling truncate do not have enough infor-
mation to know if blocks have to be over-
written. Again, all applications invoking
�le truncate would have to be modi�ed.

4. Overwriting data synchronously is in-

convenient and often unusable from a

user perspective: When a synchronous
deletion tool is used, users are generally
unwilling to wait for the overwriting pro-
cess to complete. While the deletion pro-
cess could be placed in the background,
allowing activities to proceed, application
correctness may depend upon the �le not
being in the name space after the deletion
tool is called. The deletion tool could re-
name a �le before the overwrite process be-
gins; however, renaming is not possible for
a truncation operation since the �le is not
removed from the name space.

3.2 Cryptographic Techniques

Another approach to prevent user data from
remaining visible on the disk is to use encryp-
tion. The possible approaches are to use either
an encrypted �le system or encryption tools to
selectively encrypt �les on a disk. The idea is
that encoded data will not be accessible with-
out the encryption key. If the encryption key
can be intentionally lost, the data is destroyed
without overwriting it.

This approach has been proposed [4] for re-
voking data from both the �le system and all
backup tapes on which the data is stored. The
security of this particular system depends upon
either the proper management and destruction



of personal copies of a master key or upon a
third party trusted to properly destroy their
public private key pairs periodically. While be-
ing a compelling solution from the standpoint
of handling all backup data, the solution is not
as satisfying from a practical standpoint. Users
who want data to be securely deleted may not
want to trust any third parties and the alter-
native of storing and destroying personal copies
of encryption keys will seem laborious to many
users. We address how backups should be han-
dled in our system in Section 7.

Another cryptographic approach is to use a
Steganographic File System[1]. While not at-
tempting to achieve the same goal, deleted data
in such a system could not be proved to exist,
therefore a user could not be compelled to turn
over an encryption key. Secure deletion must
mean that even the owner of the data cannot
recover it later by any means. There is a psy-
chological need satis�ed by knowing that even
oneself cannot recover securely deleted data.

In a more general sense, all cryptographic
approaches su�er from the following common
problems.

1. Encryption keys can be revoked or

compromised: Anytime that a key is re-
voked the data associated with it must be
considered accessible. Users can be com-
pelled by law to turn over their encryption
keys or their keys can be otherwise compro-
mised. In any case, deleted encrypted-�les
that remain on a disk are as accessible as
plain-text if the key is available.

2. Encryption may not be a viable op-

tion for performance or legal reasons:

The performance of an encrypted �le sys-
tem compared to a regular �le system may
be unacceptable. Encryption tools may be
too much of a performance penalty since
the tool must be used for every �le op-
eration, not just at data deletion time.
Users may simply want assurances that
their deleted data is not accessible but not
want all �le data to be encrypted. In some
countries, encrypting �le data may not be
a legal option or available encryption may
not be acceptably strong.

3. Plaintext �les may remain visible: Be-

fore �les are encrypted, they may have
existed as plaintext stored either in tem-
porary or regular �les. See the BugTraq
archives [3] for an interesting discussion
of plaintext temporary �les created by the
Windows 2000 EFS [14] that remain visi-
ble on disk in some common cases. These
plain text �les must be deleted securely.

4 Design Goals

Our design focused on addressing two main
goals: completeness and transparency. Com-
pleteness entails that all the data over the en-
tire course of a �le's existence must have been
securely overwritten. File data read into appli-
cation bu�ers and swapped out to a swap disk
must not be accessible either. Security guar-
antees must be maintained if a system crash
happens before the disk blocks have been fully
overwritten. If a crash occurs between writing
the sensitive data to a disk block and modi�-
cation of the inode, we need to ensure that the
data is properly erased. Thus the procedures
followed after crash need to be modi�ed to han-
dle this problem. The goal is for no remnants of
a deleted �le to remain anywhere on the physi-
cal disk.

