USENIX Association

Proceedings of the
10" USENIX Security
Symposium

Washington, D.C., USA
August 13-17, 2001

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

StackGhost: Hardware Facilitated Stack Protection

Mike Frantzen
CERIAS
frantzen@cerias.purdue.edu

Abstract

Conventional security exploits have relied on over-
writing the saved return pointer on the stack to
hijack the path of execution. Under Sun Micro-
system’s Sparc processor architecture, we were able
to implement a kernel modification to transparently
and automatically guard applications’ return point-
ers.

Our implementation called StackGhost under Open-
BSD 2.8 acts as a ghost in the machine. Stack-
Ghost advances exploit prevention in that it pro-
tects every application run on the system without
their knowledge nor does it require their source or
binary modification.

We will document several of the methods devised to
preserve the sanctity of the system and will explore
the performance ramifications of StackGhost.

1 Introduction

This paper presents a simple but elegant solution to
the now infamous buffer overflow and some prim-
itive format string attacks. Most security exploits
have traditionally overwritten a function’s saved re-
turn address. The attacker can then direct the flow
of execution into an arbitrary instruction stream
that is invoked when the vulnerable function tries
to return control to its caller.

By taking advantages of one of the nuances of Sun
Microsystem’s Sparc processor architecture, we were
able to engineer a kernel modification to OpenBSD
2.8 to help safeguard the return address. The kernel
modification performs transparent, automatic and
atomic operations on the return address before it is

Mike Shuey
Engineering Computer Network
shuey@ecn.purdue.edu

written to the stack and before the function trans-
fers execution back to the saved return address.

Knowledge of what buffer overflows are [12], their
relevance to security exploits [1, 13] and why they
occur is a prerequisite to understanding this paper.

Section 2 describes the architectural issues involved
in StackGhost. Section 3 details the implementa-
tion. Section 4 describes the performance effects.
Section 5 acknowledges the limitations. Section 6
hypothesizes on extesion to other architectures. Sec-
tion 7 describes the related research. Finally, Sec-
tion 8 presents our conclusions.

2 Architectural Issues

2.1 Conventional Function Calls

Four bulk operations are performed to call a func-
tion in a conventional architecture. The function’s
parameters are saved onto the stack. The caller’s
registers are also saved onto the stack to prevent
corruption by the callee. The instruction address
is saved for the called function to return back to
once it is finished. And only then can execution be
transfered to the function.

Once the function completes its task, it jumps back
to the return address saved on the stack.

2.2 Sparc Function Calls
2.2.1 Register Windows

When the Sparc architecture was first designed, the
overhead associated with saving registers to the stack
during a conventional function call was believed to
be very large, or at least significant enough to war-
rant architectural changes to speed this process. Rather
than wasting valuable CPU cycles to copy register
data to and from the stack, Sparc architects at-
tempted to provide hardware mechanisms to ensure
that a function call gets a private set of registers
for the duration of the function. When the function
completes, the previous set of registers return to ex-
istence with (in most cases) no interaction with the
stack whatsoever.

During normal execution, a Sparc processor has 32
visible general-purpose integer registers. These reg-
isters are divided into four groups based on the sort
of data they are to contain, according to the Sparc
Application Binary Interface (ABI) [17]:

global registers for data common across function
calls.

input registers for incoming function parameters
(including the frame pointer and return pointer).

local registers for general use.

output registers for parameters to deeper called
functions, the return value from deeper func-
tion calls, the stack pointer, and the saved pro-
gram counter after a jump and link.

The latter three groups (input, locals, and output)
comprise a register window.

When a function is called, it allocates a new window
for its specific use. The global registers are shared
between both the old and the new windows (mean-
ing that any modification of global data in the callee
will be visible in the caller). The callee receives a
new group of local registers, as well as a new set
of output registers - these registers are not accessi-
ble from the calling function. Finally, the caller’s
output registers are rotated to be the input regis-
ters for the called function. Any changes the callee
should make to its input registers will be visible to
the caller as changes in the caller’s output group of
registers.

