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Abstract
In this paper we present PDM (Password Derived Mod-
uli), a new approach to strong password-based protocols
usable either for mutual authentication or for download-
ing security information such as the user’s private key.
We describe how the properties desirable for strong
password mutual authentication differ from the proper-
ties desirable for credentials download. In particular, a
protocol used solely for credentials download can be
simpler and less expensive than one used for mutual
authentication since some properties (such as authenti-
cation of the server) are not necessary for credentials
download. The features necessary for mutual authenti-
cation can be easily added to a credentials download
protocol, but many of the protocols designed for mutual
authentication are not as desirable for use in credentials
download as protocols like PDM and basic EKE and
SPEKE because they are unnecessarily expensive when
used for that purpose. PDM’s performance is vastly
more expensive at the client than any of the protocols in
the literature, but it is more efficient at the server. We
claim that performance at the server, since a server must
handle a large and potentially unpredictable number of
clients, is more important than performance at the client,
assuming that client performance is “good enough”. We
describe PDM for credentials download, and then show
how to enhance it to have the properties desirable for
mutual authentication. In particular, the enhancement
we advocate for allowing PDM to avoid storing a pass-
word-equivalent at the server is less expensive than
existing schemes, and our approach can be used as a
more efficient (at the server) variant of augmented EKE
and SPEKE than the currently published schemes. PDM
is important because it is a very different approach to the
problem than any in the literature, we believe it to be
unencumbered by patents, and because it can be a lot
less expensive at the server than existing schemes.

1  Introduction
This paper presents a new mechanism for allowing a
user, armed only with a name and password, to connect

to a network from a “generic” client machine, one
loaded with software, but not with any user-specific co
figuration information (such as a private key or the pu
lic key of a trusted CA). The most secure solution to th
problem of a human attaching via a generic workstatio
is a smart card. But until smart cards and reade
become ubiquitous, and to handle the case when the u
has left his smart card at home, there will still be a nee
for authentication based solely on something huma
can remember and type, i.e., a password. Unfortunate
passwords are subject to dictionary attacks becau
most people are not willing to type and remember a su
ficiently long and hard-to-guess password. So it
important to design a protocol in which even thoug
passwords are used as keys, an eavesdropper or so
one impersonating either the client or the server will n
obtain information with which to do a dictionary attack

There are several protocols in the literature for solvin
this problem. EKE [BM92] uses a Diffie-Hellman
exchange encrypted with the user’s password. SPE
[Jab96] uses a function of the user’s password as
base in a Diffie-Hellman exchange. Later, enhanceme
to both EKE and SPEKE were added to avoid storing
password-equivalent at the server [BM94], [Jab97]. SR
[Wu98], has the same properties as the augmented E
and SPEKE, but better performance. AMP [Kwon01]
similar to SRP, with similar properties. [GL00] present
a protocol with similar properties using linear polyno

mials over GF(2n), with a proof that the result is as
secure as factorization. [BMP00] presents a 3-messa
variant of augmented EKE and proves it as secure as
Decision Diffie-Hellman (DDH) in the random oracle
model. Similarly, [MS99] presents a protocol based o
RSA, and proves the security of it based on the rando
oracle model. There is an unpublished protocol calle
S.N.A.K.E. by Peter Gunn that does Diffie-Hellma
based not on a single strong prime, but a set of stro
primes selected from a known set (of perhaps 200
with the subset chosen being based on the passwo
[RCW98] presents a protocol (called S3P-RSA) i
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which an exponent is generated deterministically from a
user’s password, and used to transmit a strong secret.
But this protocol has been shown to be broken, since
many passwords can be tested simultaneously in an on-
line attack.