Our completeness requirement entails that
we consider di�erent aspects of a �le system
usage such as the disk drive behaviors, sys-
tem administration policies, and user practices.
SCSI disks, for instance, keep a large in-memory
cache. The proper mode bits must be set on
SCSI drive writes to ensure that data actually
is written to the physical disk. Drives that re-
map blocks to other sectors upon sector failure
must be addressed. Another issue that must
be considered is the possibility of having mul-
tiple copies of a �le, either because of a users'
actions or the backup policies of a system ad-
ministrator. While our system does not address
this facet of completeness, we do our best in our
system documentation to ensure that users are
aware of all the issues.

Our second goal is to achieve transparency
from both a user perspective and system per-
spective. File deletion and truncation must be
very fast to satisfy user expectations. A reg-
ular remove operation or �le truncation opera-
tion can proceed at in-memory speeds. When



a user deletes half a document that was previ-
ously saved, they do not consider the e�ects of
the underlying disk blocks being returned to a
free list. When replacing one �le with another,
a user does not typically consider the removal of
data blocks from the replaced �le that actually
occurred within the �le system. Users thus are
accustomed to data deletion operations being
fast and transparent.

Secure removal is inherently a slow opera-
tion that involves ensuring the underlying disk
blocks have been overwritten with data multiple
times. Overwriting a �le with even two passes
of data involves writing the data, 
ushing the
data to disk, waiting for the head seek and writ-
ing to complete, and then repeating the process.
This will be unacceptably long for even a small
�le. Were a user to delete a �le with megabytes
of data, the removal process would be intoler-
ably slow. A user should be able to delete or
truncate a �le and proceed immediately with
other normal operations. To this end, we use
an asynchronous deletion process that takes the
deleted blocks and writes over them numerous
times. As far as a user is concerned, the user
time spent in deleting a �le securely is compara-
ble to the time taken for deleting a conventional
�le.

To ensure transparency, disk quotas must be
maintained properly during the period of time
while the blocks are being overwritten. We re-
quire that a user's disk quota re
ect the fact
that the disk blocks being overwritten are not
available for reassignment. Blocks remain a
part of a user's disk quota until the overwrite
process is complete and the blocks are returned
to the free list. Without this requirement, a
user would be able to quickly allocate and se-
curely delete large �les, starving other users of
disk resources.

We provide our system with the caveat that
our secure deletion tool intentionally uses dele-
tion techniques that preserves the integrity of
the disk drive. For some users, true peace of
mind may come only from using a degauss-
ing tool or following other suggested techniques
such as burning, or pulverizing the disk[7]. Our
secure deletion technique is designed for those
interested in leaving their disk in a working
state. Anyone requiring more extensive destruc-
tion of data and device obviously should pursue

other options.

5 Implementation

Our system is split into two parts, a kernel
daemon that overwrites blocks on a device, and
modi�cations to a �le system that hands o� disk
blocks to the daemon and appropriately over-
writes �le meta-data. This is a general design
that can support any block-oriented �le system.
We have implemented the necessary modi�ca-
tions for the Linux Ext2 �le system. Other �le
systems may be added as time permits.

The goal of our modi�cations is to completely
remove the remnants of any �le or directory
that needs to be deleted securely. When a �le is
deleted or truncated, we pass the released disk
blocks to an asynchronous daemon process that
overwrites the data blocks a con�gurable num-
ber of times. Only after the blocks have been
overwritten do we return them to the �le sys-
tem to be reallocated. An important bene�t of
this approach is that the asynchronous daemon
can perform the overwrites while the disk would
otherwise be idle. Our approach sacri�ces im-
mediate security by allowing sensitive data to
remain on the disk past the point where the
user has deleted it. However it ensures that reg-
ular disk operations can proceed without being
delayed by the secure deletion of �les. In the
following sections we explain the modi�cations
to the Ext2 �le system code and the implemen-
tation of the asynchronous deletion daemon.

We implemented our system using the lat-
est Linux kernel version, which at the time was
linux-2.4.2. The compiled daemon is 12KB in
size. The modi�cations to the �le system adds
an additional 3900B to Ext2 �le system. Over-
all the code for the overwriting daemon entails
roughly 800 lines of kernel code. We have been
successfully running this system for the past
month on one of the author's machines.