Tegiaters

called procedure's window
window overlsp *

calling procedure's window
window overlsp *

previoue procedure's window

Figure 1: Register Window Overlap

In this way parameters can be passed from one func-
tion to another without (usually) interaction with
the stack. The caller’s code need only put parame-
ters in its output registers, then call a function. The
called function will have access to the caller’s output
registers in its own input registers. Return values
are the reverse of this process; the called function
leaves the return value in a particular input register,
which then reverts to being an output register for
the caller as soon as the function returns.

Nested function calls will create a chain of linked
register windows. Each function call will use the
same group of eight global registers, but will have
its own group of eight local registers for its own pri-
vate use. The output registers from the first func-
tion will be the input registers for the second deeper
function called; the outputs from the second will be
the inputs for the third, and so on.

Obviously, this trend can’t go on forever. Each reg-
ister window involves 24 registers (8 input, 8 local,
8 output), a third of which are shared with the call-
ing function and two thirds of which need to be al-
located by the processor. (The global registers are
not shifted.) The processor will only have a lim-
ited number of registers available - most modern
Sparc processors provide enough for seven or eight
windows - and eventually some registers must be
reclaimed.

The job of reclaiming registers falls to the operat-
ing system. When the number of allowable win-
dows is about to be exceeded (as will occur with

any program exhibiting deeply-nested or recursive
functions) a register window overflow interrupt is
generated. The OS will respond by copying the old-
est register window onto the stack, relocate the now
defunct register window, and return control of exe-
cution to the program without it knowing it missed
a beat. Eventually the deeply-nested functions in
the program will start to complete but the caller’s
registers will be defunct and need to be fetched. The
processor will generate a register window underflow
interrupt and force the OS to restore the previously
saved registers.

This OS interaction provides the basic hardware
primitives needed for StackGhost’s operation. In a
conventional function call architecture, there is no
feasible way for the OS to automatically examine
critical areas of the stack as they are being written.
However, because the OS is ultimately in charge of
when registers are written to the stack on the Sparc
architecture, it is possible to take extreme precau-
tions to ensure the security of critical data, such as
the return address and frame pointer.

2.2.2 Memory Alignment

StackGhost also takes advantage of one other Sparc
architectural feature. Instructions must be aligned
on a four byte boundary. Otherwise, the hardware
traps (interrupts) into the alignment fault handler
in the kernel which kills the process. We will revisit
this architectural requirement to enhance an attack
detection algorithm.

3 Implementation

The beauty of StackGhost is that it doesn’t have
to operate on every function call. StackGhost only
needs to be invoked in deep function call sequences
or recursive programs — when the program overflows
or underflows the register windows and thus interact
with the stack. If a program only performs shallow
function call sequences, StackGhost may never be
invoked to write register windows to the stack.

The hardware ultimately has the responsibility to
decide when a register window needs to be written
to or read from the stack. When the decision occurs,
the processor automatically invokes the overflow or
underflow handlers and StackGhost in the process.

To maximize the security afforded by StackGhost,
the mechanism either needs to prevent a corrupt re-
turn address from exploiting oversights in the pro-
gram or it needs to detect corruption of the return
pointer. Unfortunately, one does not guarantee the
other.

In order for a corrupt return pointer to exploit the
system, the return pointer must actually be pointed
carefully back into exploit code. A reversible trans-
form can be applied to the legitimate return ad-
dress and the result written to the process stack.
When the return pointer needs to be accessed, the
reverse transform can be applied before the access
completes. Thus the value saved on the stack is ac-
tually a computation of the real return address. To
retrieve the real value, the inverse computation is
calculated. If an attacker does not know the trans-
form or the key to the transform, he or she cannot
predictably affect execution.

There are two ways to transparently detect a cor-
rupt return pointer. The first is a function of the
above transform function. Since the Sparc processor
requires that all instructions be aligned on a 32bit
word boundary, the lower two bits of an instruc-
tion’s address will both be zero. The transform can
invert one or both of the two least significant bits. A
corrupt return pointer on the stack will be detected
if those bits are not set at the time of the inverse
transform. The Sparc processor will take care of
this detection in hardware and cause an alignment
trap.