[FK00] presents an additional interesting property that a
strong password scheme might have, along with an
algorithm for accomplishing that property. This property
is the ability to break a user’s strong secret into multiple
pieces, such that theft of multiple servers’ databases are
required in order to do a dictionary attack. The disad-
vantage of this approach is that it requires multiple serv-
ers to be available or else the user will not be able to
obtain his credentials, and it has lower performance
because the user must do a protocol with multiple serv-
ers. Our protocol (PDM) does not have this property,
and instead requires interaction with only a single
server, which in many situations would be more desir-
able.

PDM (password derived moduli) does Diffie-Hellman
based on a safe primep (“safe” means a prime for which
(p-1)/2 is also prime), wherep is deterministically gen-
erated from the user’s password, salted with information
such as the user’s name. A new approach, even if it gave
no new functionality over old approaches, is still poten-
tially important. Sometimes an approach will be found
to have flaws, so alternatives are useful. Sometimes two
approaches that seem to provide identical functionality
are later found to have different properties in subtle
ways. For example, although EKE and SPEKE seemed
to provide identical functionality, [PK99] demonstrated
that a 2-message protocol with salt was possible with
SPEKE (with a composite modulus), and was not possi-
ble with EKE.

But PDM’s performance properties make it a potentially
important approach. PDM is vastly more computation
intensive for the client than previous approaches, but
since a client machine only needs to do the computation
intensive operation once (per user, assuming the user
has typed her password correctly), what is important is
whether the performance is “good enough”, which we
claim it is. Although lower performance at the client is
obviously a disadvantage, it has the beneficial side-
effect of making on-line password guessing much
slower.

Computation at the server is far more important, since a
server might have to simultaneously deal with multiple
clients. An attacker impersonating a client forces the
server to do as much computation as legitimate clients.
PDM can be vastly more efficient at the server since,

with secret moduli, Diffie-Hellman must be brokenper
password guess. In most protocols, a singlep is used for
all users, so it is worth considerable effort to break Di
fie-Hellman for thatp. For most uses a Diffie-Hellman
prime of less than 1000 bits would not be considere
secure, but for PDM, a 500-bit prime might be suffi
ciently secure since breaking 500-bit Diffie-Hellman i
estimated to require 8000 MIP-years - a high price
pay to test a single password guess for a single user
PDM is sufficiently secure with a prime half as big, i
will require 1/4 as much computation at the server as t
best of any of the other schemes.

One natural worry is low-performance clients, such a
hand-held devices. But those devices are carried by
user, and owned by the user, and therefore can be c
figured with a user-specific high-quality secret. Ther
fore such devices do not need schemes such as the
in this paper, which are naturally suited to the environ
ment where there is an adequately powered workstat
that has no configured information for the user.

In this paper we first describe how the desirable prope
ties for a credentials download protocol differ from
those for a mutual authentication protocol. Then w
present the simplest PDM scheme, the one suitable
credentials download, or a mutual authentication prot
col with the properties of EKE or SPEKE. As describe
in [Pat97] and [BM92], it is tricky to design such
schemes so that an eavesdropper gains no informat
We give an example of a potential vulnerability of EKE
in section 3.2. In this paper we analyze our scheme
such vulnerabilities and design the protocol so that
does not leak information which would enable an eave
dropper to eliminate passwords.

Then we show how to enhance PDM to create a mutu
authentication protocol that has higher performance
the server than existing password-based mutual auth
tication protocols (although it will still be more expen
sive at the client). This involves a method of avoidin
storing a password-equivalent at the server. The sche
presented in this paper for accomplishing this is mo
efficient (for the server) than any previous scheme, ev
without the savings of using a smaller Diffie-Hellman
modulus. Another enhancement is to prevent two se
ers from impersonating each other to a client that us
the same password on each of them. This enhancem
works for any of the protocols, and has been proposed
the protocols in [BPR00], [MS99] and [GL00].
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2  Properties of Credentials Download vs.
Mutual Authentication Schemes
In general, desirable properties of a strong password
scheme include:

• User Alice need only know her name and password.
• The workstation need not be configured with any

user-specific security information (such as the pub-
lic key of the server to which Alice will authenti-
cate or download her credentials).