5.1 Secure deletion in Ext2 �le sys-
tem

The Ext2 �le system already contains an in-
ode 
ags �eld for which one 
ag is supposed to
indicate secure deletion. Secure deletion itself
was not previously implemented probably be-
cause of the performance penalty of a naive im-



plementation. On Linux, various �le 
ags can
be listed using the lsattr command and set us-
ing chattr. The secure deletion 
ag is set by
issuing the

chattr +s <filename>

command. Directories as well as �les can be
marked for secure deletion. Any �le created in
a directory marked for secure deletion will have
the secure deletion 
ag set. This inheritance of

ags is bene�cial since a user can mark entire
trees in the �le system name space for secure
deletion where all �les created on the branches
will have the secure deletion 
ag set. Flags are
preserved for most typical �le operations. Users
should be aware that the copy command does
not copy the �le 
ags. (The new �le would have
the secure deletion 
ag set if it was created in
a directory marked for secure deletion.)

5.2 Ext2 Modi�cations

We had to make few changes to the Ext2
code to implement secure deletion. We made
seven modi�cations to the existing code base.
These can be seen in Table 1. In each function
we tested whether the secure deletion 
ag was
set. If it was not set then function behavior
proceeded normally. If the secure deletion 
ag
was set then we modi�ed the code to implement
the overwriting process. When data blocks that
need to be overwritten are released from a �le,
we add an element containing a tuple of device
identi�er, beginning block number, number of
blocks released including this block number, the
user and group identi�ers, and the function to
be called once the blocks have been overwritten
to the daemon deletion list (Figure 1).

We pass the user and group identi�ers to the
deletion daemon so that the correct disk quota
can be maintained at all times. After the disk
block has been returned to the free list, the disk
quota system is updated using these identi�ers.
We use the (uid, gid) pair to maintain the num-
ber of blocks belonging to the pair currently
being overwritten. Once the blocks have been
overwritten, we then call the disk quota system
with a VFS inode dynamically created with the
proper user, group, device, and block count in-
formation. This does not interfere with the disk
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Figure 1: The deletion list data structure hold-
ing the data blocks removed from �les

quota inode count since we are not freeing in-
odes but only disk blocks.

In our current implementation the �le meta-
data for securely deleted �les and directories is
overwritten once synchronously with all zeros
within the Ext2 code itself. We made this de-
cision since it was simpler to implement at the
time. Also, currently between the time when
blocks are initially passed to the deletion dae-
mon and the time they are returned to the free
list, the blocks are not associated with any �le
in the �le system. This complicates the recov-
ery process if a crash occurs during this time.
Future modi�cations will add the blocks to �les
in a directory storing all the blocks that must
be overwritten.

5.3 Ksdeletion Daemon

The Ksdeletion daemon starts at the sys-
tem initialization time or when the secure dele-
tion module is loaded. It is a kernel daemon
that runs at periodic intervals. Behavior of the
daemon is dynamically con�gurable through a
/proc �le system interface. Every time the dae-
mon wakes up, it performs three tasks: (1) re-
trieves and stores the blocks that need to be
overwritten (2) issues new overwrite requests
and (3) returns blocks that have been fully over-
written to the corresponding �le system for real-
location. A �le system is prevented from being
unmounted if its blocks are in the process of



ext2 free blocks modi�ed to place blocks on daemon secure deletion list, call disk
quota system freeing these blocks from the current inode, call disk
quota system adding blocks back to the unique user and group
inode

ext2 free clean blocks renamed regular ext2 free blocks
ext2 discard prealloc modi�ed to call ext2 free clean blocks
ext2 delete inode modi�ed to reset all inode values to zero
ext2 unlink modi�ed to overwrite the name of a �le from the directory
ext2 rmdir modi�ed to overwrite the name of the directory in the parent

directory
ext2 free overwritten blocks new function, returns overwritten blocks to the free list and up-

dates disk quota

Table 1: Modi�cations done to Ext2 �le system for implementing the secure deletion

being overwritten.