A corrupt return pointer can also be detected by
keeping a return-address stack. Every time a return
pointer is saved to the program stack, the handler
can keep another copy in memory not accessible to
the userland process (a return-address stack). A
corrupt return pointer is detected if a function tries
to return to a location not saved in the return stack.

3.1 Per-Kernel XOR Cookie

The most trivial incarnation of return pointer pro-
tection consists of XORing a fixed cookie into the
return pointer. XORing the cookie with the pointer
before it is saved onto the stack and again after it is
popped off preserves the legitimate pointer but will
distort any attack.

By setting one or both of the two least significant

bits (LSBs) in the cookie, the XOR not only in-
hibits exploit, it also can detect a corrupt return
pointer. If an attacker does not know which of the
LSBs are set on the stack, the corrupt return pointer
will cause an alignment fault unless the attacker gets
lucky. Even if each state of the LSBs are tried, the
interaction with the remainder of the cookie shound
hinder the predictable operation of a corrupted re-
turn pointer.

A Per-Kernel XOR cookie can be built into OpenBSD
by adding about a dozen assembler instructions. A
sign-extended 13-bit cookie can be built into the ker-
nel as an immediate operand that will cost one extra
instruction per window pushed and another instruc-
tion when the window is popped.

The Per-Kernel XOR cookie can also be trivially
defeated. It is constant for every process on the
system. The cookie can be determined if an attacker
is able to run arbitrary programs. Even without a
priori knowledge of the cookie, an attacker could use
a large shell code sled to slide into the main exploit
code [1].

The Per-Kernel XOR, cookie will not be enough to
stop a competent attacker.

3.2 Per-Process XOR Cookie

A safer alternative to a per kernel XOR. cookie would
be to use a different random cookie for every pro-
cess. The cookie can be stored in the Process Con-
trol Block (PCB) outside of user readable memory.
The PCB will be automatically copied on a fork()
and re-initialized on an execve(). There is even an
extra 32-bit padding field in the OpenBSD PCB
structure that can be used to store the 32-bit cookie.

A Per-Process XOR Cookie is far safer than per
kernel granularity. But the XOR cookie can be in-
ferred if an attacker can read the distorted return
pointer off the stack and can also predict what the
real return pointer should be. Format string vulner-
abilities allow the first condition and looking at the
vendor supplied application binary can often pro-
vide the real return pointer.

The Per-Process Cookie overhead will add approx-
imately four instructions of overhead to both the
push and pop action. In a few instances it will be
as few two when the PCB pointer is already avail-

able in a register.

3.3 Encrypted Stack Frame

We can further mitigate detection of a corrupt re-
turn pointer with a more unpredictable transforma-
tion of the return pointer. We have the option of
encrypting part of the stack frame when the win-
dow is written to the stack and decrypting it during
retrieval.

Unfortunately there are several major obstacles to
encrypting the return pointer.

1. Encrypting and decrypting every frame may
seriously hinder performance.

2. At best, there are only 16 registers to work
with. Auxiliary space would have to be stati-
cally allocated in the PCB.

3. The algorithm cannot rely on block chaining
since userland threading or setjmp-longjmp could
shuffle the call-return ordering.

4. The plaintext is easily predictable. Most of
the high bits of the frame pointer will be set.
Most of the high bits of the return pointer
will be zero. The input registers (function ar-
guments) will be fairly constant.

We believe a 64-bit block algorithm would offer im-
proved security over the XOR cookie methods de-
scribed above by using the concatenation of the frame
pointer and return pointer as the input to the en-
cryption algorithm. It could be a cryptographically
weak usage but would stop all but the most de-
termined adversaries. Encrypting the stack frames
would unfortunately impose significant performance
degradation for obvious reasons.