• An eavesdropper on an authentication exchange
between user Alice and server Bob cannot learn
Alice’s password or be able to capture any informa-
tion that could be used in an off-line password-
guessing attack.

• Someone impersonating Alice to Bob, or Bob to
Alice, will not be able to gain any information with
which to do an off-line password-guessing attack,
though one of them will be able to verify a single
on-line guess.

• Bob’s database should besalted, so that a dictio-
nary attack against a stolen copy of the database
would have to be launched separately per user,
rather than computing hashes of all passwords in
the dictionary, and comparing it against all users’
information.

Additional properties desirable for a mutual authentica-
tion protocol, that are not necessary for a credentials
download protocol are:

• Alice authenticates Bob. This is not necessary in
credentials download because all Alice cares about
is whether she’s getting authentic credentials, not
whether she’s getting it from an authentic source.

• Bob authenticates Alice. This is not necessary in
credentials download if the credential is encrypted
with a high quality secret such that the requester
cannot do a dictionary attack.

• An attacker will not be able to authenticate using
replayed messages. This is not an issue in creden-
tials download since all an attacker can do by
replaying Alice’s message is to get Bob to replay
what he previously transmitted.

• Someone that steals Bob’s database will not be able
to directly use the information to impersonate Alice
to Bob or any other server (there is nopassword-
equivalent stored at Bob), though they will be able
to use it to do an off-line password-guessing attack.
(In credentials download, this is not important
because if someone has stolen Bob’s database he
already has Alice’s encrypted credential, which was

also in the database, so being able to do Alice’s
piece of the protocol is not an advantage).

• If Alice uses the same password on multiple serv
ers, say Bob and Ted, the information Bob stores
cannot be used to impersonate Ted to Alice. (Again
in credentials download, it does not matter who
gives the credential to Alice).

As a result of not needing these properties, a credenti
download protocol can be simpler. It can be stateless
the server, have better performance, and require few
messages (e.g., two). Once credentials are secu
downloaded, the client can engage in any authenticat
protocol that assumes strong secrets and/or configu
CA public keys (e.g. SSL, IPSec, Kerberos, SSH, etc.

3  PDM: Password Derived Moduli
The key to our protocol, just as with EKE, SPEKE, an
many descendents of these protocols, is to modify a D
fie-Hellman exchange with a function of the user’s pas
word. For example, EKE encrypts the Diffie-Hellma
public number with a function of the user’s password
SPEKE uses the user’s password to calculate a base
the Diffie-Hellman exchange. We calculate a primep
that is a function of the user’s password. This is done
using the user’s password as a seed for a pseudo-rand
number generator that will be used in the search for
appropriate prime.

3.1 PDM for Credentials Download
We begin with just the simplest form of a strong pas
word-based authentication protocol, that has only t
functionality of the original EKE and SPEKE, and only
the properties necessary for credentials download.
the surface, the protocol is extremely simple. The serv
Bob stores, for user Alice,p. We will always use 2 as the
base. The reasons for using 2:

• it makes it easy to recognize small exponent chea
ing by someone impersonating the client (see sec
tion 3.2.2),