Each device contains a generations data
structure. Each generation contains two lists,
one list for disk block information in the form
of (block, count) groups and the second list con-
taining user information in the form of (uid,
gid) pairs. Di�erent generations represent lists
of blocks that have proceeded through the over-
writing process a di�erent number of times. The
number of generations used depends upon the
overwrite strategy employed. If the policy is
to completely overwrite a set of blocks multiple
times before proceeding to the next set, then
only two generations are required. One gen-
eration will represent the blocks currently be-
ing overwritten while the other generation will
represent the blocks that have never been over-
written. Another policy might mandate that
blocks be overwritten as soon as possible. To
accommodate this type of policy we allow for
a con�gurable number of overwrite generations.
As blocks are progressively overwritten they are
moved further in the generation data structure.
New blocks are always added in the �rst gener-
ation slot. Figure 2 presents a diagram of this
data structure.

The daemon retrieves newly deleted blocks
that the �le system has added to the daemon
deletion list and places them in the above data
structure. The storage of the blocks on the dae-
mon deletion list is ineÆcient since each (block,
count) group requires its own list element. No
aggregation of blocks across the entire device
is possible in this format. But when the dae-
mon adds the elements from the deletion list to

the generation data structure, disk block infor-
mation of adjoining disk blocks (belonging to
the same generation) are merged to enable an
eÆcient representation. If a new set of blocks
cannot be merged, a new element is created at
the proper place in the list to ensure the correct
ordering of disk block numbers. Since the list is
ordered by the actual block number, it is easy to
achieve very eÆcient overwriting of data espe-
cially when a large number of disk blocks are to
be overwritten. We also add a (uid, gid, count)
element to a linked list of user information if the
(uid, gid) pair is new, or increment the count of
an existing (uid, gid) pair.

The second task of the daemon is to issue new
device write requests. Each time the daemon is
activated it runs through all the devices writing
out a con�gurable number of disk blocks. Be-
fore issuing write requests the daemon checks
the number of outstanding device requests. If
the number of outstanding requests (read or
write) exceeds a con�gurable level then no new
requests are issued for that device. One side
note is that the kernel interface to the block
devices extensively makes use of bu�er head
data structures, but operations on the bu�er
head memory cache are not exposed. It would
be bene�cial if they were since then we could
reuse the free bu�er head pool already available.
Since this is not exposed, we maintain our own
bu�er head cache that employs the underlying
slab allocation memory routines. This is done
to improve the eÆciency of memory allocation.

Finally, the third task of the daemon is to
return blocks that have been securely overwrit-
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Figure 2: The generation data structure kept
by secure deletion daemon

ten to the �le system by invoking the registered
callback of the �le system. All the blocks in
one generation are returned to the free list at
the same time. The disk quota system then
is properly updated using the (uid, gid, count)
list.

5.4 Overwrite Policies

Currently the daemon overwrites a con�g-
urable number of blocks on each device for each
iteration. Another policy being implemented
is to overwrite either a minimum number or
a percentage of outstanding blocks, whichever
is larger. Other policies that could be imple-
mented include overwriting blocks at a rate de-
termined by the amount of free space remain-
ing or policies that make more sophisticated at-
tempts at avoiding regular disk activity.

Parameters of an overwrite policy are dynam-
ically con�gurable through the /proc �le sys-
tem. For the default policy, parameters include
maximum number of blocks written at a time,
overwrite patterns employed, number of over-
write passes, and the interval between passes.

These parameters are set by writing commands
of the following form to /proc/secdel/policy:

secdel <device> <parameter> <value>

5.5 Failure Recovery

A �le system may crash before data blocks are
overwritten and returned to the free list or sen-
sitive data may be written to a block but not yet
be pointed to by a �le system element. In either
case the inconsistencies that appear in the �le
system are blocks and inodes that are marked as
allocated but are not linked to the rest of the �le
system. After such a crash the system adminis-
trator determines if allocated blocks should be
securely overwritten or if they belong to exist-
ing �les. While still needing to handle blocks
that are written but not yet pointed to by a
�le system, our planned modi�cations, adding
blocks being securely overwritten to temporary
�les, will make the recovery task easier.