The encryption algorithm would have to be modi-
fied to encrypt the stack frame if StackGhost must
detect a corrupted return pointer. The previous two
StackGhost methods used the two LSBs as a form
of an in-band secret. Using encryption as the trans-
form would obviously cause the LSBs to be random.

3.4 Return-Address Stack

The pinnacle incarnation of StackGhost would im-
plement what processor architects call a “return-
address stack”. To improve unconditional branch
prediction, modern processors keep a FIFO stack in
silicon of the return addresses of function calls [15,
11, 3]. Every time a CALL instruction is executed,
its return address is pushed onto the stack. Every
time a RETURN instruction enters the pipeline, the
next address is popped off the stack and the proces-
sor continues fetching from the associated address
seamlessly. A few cycles later, the real return ad-
dress will be established and the processor can re-
cover from a misprediction if need be.

We shall describe the theory developed to date. Our
design criteria are as follows:

1. The mechanism must break no standard or
common software.

2. The mechanism must guarantee the detection
of a smashed stack.

3. The mechanism must kill any process with a
corrupt stack.

4. The mechanism must have negligible memory
utilization.

5. The mechanism must be implementable and
debugable.

An obvious first approach might be to build in a
return-address stack as a FIFO queue just as is
done in hardware. Unfortunately, something so sim-
ple would break userland threading, setjmp() and
longjmp(), and possibly C++ exceptions. Setjmp(),
longjmp() and C++ exceptions introduce the prob-
lem that multiple return addresses can be bypassed
by a deep multi-level return. This can be solved by
scanning the entire stack until the return address
can be located. Userland threading introduces a
similar situation. When a thread relinquishes the
processor to a sibling thread, it switches to a seper-
ate stack. The second thread may be at the apex of
a deep calling sequence and start returning. Again
the queue will be out of order instead of FIFO and
may have to be walked for every return. Perfor-
mance will be sacrificed. If a thread is terminated
or a program longjmp()’s, queue entries will refer-
ence stale stack frames and persist until the process
terminates.

A more refined approach to designing a return-address
stack is to add a small hash table in the PCB. Ev-
ery time a register window needs to be cleansed, the
mechanism would add an entry into the hash table
(indexed off the base address of the stack frame).
And then store the base address to use as the com-
parison tag, the return pointer, and a random 32-
bit number. In the place of the return address in
the stack frame, it would place a copy of the ran-
dom number. When StackGhost retrieves the stack
frame to refill the register window, it can compare
the random number on the stack with its image
in the hash table. If the instances do not match,
an exploit has occurred and the program must be
aborted. Otherwise, StackGhost fills the register re-
turn address with the one stored in the hash table.

A return-address hash table alleviates the perfor-
mance problems associated with userland thread-
ing but does not address the memory leak asso-
ciated with setjmp and longjmp or a terminated
thread. Fortunately, setjmp and longjmp are both
assisted by the kernel as a system call. Upon receiv-
ing the longjmp syscall, the kernel can walk back-
wards through the stack until the setjmp location is
found, removing the hash entries along the way. An
indirect benefit of walking the stack is that it also
helps secure the jmpbuf (setjmp storage buffer).

For operating systems other than OpenBSD that
support symmetric multiprocessing on Sparc and
with kernel managed threads, mutual exclusion would
have to be guaranteed at some level on the hash ta-
ble. A locking primitive per window overflow and
underflow handler invocation may prove prohibitivly
expensive.

Further testing in a careful multi-user environment
would be needed.

4 Performance Effects

4.1 Micro Benchmarks

Micro benchmarks were run under each of Stack-
Ghost’s protection mechanisms and the results ap-
pear above in Figure 2 (see appendices for bench-
mark code and details). For the Return-Address
stack mechanism, an optimistic approximation was
implemented. It assumed an adequate number of
pre-allocated entries its the free list and a naive

us
IS
|

Base Per Per Return
Kernel Process Address

Stack

Figure 2: Microseconds per Function Call

random number generation scheme. Both Cookie
methods are the true StackGhost implementations.