• to be different from SPEKE, to avoid potential
patent infringement, and

• to use the law of quadratic reciprocity to choose
candidatep’s for which 2 is certain to be a generator
(and thus avoid the performance cost of having to
search for a generator, or the possible security lo
as explained in section 3.4.2 of using a base that
isn’t a generator). Ifp is equal to 3 mod 8 andp is a
safe prime((p-1)/2 is also prime), 2 will be a gener-
ator.
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We chose a target of 10 seconds for a reasonable amount
of computation time for the client to pick ap. Unfortu-
nately, finding a safep of a size considered secure for
traditional Diffie-Hellman (say 1000 bits) would take
longer (on today’s typical client machines) than our tar-
get of 10 seconds for the user to log in. So as we discuss
in section 3.4, there are various corners we can cut while
maintaining good enough security for practical pur-
poses. Indeed, on a 400 MHz processor, a 500-bit safe
prime can be found within 10 seconds, and we argue
that for our application, Diffie-Hellman with a 500-bit
modulus would give adequate security because of the
necessity for an eavesdropper doing a dictionary attack
to break 500-bit Diffie-Hellmanfor each guessed pass-
word. And with the trick suggested in section 3.4.3,
even a 1000-bit safe prime can be generated well within
our budget of 10 seconds at the client. We give timing
estimates for generating safe primes of various sizes in
section 3.5.

For a simple 2-message credentials download protocol,
the server Bob storesp and the credential Y, which is,
for instance, the user’s private RSA key encrypted with
her password. The workstation calculatesp from the
user’s password. As observed in [PK99], for credentials
download it is possible to save Bob an exponentiation
by having him always use the same B for Alice, and

storing B and 2B modp. (Note: the notation “{data}key”
means “data” encrypted with key “key”).

For mutual authentication, especially if the rest of the
session is not cryptographically protected by the result-
ing Diffie-Hellman key, then Bob can still save himself
an exponentiation, but has to additionally furnish a
nonce R in message 2, and Alice should return a func-

tion of both the nonce and 2AB mod p. Without the
nonce an eavesdropper could replay Alice’s messages
and Bob would accept this as Alice having authenti-

cated. So here is a mutual authentication PDM-bas
protocol in which Bob need only do one exponentiatio
This scheme stores a password-equivalent at Bob, bu
currently published schemes Bob requires more than
exponentiations.

This trick of saving Bob an exponentiation will not work
if we want the additional feature of not storing a pas
word-equivalent at Bob. Also, if the protocol is being
used to establish a session key as well as just doing
initial authentication, perfect forward secrecy would b
lost by having Bob always use the same B.

3.2 Avoiding Leaking Information
As discussed in both [BM92] and [Pat97] protocols suc
as these need to be implemented carefully or else inf
mation will be leaked. For instance, in the most straigh

forward implementation of EKE, one might encrypt gA

mod p with a hash of the password. An eavesdropp

that observed an encrypted gA mod p could do trial
decryptions with various passwords, and eliminate a
passwords in which the result was larger thanp. If p was
just a little more than a power of 2, then about half th
passwords could be eliminated each time an eavesdr
per observed a Diffie-Hellman value encrypted with
password. This might occur twice per authentication
variants of EKE that have both sides encrypting the
Diffie-Hellman values.

3.2.1  Choosingp from a Small Range
In PDM, care must be taken to avoid allowing an eave

dropper to eliminate passwords based on seeing 2A mod

p and 2B mod p. If either transmitted Diffie-Hellman
number was greater than thep derived from a candidate
password, an eavesdropper could rule out that passwo

Alice Bob

choose random A

“Alice”, 2A modp

2B modp, {Y}2 AB modp

stores:calculatesp from pwd

PDM for credentials download

p, B, 2B modp, and

Y={priv}pwd

Alice Bob

choose random A

“Alice”, 2A modp

2B modp, R, h(2AB modp)

stores:calculatesp from pwd

Single exponentiation mutual authentication

p, B, 2B modp

chooses nonce R

h(R, 2AB modp)
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We solve this problem by discarding A (or B) in the case

where 2A mod p is greater than the smallest possiblep
that could be derived from any password. To make the
probability acceptably low that an A would have to be
discarded (forcing an additional exponentiation) we
choosep’s from a very small range (e.g., if the smallest
p and the largestp differ by less than 0.1%, then a Dif-
fie-Hellman number will need to be rejected less than
one time in 1000). We choose ap from a narrow range
very close to a power of 2. We make it a narrow range
by fixing the top 64 bits of the number at which our
search will take place. Any constant will do, but to make
maximal use out of the bits, the constant might as well
be 63 1’s followed by a 0. With a prime of, say, 700 bits,
that gives a space of 700-64 bits, or 636 bits from which
to choosep’s, obviously large enough that there will be
no shortage ofp’s, and yet the fraction of 700-bit space

from which thep’s are chosen is 1/264. With this frac-

tion, the probability of ever getting a 2A mod p larger

than the smallest possiblep is 1/264. And if it did occur,
the only consequence is that authentication would take a
little longer since another A would need to be chosen.