5.6 Backup Copies

We imagine that many users will not need to
worry about additional copies of their sensitive
data. In many cases backup mechanisms are
not employed. In other instances, no backup
procedure is necessary since user data is only
temporarily accessed and stored on the device
(for instance on terminals in Internet cafes or
academic computing clusters.) If a user does
make backup copies, we suggest that separate
devices be used to store data which may need
to be securely deleted. Other handling proce-
dures should be instituted for these devices; for
instance, backup tapes may be destroyed after
a shorter time period.

5.7 Swap Space

A number of approaches exist so that sen-
sitive data is not stored in the swap space on
a disk. The easiest solution is to ensure that
sensitive data never gets written to the swap
disk in the �rst place. Given the availability of
large amounts of memory, the swap-�le could
simply be disabled. Slightly more complex, an
encrypted swap space using a random key could
be used. If a longer window of vulnerability is



tolerated, the swap-�le could be disabled, over-
written and then re-enabled periodically. de-
vices

6 Evaluation

We evaluate our security mechanism using a
number of criteria including performance, ease
of use, applicability and security. Each of these
criteria is important considering the target pop-
ulation for our tool.

6.1 Performance

The impact on user visible latency of our ker-
nel daemon is negligible. Awakened at periodic
intervals, the daemon returns immediately if no
blocks need to be overwritten. Similarly, the
performance impact of our modi�cations to the
Ext2 �le system is not detectable by our tests.
Measurements of the time taken to return from
a user space deletion and truncation were not
a�ected by the addition of our code.

According to [6] �le deletion and truncation
are less than three percent of total �le sys-
tem operations on a variety of system platforms
and workloads. In most cases, these activi-
ties constitute far less then one percent of disk
operations. Their study does not characterize
the amount of data deleted with each opera-
tion which is pertinent to our overwrite process.
This still tends to indicate that our daemon will
be inactive for a majority of the time.

We did not explore whether disk fragmenta-
tion is increased as a result of holding blocks for
the overwriting process or whether background
disk writes have any e�ect on other user disk
activity times. Conceivably, seek times could
be increased since the disk read write head will
be moved more frequently to other sections of
the disk. Another pertinent performance ques-
tion is the e�ect of our overwriting process on
disk lifetimes since we are increasing the amount
of data written to disk. We suspect that this
would not be much of a problem given the infre-
quency of �le deletion and truncation suggested
by[6].
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Figure 3: Secure �le deletion times for a user-
level deletion tool

6.2 Ease of Use

Our secure deletion tool is relatively easy to
install since both the daemon and the modi�ed
�le systems can be loaded as kernel modules.
A new kernel does not need to be recompiled.
Overwrite policies and their associated parame-
ters can easily be con�gured through the /proc
�le system interface. Users then only need to
make a one-time decision regarding which direc-
tories or �les should have their blocks securely
deleted. In Ext2, entire directory trees can be

agged for secure deletion by issuing one com-
mand. From a user perspective, all �le oper-
ations and application behaviors proceed nor-
mally.

To compare the ease of use of our tool with
user space tools, we examined how long a typ-
ical user space program took to overwrite �les
of various sizes (Figure 3). For this test, we
selected overwrite [17], which appears to be
a popular secure deletion tool. It uses Peter
Gutmann's overwrite patterns [10] to overwrite
�les thirty-two times. The bandwidth of our
disk drive as determined by the hdparm bench-
mark was 2:52MB=sec. (It is a relatively old
IDE drive.) We believe that even a small �le of
256KB, that takes roughly 8 seconds to over-
write, is too much of a performance penalty to
be acceptable if employed frequently. Users def-
initely would not tolerate waiting 13 minutes for
larger �le sizes to be deleted.



6.3 Applicability

Any block-oriented �le system can use the
asynchronous overwrite functionality provided
by our deletion daemon to securely delete blocks
of data. Log structured �le systems, �le systems
which write redundant data, such as RAID-
based �le systems, and drives which hide fail-
ures through dynamically remapping blocks are
not supported. Systems employing backup
strategies were addressed in a previous section.
We provide warnings with our system documen-
tation so that users are aware when this mech-
anism should not be utilized.