The micro benchmarks show a worst case scenario
with a deeply recursive instance of an eight instruc-
tion function. Each of the function calls will invoke
StackGhost. On a 70Mhz Sparc 4, the Per-Kernel
XOR cookie imposes a little under one microsecond
per function call penalty. The Per-Process cookie
StackGhost overhead is a little under two microsec-
onds per call. The return-address stack cost negli-
gably more than the Per-Process mechanism.

In the absolute worst case (shortest possible recur-
sive function that will still return), the Per-Kernel
XOR cookie causes a 17.44% overhead over the base-
line. The Per-Process XOR cookie can result in a
37.09% overhead. The return-address stack approx-
imation imposes a 38.86% overhead.

Again, it cannot get worse unless there are un-
wieldy cache or TLB affects. We speculate that a
bulk of the overhead is actually attributable to an
additional TLB and cache miss instead of the addi-
tional instruction count.

The performance penalties could be reduced if the
StackGhost code was interleaved into the trap han-
dlers instead of just inserted. Sparc processors are
superscalar, albeit in-order, and can take advan-
tage of some instruction level parallelism (ILP). If
the trap handlers themselves were re-written to in-
crease ILP, the optimization should absorb most of
the StackGhost cost.

4.2 Macro Benchmarks

The SPEC95 integer benchmark suite was also run
to establish macro benchmarks (see Appendix 1 for
environmental details). The results appear below in
Figure 3.

QG—

gee —
port —

r T T T T 1
0.5 0.7 0.9 11 1.3 15

Ratio to SPEC95 Base Platform

B base
per-kernel
[per-process

Figure 3: SPECint95 benchmarks

The performance penalties measured by the SPEC95
integer benchmark suite indicated that StackGhost
only shaved a few hundreths of a point off the speed
metrics. The performance aberrations may be more
attributable to noise than the StackGhost mecha-
nism. An un-StackGhosted OpenBSD 2.8 kernel
had slightly worse performance than a StackGhosted
version in some instances, the only other explana-
tion is that it is due to cache or TLB effects.

Discounting any noise in the benchmark, the ge-
ometric mean SPEC rating showed a StackGhost
overhead of 0.1% with a Per-Kernel cookie and a
0.4% overhead with a random Per-Process cookie.

5 Limitations

There are several moderate to serious deficiencies in
StackGhost. Some could be diminished with further
research but others are inherent.

5.1 Unpredictable Execution

The StackGhost XOR Cookie methods of hinder-
ing exploits do not always detect the corruption
of the stack. If the attacker’s return pointer man-
ages to align correctly after being XORed with the
cookie, execution will be transfered in an unpre-
dictable manner.

Execution may divert to a random but legal stretch
of code and cause data corruption. Of course, a suc-
cessful attack may have the same chance of causing
data corruption since no cleanup code will be called
anyway.

5.2 Forked Processes

In the current StackGhost incarnation, forked pro-
cesses have an identical Per-Process cookie.

It may be possible to unroll the stack and adjust
each return pointer in the new process. But the pro-
cess would have to be non-threaded and it would du-
plicate the program stacks instead of using a copy-
on-write mechanism — potentially driving up mem-
ory utilization. Again, further research must be
done.

5.3 Rootshell vs. DoS

If StackGhost saves a network daemon from a suc-
cessful attack, it should abort the network daemon.
A rootshell exploit will just be converted into a de-
nial of service exploit since the daemon will be down.
This behavior is an added incentive to remedy the
underlying problems; instead of just mitigating ex-
ploit.

5.4 Random Pool Depletion

If random Per-Process keys are used, bursts of rapid

program spawning could deplete the randomness pool.

A starved pool could hinder other programs from
executing until more randomness can be gathered.

5.5 Debuggers

Userland debuggers are currently broken by the XOR
cookies. They will not be able to backtrace since the
in-core return pointers are obviously distorted. The
in-kernel core dump mechanism may be able to walk
the stack and cleanse each activation record in the
program. Further research must be done. Threaded
programs would present an additional beast for rea-
sons outlined above by the kernel return stack.