3.2.2  User Impersonator Picking Small A
such that 2A < p
Another threat is that Trudy, impersonating Alice, could

choose a very small A, such that 2A would not be larger
than p. Then Trudy could guess passwords based on
what Bob sends, since Trudy has not committed to a

value ofp (because 2A modp has the same value for all
possiblep). In order to test a candidate password, Trudy

needs to know the A corresponding to 2A modp for var-

ious values ofp. If 2A is less thanp, then she knows

such a pair for allp. If 2A is even slightly more thanp,
and therefore needs to be reduced byp, she gets only a
single pair.

Using the constant “2” for the base has the fortunate
side-effect that it is very easy to detect if someone is
cheating and sending a value that did not need to be
reduced modp. We require the sender to choose a Dif-
fie-Hellman exponent larger than the log ofp (i.e., if p is
700 bits long, then the exponent must be > 700) so that
the result will need to be reduced byp. Since 2 is a gen-
erator, there cannot be two different exponents that yield
the same value modp. Therefore, if the number is of the
form 10000...000002, (i.e., the binary representation
contains a single 1) then the sender has cheated by using
an exponent sufficiently small that it did not need to be
reduced by any modulus.

3.2.3  Timing Attacks
Because calculatingp from a password involves search
ing for a prime at a pseudo-random value and testi
until one is found, different passwords would take su
stantially different amounts of time to computep. If an
eavesdropper knew with some precision how long
took Alice’s machine to computep, this information
could be used to eliminate many candidate password

For example, a protocol which would give an eavesdro
per timing information is one in which Alice’s machine
does not start computingp until it receives a message
from Bob, perhaps because it needs to receive a s
value (see section 3.3) from Bob before it can compu
p. The time until Alice’s reply will be approximately the
amount of time required for the machine to calculatep.

So it is best if Alice’s workstation can computep from
the password before beginning the authentication pro
col. This is possible if the salt is implicit, e.g. it is a
canonical representation of the user name, since then
computation is done before messages are sent and
eavesdropper cannot time how long it took to compu
p. A second choice, if implicit salt is not possible (too
many variations on the name), would be to have Alice
typing of the password occur after she types the name
the server she wishes to contact. Since user typing tim
are highly variable, an eavesdropper will not be able
tell how much of the interval between Bob’s messag
(e.g., sending salt), and Alice’s machine’s reply was d
to computation ofp and how much was due to Alice typ-
ing the password.

3.3 User Salt
It is highly desirable for user Alice’s machine to be abl
to computep before talking to the server, because:

• it will take the client machine a long time to com-
putep, so it would be good to be computing it while
the user is doing other things, for instance, typing
the name of the service she wishes to access.

• we don’t want to allow an eavesdropper to tell how
long it takes to computep.

• If p is user/password dependent, but not server
dependent, then a user can use the samep on multi-
ple servers, ensuring that the expensive computa
tion of p need only be done once per user, even if
the user is using PDM for mutual authentication
with multiple servers.

• it would take an extra message to send the salt.
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In order to computep before talking to the server, the
salt value must beintrinsic, i.e., computable from infor-
mation known locally about the user. Since this consists
of the user’s name and password, the logical choice for
salt value is the user’s name. It is important, however, to
have a canonical version of the name. Capitalization or
nicknames must not affect the computation of p.