6.4 Security

The security of our approach depends on the
e�ectiveness of the overwriting techniques em-
ployed and the window of opportunity between
when the request arrived for the secure deletion
and when the overwriting process actually com-
pletes. While we strongly suspect that even a
small number of overwrite passes will make re-
covery of deleted data impossible for most mod-
ern drives, we cannot know for sure. Users who
feel they need more security can con�gure their
installation to employ more overwrite passes.

We can approximate the time taken to com-
pletely overwrite a �le in our implementa-
tion using the following formula assuming that
writes from one iteration are complete before
the next iteration begins.

Let:
T - time taken to securely overwrite the �le
P - probability of being too busy when the dae-
mon wakes up
F - �le size in bytes
B - device block size in bytes
N - maximum number of blocks written per it-
eration
G - number of di�erent overwriting passes
I - time interval between issuing overwrites
Then;

T = G� I �
1

1� P
d
dF
B
e

N
e

Fig 3 presents sample overwrite times assum-
ing a device block size of 4096B, 1024 blocks
written per iteration, a 10 second interval be-
tween overwrites, and a zero probability of the
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Figure 4: Time to securely delete �les for num-
ber of overwrite passes

request queue being too busy when the daemon
checks. Assuming a zero probability of being
too busy makes the results presented a best-
case scenario. The overwrite policy employed is
to completely �nish one overwrite pass before
proceeding to the next. This results in the step
behavior demonstrated in the graph.

7 Conclusion

This work presents a secure data deletion
mechanism for the Linux Ext2 �le system.
We asynchronously overwrite data according to
best known practices. We securely overwrite
both the �le data and meta-data. Our system
is con�gurable to user needs and the overwrit-
ing can take place during periods when the disk
would otherwise be inactive. We have argued
why existing approaches such as user-level dele-
tion programs and encryption based approaches
are inadequate. Perhaps the most compelling
argument for our approach is that it is very sim-
ple from a user's standpoint. All users have to
do to securely delete their data is to set a 
ag
bit on the �le or the directory containing that
�le.

Other things to consider as we develop our
system more fully are the primitives that the
device drivers o�er that we can employ to our
advantage. For instance, being able to control
the frequency and intensity of disk head signal
as the patterns are written may improve the
overwrite e�ectiveness[20]. We also might con-
siderably improve the overwrite eÆciency by us-
ing rotational latency periods for our passes[13].
Another possible implementation revision is to



employ the techniques described in [9] for up-
dating �le system meta-data.

We are aware that this tool potentially bene-
�ts people who we might not be interested in
helping. In discussing this project with col-
leagues, concerns were raised that it would help
hackers hide their activities and allow criminals
to evade the law more easily by providing read-
ily available tools for removing evidence both on
their own and compromised systems. In many
ways these concerns are similar to objections
about the wide spread use of encryption. The
technology can be used for both good and bad
purposes. We strongly suspect that it will give
peace of mind to far more people then the num-
ber who will use it to evade the law. Simi-
larly, we recommend to those concerned with
the human impact of such a tool the article
\In Defense of the DELETE Key"[18]. It ar-
gues that the disk drive is an electronic record-
ing device present in every oÆce and home that
records all our written thoughts. If users change
their mind later and delete what they wrote,
the �le actually should be deleted. The author
provides convincing examples of why everyday
users would want 'delete' to really mean delete.

One �nal caveat to the user would be that we
do not know how securely we have removed data
from the physical disk. We use the best known
practices available today. Years into the future,
this information potentially could be recovered
using more advanced techniques. As record-
ing mediums change, the methods for securely
deleting data may need to be modi�ed. We
were reminded of this fact recently upon learn-
ing that the National Archives was investigating
whether the deleted sections of the famous Wa-
tergate tapes could now be recovered[15].

8 Availability

Our code, installation and usage instructions
is available under GPL at the following location:

http//atlas.lcs.mit.edu/securedeletion
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