Debugging via Ptrace() will also present problems
for the parent processes since the in-core program
counter will have been modified by StackGhost.

5.6 Granularity

The current implementation of StackGhost protects
each userland process on the system. It may be de-
sireable to selectively protect processes deemed to
be “at risk.” Setuid, setgid and otherwise privileged
processe are the likely candidates for automatic cov-
erage. The XOR cookie mechanisms of StackGhost
may disable coverage by using a NULL cookie since
XORing any number with zero is the equivalent of
adding by zero — no effect.

5.7 Unaffected Exploits

StackGhost will not stop every exploit, nor will it
guarantee security. Exploits that StackGhost will
not stop include:

1. A corrupted function pointer (atexit table, .dtors,
etc.)

2. Data corruption leading to further insecure
conditions.

3. “Somehow” overwriting a frame pointer with
a frame pointer from far shallower in the call-
ing sequence. It will short circuit backwards
through a functions’ callers and may skip vital
security checks.

6 Other Architectures

The application of the StackGhost mechanisms to
architectures other than Sparc is contingent on a
trap into the kernel when registers are pushed onto
the stack and again when they are popped off. We
know of no common architectures which provide the
convenience of the Sparc register window overflow
and underflow traps. But we believe there are sev-
eral architectural features which could approximate
the behavior of Sparc.

6.1 Hardware Breakpoints

Many architectures provide hardware assisted de-
bugging in some fashion. If the support comes in the
form of hardware breakpoints, and the breakpoints
can be placed on memory accesses (aka watchpoints)
instead of instruction addresses, the kernel may be
able to load a breakpoint on the address where the
next and last return pointers are stored before con-
text switching into a processes. Access to the cur-
rent function’s return pointer and the next func-
tion’s in the calling sequence would both cause a
trap into the kernel. A deeper function call will
cause a trap which must add a breakpoint to the
next return pointer location when it saves the cur-
rent. A return will cause a trap which must confirm
that there is a breakpoint on the next previous re-
turn pointer.

The use of hardware breakpoints to approximate the
trap behavior of register windows requires knowl-
edge of stack layout a priori or the userland process
must include stack layout hints.

6.2 Page Protection

Most, architectures allow some protection mecha-
nism to limit access to virtual pages. By mark-
ing stack pages as unaccessible (for both reads and
writes), the kernel could guarantee a trap every time
the stack is accessed. Unfortunately, the kernel will
be notified for every stack access. A variation of this
method proved too costly on TA32 under the Mem-
Guard implementation [4] briefly described later.

6.3 IA64

Intel’s IA64 architecture supports variably sized reg-
ister windows (the Register Stack Engine in the Intel
vernacular) [7, 8, 9, 10]. In TA64, function’s can re-
quest an arbitrary number of registers unlike the 24
register window on Sparc. If an overflow or an un-
derflow occurs, the processor stalls while the hard-
ware interacts with the backing store. The actual
loading or storing of the registers is done by the
hardware instead of by kernel trap handlers.

To simulate the Sparc register window trap behav-
ior, it may be possible to misalign the backing store
pointer. Every time the Register State Engine stores
to the backing store or retreives registers from it,
there will be a trap into the kernel thus invoking
the StackGhost mechanism.

7 Related Work

There have been several prior research endevours
against buffer overflows and to guard the stack. This
is by no means an exhaustive list.

7.1 StackGuard

Crispin Cowan’s StackGuard is a modified compiler
which places canaries (the term canary can be used
interchangeable with our use of the term cookie)
around the return pointer in function prolog. A
buffer overflow will modify the canary on its way
to overwriting the adjacent return pointer. If the
function epilog detects a dirty canary, it rightly in-
fers that an exploit has occurred, it logs the exploit
and it aborts the program [4].

StackGuard can also XOR a random canary into the
return address in the function prolog and XOR the
canary out in the epilog. This should cause an unde-
tected corrupt return pointer to dump core instead
of executing the exploit code.