3.4 Performance
The computation the server must perform to execute the
basic PDM protocol (assuming equal sized moduli) is
comparable to the best of the protocols with similar
functionality even if the same size modulus is used.
(This assumes that a protocol such as EKE or SPEKE is
modified as suggested in [PK99] to have the server store
B per user to save an exponentiation).

By using a different technique (as described in section
4) to achieve the goal of not storing a password equiva-
lent at the server, PDM has better performance (even
with the same sized modulus) than any of the previous
schemes, though that technique could apply to EKE or
SPEKE to make them equivalent in server performance
(with the same size modulus). Although PDM is more
expensive at the client than any of the prior protocols,
we claim that since the client machine only needs to do
the computation once, the only thing that matters in
practice is for performance at the client to be “good
enough”. During the initial authentication, a human is
waiting, and it is unacceptable for a user to wait for
more than about 10 seconds to log in (and that’s pushing
it). Choosingp to be a 1000 bit safe prime would take
more than a minute (see section 3.5) on today’s typical
desktop machine. Fortunately, there are some shortcuts
we can take that raise performance dramatically. Note
that as machines get faster we can drop more and more
of the shortcuts.

3.4.1  Size ofp
Today’s conventional wisdom says that the size of a
prime used in a Diffie-Hellman exchange should be on
the order of 1000 bits. But given that this is not an ordi-
nary Diffie-Hellman exchange, might a smaller prime be
acceptable? Computation time falls dramatically with
the size of the prime. What is the threat if our prime is
smaller?

It is within the realm of possibility to break Diffie-Hell-
man with a size of, say, 500 bits, which at today’s esti-
mates would take on the order of 8,000 MIP-years.
Eavesdropping on any authentication would yield a
quantity with which password guesses could be verified,
but it requires, for each guessed password, computingp

and breaking Diffie-Hellman with thatp. So an attacker
would have to break 500-bit Diffie-Hellmanper pass-
word guess.

Perfect forward secrecy would be endangered using D
fie-Hellman primes that are within the realm of possibi
ity to crack, because if someone were to reco
conversations, and subsequently learn the user’s pa
word, then he’d be able to computep, break 500-bit Dif-
fie-Hellman, and then recover the session keys of t
authentications that used thatp. In practice, this is a suf-
ficiently obscure threat that the size of the Diffie-Hel
man prime is unlikely to be the weakest link in the cha
(on-line password guessing, or using the learned pa
word to directly impersonate the user in future convers
tions would probably be more fruitful), so in practice
500 bitp might suffice. Alternately, and at some cost i
complexity and server computation, the perfect forwa
secrecy attack could be circumvented by supplement
this protocol with a second anonymous Diffie-Hellma
exchange with fixed adequate strength primes. If t
result of that second Diffie-Hellman exchange contrib
utes to the session key, perfect forward secrecy is p
served. And since computation with a smallp is so
efficient, the double Diffie-Hellman (with one large
fixed p and one small, based-on-the-passwordp) would
still be of comparable performance at the server to t
best of existing schemes.

3.4.2  Non-Safe Prime
We can also save time in generatingp by not requiringp
to be a safe prime. The cost of breaking Diffie-Hellma
is a function of both the size ofp and the size of the larg-
est prime factor ofp-1. It is much faster to find ap with
the property that (p-1)/2 isn’t prime, but merely has a
large prime factor. Although it is believed that Diffie-
Hellman will be sufficiently secure with ap of this form,
we run into a problem of finding a generator forp if p is
not a safe prime, since without knowing the factoriza
tion of p-1 it is difficult (if not impossible) to determine
whether a giveng is a generator of the group. Tradi-
tional Diffie-Hellman does not need to assure thatg is a
generator. It only needs to assure thatg generates a large
subgroup ofp. But for us, it is important that ourg
(which will be 2) is a generator. Otherwise, it might lea
information to an eavesdropper. If the eavesdropp
knew, for a particular password, that 2 was not a gene
tor for the correspondingp, and then saw a value that 2
could not generate for thatp, that password could be
ruled out for that user.
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3.4.3  User-Supplied Hint
Another method of increasing performance is to use a
trick suggested by Jeff Schiller of giving the user a hint
to tell the workstation, such as several of the bits of the
selectedp. If the user can’t remember the hint, the work-
station must test all candidate numbers. If the user mis-
remembers the hint, then authentication will fail since
the workstation will compute the wrongp. The user will
recognize that it is probably the wrong hint since com-
puting p will be as slow as without the hint.

How much will performance be improved? Assuming
you’ve sieved for factors ofp and (p-1)/2 up to 10,000,
to get a safe prime of 512 bits you’d have to test, on
average, 1600 numbers. On a 400 Mhz processor, a safe
prime of 512 bits can be found within our budget of 10
seconds without the hint. Using the “hint” telling you,
for instance, 6 bits ofp, reduces computation by a factor
of 64, making it under our target of 10 seconds even for
1024-bit safe primes. This hint could be in the form of a
single character (using upper and lower case, numbers,
and two more characters).

3.5 Measured Timing for Generatingp
On a 400 MHz processor, using code that was not opti-
mized for performance, the following table shows mean
generation times with and without a six-bit user-sup-
plied hint.

Even more speedup could be attained with a larger hint,
but of course this stretches the abilities of the human to
remember the hint.

4  Avoiding a Password-Equivalent at the
Server
In this section we discuss a different method of avoiding
storing a password-equivalent at the server that is higher
performance at the server than previous schemes. The
approaches suggested in this section could be used for
EKE and SPEKE as well, but not for AMP or SRP. The
best previous method, SRP, involved doing two expen-
sive exponentiations and one exponentiation with a 32-
bit exponent. We present two new variants. The first is a

little better in performance than SRP, assuming equ
sized moduli, because our inexpensive exponentiation
an RSA verification (so the exponent could be as sm
as 3, rather than a 32-bit number as in SRP). The seco
involves only a single Diffie-Hellman exponentiation a
the server and an RSA verification, so it is about half
much computation at the server as SRP, but it gives
perfect forward secrecy if someone steals Bob’s da
base. (and again, this is assuming equal sized modul

In any of the schemes (ours as well as augmented EK
SPEKE and SRP) it will be possible to do off-line pass
word-guessing using a stolen copy of the server da
base, but without correctly guessing and verifying th
password, the information in the server database wou
not be usable for impersonating the user to that (or a
other) server.

The augmented versions of EKE and SPEKE, and pro
cols such as SRP and AMP do variants of having t

server storegX modp (where X is a function of the pass-
word), and require knowledge of X on the client. Th
augmented feature of these protocols requires an ex
expensive exponentiation at the server.

By using an RSA private key encrypted with Alice’s

password in place ofgX mod p we can reduce the total
computation for Bob to two expensive exponentiation
and a single RSA public key verify, which can be ver
inexpensive (for example, if the public exponent is 3
Basing it on RSA is especially attractive because t
same protocol works for download of an RSA privat
key as for mutual authentication. Bob storesp, Y (an
RSA private key encrypted with the user’s password
and pub (the associated public key). The protocol is:

size ofp without hint with hint

512 8.1 seconds .11 seconds

768 34 seconds .57 seconds

1024 111 seconds 1.8 seconds

Times for Generatingp Alice Bob

choose random A

“Alice”, 2A modp

2B modp, {Y}2 AB modp

stores:calculatesp from pwd

No pwd-equivalent stored at server

p, Y, pub

choose random B

[h(2AB modp)]signed with Alice’s RSA priv key
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In the protocol above, Bob has to compute two expen-
sive exponentiations: raising 2 to B modp, and raising

(2A modp) to B modp, and an inexpensive exponentia-
tion (an RSA verify). This is slightly better in perfor-
mance than the best previous scheme (SRP) because our
inexpensive exponentiation, an RSA verify, is less
expensive that SRP’s inexpensive exponentation with a
32-bit exponent. It might also be the case with a secret
modulusp (our scheme described in section 3) that the
Diffie-Hellman exchange can be secure with a smallerp,
which would further reduce the work for Bob. Note also
that Alice must authenticate Bob. She does this by
checking to see if Y, when decrypted, has the encoding
of an RSA private key.