Another technique called MemGuard was described
in the same paper as StackGuard. MemGuard des-
ignates the return address on the stack of an x86
machine as a “quasi-invariant.” It only allows a
store to that memory location through the Mem-
Guard API. This involved marking the entire stack

page read-only during function prolog, and unpro-
tecting the page during the epilog. A special trap
handler was installed in the kernel to emulate the
writes to the stack locations near the return address
that were unfortunate enough to fall on the same
virtual memory page. MemGuard proved to impose
an inordinate overhead.

7.2 StackShield

StackShield works as an assembler processor sup-
ported by the GNU C and C++ compilers. It works
by modifying the function prolog to store away the
return pointer into a stack distant enough that over-
flow is not likely. Upon function return, the function
epilog actually returns from the location specified
in the private return stack instead of the program
stack [18]. The only exploit detection StackShield
performs is checking the segments function pointers
point to.

7.3 ProPolice

Hiroaki Etoh’s ProPolice is a modification to the
GNU C compiler that places a random canary be-
tween any stack allocated character buffers and the
return pointer [5]. It then validates that the canary
has not been dirtied by an overflowed buffer before
the function returns. ProPolice can also reorder lo-
cal variables to protect local pointers from being
overwritten in a buffer overflow.

7.4 LibSafe

LibSafe is a library modification to Linux that safely
wraps functions known to be “unsafe” and contains
any damage to the local stack frame [2]. Also in-
cluded in the LibSafe paper is a tool called LibVer-
ify that will rewrite a binary application to perform
a return address check.

7.5 Non-Exec pages

There are several implementations available that at-
tempt to hinder an exploit by limiting the memory
segments that code can execute in.

Solar Designer architected a kernel modification to
x86 Linux to prevent execution in stack pages. Ex-
ploits will not be able to run their own code if the
buffer resides on the stack (which most buffer over-
flows do) [16]. Sun also built an optionally enabled
non-executable stack into the Sparc version of So-
laris.

PaX is a x86 Linux kernel modification to mark
all data pages non-executable, not just stack pages.
PaX inhibits heap exploits in addition to stack over-
flows [14].

There are several overflow exploits that non-executable

pages do not inhibit. By far the most common is
the “return into libc.” Instead of executing custom
exploit code, the attack directs the return pointer
back into code can have malicious consequences de-
pending on its arguements. The easiest example is
to point the return address back at the system() li-
brary call and point the arguement at an instance
of “/bin/sh”.

8 Conclusion

StackGhost has proven to be an effective defense
against common exploit techniques at a negligible
cost to the user. StackGhost’s primary merit is that
it is a kernel modification and does not require mass
recompilation or the administrative headaches of se-
lective protection. The current implementation of
StackGhost is deficient in that it cannot guarantee
the explicit detection of a stack exploit, it can only
foil the operation of an exploit.

When the seperate return stack apparatus of Stack-
Ghost is fully implemented, StackGhost will offer
guaranteed detection of the traditional buffer over-
flow at a fraction of the cost of the other available
stack protection mechanisms.

9 Availability

The StackGhost project homepage can be found at
http://stackghost.cerias.purdue.edu. The relevent
patches to OpenBSD shall be placed in the Public
Domain.

10 Acknowledgments

We would like to thank Rick Kennell and Florian
Kerschbaum for technical advice. And to thank Su-
san Hazel for assistance with paper organization and
editing.

References

[1] Aleph One. “Smashing The Stack For Fun And
Profit.” Phrack, 7(49), November 1996.

[2] Arash Baratloo, Timothy Tsai, and Navjot
Singh. “Transparent Run-Time Defense Against
Stack Smashing Attacks.” Proceedings of the
USENIX Annual Technical Conference, June
2000.

[3] C. F. Webb. “Subroutine call/return stack.”
IBM Technical Disclosure Bulletin, 30(11), Apr.
1988.