With the RSA-based scheme, we can reduce the work
for Bob down to a single expensive exponentiation by
allowing Bob to use the same B each time and adding a
nonce as we did in section 3.1. If we make the session
key be a function of the nonce as well as the Diffie-Hell-
man key, we can achieve “partial forward secrecy”, a
term we are using to mean someone would have to steal
both Alice’s private key and Bob’s database in order to
decrypt previous conversations.

The session key should be some function of both the

Diffie-Hellman key and R, such as h(1,R,2AB mod p).
We give up perfect forward secrecy because if someone
stealsbothB and Alice’s private key, they can decrypt a
previously recorded conversation, since they will be

able to compute 2AB modp (because they will have sto-
len B from Bob’s database), and extract R (because of
having stolen Alice’s private key).

5  Preventing Servers from Impersonating
Each Other to the User
The third proposed enhancement is to prevent serv
from impersonating each other to the user. If the info
mation stored for user Alice is the same at server Bob
at server Carol, then Bob and Carol will be able t
impersonate each other to Alice.

For this reason it is important to customize the informa
tion per server, so that even if Alice chooses the sam
password at multiple servers, the information at ea
will be different, and not usable to impersonate a diffe
ent server to Alice.

The method of accomplishing this is to have some of t
information stored for Alice be a function of the pass
word and the server’s name. It is desirable for Alice t
have the same value forp at each server, since it is com
putation-intensive for Alice to computep. So there
should be some other quantity, X, that is a function
the server name. X will enable Bob to authenticate
Alice as “Bob” rather than as “any server on which use
Alice has that password”. Then even if thep is the same
at Bob and Carol, they will not be able to impersona
one another to Alice because each only knows its ow
X.

So we suggest thatp be computed using a seed which i
solely a function of the user’s name and user’s pas
word, and X be a function of the server’s name, th
user’s name, and the user’s password.

Bob storesp (generated from Alice’s name and pass
word, Y (Alice’s private RSA key encrypted with her
password), X (a hash of Alice’s name, password, a
Bob’s name), and Alice’s public key:

Alice Bob

choose random A

“Alice”, 2A modp

2B modp, {R}pub, {Y}2 AB modp

stores:calculatesp from pwd

Partial forward secrecy, single exponentiation

p, pub, B, 2B modp, and

Y={priv}pwd

chooses nonce R

h(R, 2AB modp)

Alice Bob

choose random A

“Alice”, 2A modp

“Bob”, 2B modp, {Y}K

stores:calculatesp and X

Prevent servers impersonating each other

p, Y, pub, X

chooses random B

[h(K)] signed with Alice’s RSA priv key

K=h(X,2AB modp)
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6  Summary
In this paper we present PDM, a new method of doing
strong password-based credentials download or mutual
authentication. It has better performance at the server
than any of the existing schemes, especially since it can
use smaller moduli, because there is no single modulus
on which the world could concentrate its Diffie-Hellman
breaking efforts. Instead, Diffie-Hellman would have to
be broken per user per password guess. We show that
although performance at the client is far more expen-
sive, that it is “good enough”, especially with an
optional user-supplied hint. We also present a method
for avoiding a password equivalent which is less expen-
sive than existing schemes at the server. This scheme
could be applied to EKE or SPEKE, but not to schemes
such as SRP and AMP that depend on everything being
based on Diffie-Hellman. And we present a scheme with
“partial forward secrecy” that is half as expensive as
SRP, even with the same sized modulus.
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