[4] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle and Qian
Zhang. “StackGuard: Automatic Adaptive De-
tection and Prevention of Buffer-Overflow At-
tacks,” Proceedings of the Tth USENIX Security
Conference, January 1998, San Antonio, TX.

[5] Hiroaki Etoh.

“GCC extension for protecting appli-
cations from stack-smashing attacks.”
http://www.trL.ibm.co.jp/projects/security/ssp

[6] Immunix.org. “StackGuard Mechanism: Emsi’s
Vulnerability.”
http://immunix.org/StackGuard/emsi_vuln.html.

[7] Intel TA64 Architecture Software Developer’s
Manual. “Volume 1: TA-64 Application Archi-
tecture Revision 1.1.” July 2000

[8] Intel IA64 Architecture Software Developer’s
Manual. “Volume 2: TA-64 System Architecture
Revision 1.1.” July 2000

[9] Intel IA64 Architecture Software Developer’s
Manual. “Volume 3: TA-64 Instruction Set Ref-
erence Revision 1.1.” July 2000

[10] Intel TA64 Architecture Software Developer’s
Manual. “Volume 4: [A-64 Itanium processor
Programmar’s Guide Revision 1.1.” July 2000

[11] Kevin Skadron, Pritpal S. Ahuja, Margaret
Martonosi, Douglas W. Clark. “Improving Pre-
diction for Procedure Returns with Return-
Address-Stack Repair Mechanisms.” Proceed-
ings of the 81st ACM/IEEE International Sym-
posium on Microarchitecture, Nov 1998, Dallas
TX.

[12] Mudge. “How to Write Buffer Overflows.”
http://10pht.com/advisories/bufero.html, 1997.

[13] Nathan P. Smith. “Stack Smashing vulnera-
bilities in the UNIX Operating System.”
http://millcomm.com/“nate/machines/
security /stack-smashing /nate-buffer.ps, 1997.

[14] PaX Team. “NonExecutable Data Pages.”
http://pageexec.virtualave.net/pageexec.txt

[15] S. McMahan. Cyrix Corp. “Branch Processing
unit with a return stack including repair using
pointers from different pipe stages.” U.S. Patent
No. 5,706,491. Jan, 1998.

[16] Solar Designer. “NonExecutable User Stack.”
http://www.false.com/security /linux-stack/.

[17] SPARC International, Inc. “The SPARC Ar-
chitecture Manual.” Version 8. 1992.

[18] Vendicator. StackShield: A “stack smashing”
technique protection tool for linux.
http://www.angelfire.com /sk/stackshield/.

Appendix 1: Benchmark Procedure

A short C program was used to microbenchmark the function call overhead imposed by StackGhost. It was
compiled with gce version 2.95.3 19991030 (prerelease).

The Spec95 integer suite was run to generate the macro benchmarks. The benchmark suite was built with
gee version 2.95.3 19991030 (prerelease).

All the benchmarks were run on a 70Mhz SparcStation 4, 32MB of ram, PROM Rev 2.20, and no L2 cache.
The machine was operating in multi-user mode under fairly constant conditions for each iteration of the
benchmarks.

Appendix 2: Micro Benchmark

#define DEPTH 10000
#define TRIALS 1000

void deep(int n)

if (--n)
deep(n);
}

int main(void)

{
struct timeval start, stop;
float total, times[TRIALS];
int i;

/* Prefault the stack x/
deep(DEPTH);

for (i = 0; i < TRIALS; i++) {
usleep(1); /* Give up time slice to avoid context switch */
gettimeofday (&start, NULL);
deep(DEPTH);
gettimeofday (&stop, NULL);

times[i] = stop.tv_sec - start.tv_sec + (float)(stop.tv_usec - start.tv_usec) / (1000000);

}

for (i =0, total = 0; i < TRIALS; i++)
total += times]i;

printf("Avg time %.5fs\n", total / (float)TRIALS);
printf("Avg us/call %.3fus\n", (1000000 * total) / (float)(TRIALS * DEPTH));
}

