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Abstract 

Content-based publish-subscribe systems are an emerging paradigm for building a range of distributed applications. 
A specific problem in content-based systems is the secure distribution of events to clients subscribing to those 
events.  In content-based systems, every event can potentially have a different set of interested subscribers. To 
provide confidentiality guarantee, we would like to encrypt messages so that only interested subscribers can read the 
message. In the worst case, for n clients, there can be 2n subgroups, and each event can go to a potentially different 
subgroup. A major problem is managing subgroup keys so that the number of encryptions required per event can be 
kept low. We first show the difficulties in applying existing group key management techniques to addressing the 
problem. We then propose and compare a number of approaches to reduce the number of encryptions and to increase 
message throughput.  We present analytical analysis of described algorithms as well as simulation results. 

 
1 Introduction 

Many  of today’s Internet applications require 
high scalability as well as strict security guarantees.  
This new breed of applications includes large wireless 
delivery services with thousands to millions of clients, 
inter-enterprise supply-chain management applications, 
financial applications, workflow applications, and 
network management. 

Messaging technology has been introduced to 
create much more flexible and scalable distributed 
systems. An emerging paradigm of messaging 
technology is publish-subscribe [B93].  In such 
systems, customers (or subscribers) specify the type of 
content they want to receive via subscriptions.  
Publishers publish messages (events), and the publish-
subscribe system delivers them only to the interested 
subscribers.  Publishers are often decoupled from 
subscribers, creating more scalable solutions.  Figure 
1shows a typical publish-subscribe system. Events may 
be delivered via intermediate brokers, who determine 
the set of subscribers that an event should be delivered 
to. Decoupling of publishers and subscribers works well 
for increasing scalability but, as we will see, makes it 
difficult to develop secure solutions. 

                                                        
  This work is supported in part by the IBM Research Partnership 
Award and by the Defense Advanced Research Projects Agency 
(DARPA) and Air Force Research Laboratory, Air Force Materiel 
Command, USAF, under agreement number F30602-00-2-0508. The 
U.S. Government is authorized to reproduce and distribute reprints 
for Governmental purposes notwithstanding any copyright annotation 
thereon. The views and conclusions contained herein are those of the 
authors and should not be interpreted as necessarily representing the 
official policies or endorsements, either expressed or implied, of 
DARPA, the Air Force Research Laboratory, or the U.S. 
Government. 

The earliest publish-subscribe systems used 
subject-based subscription [B93, TIBCO].  In such 
systems, every message is labeled by the publisher as 
belonging to one of a fixed set of subjects (also known 
as groups, channels, or topics).  Subscribers subscribe 
to all the messages within a particular subject or set of 
subjects.  Strength of this approach is the potential to 
easily leverage group-based multicast techniques to 
provide scalability and performance, by assigning each 
subject to a multicast group.  In fact, group 
communication can be considered to be a special case 
of subject-based subscription where the subject is the 
name of the group. A significant restriction with 
subject-based publish-subscribe is that the selectivity of 
subscriptions is limited to the predefined subjects. 

An emerging alternative to subject-based 
systems is content-based messaging systems [BCM99, 
C98, CDF, GKP99, KR95, MS97, SA97].  These 
systems support an event schema defining the type of 
information contained in each event (message).  For 
example, applications interested in stock trades may use 
the event schema [i ssue:  st r i ng,  pr i ce:  
dol l ar ,  vol ume:  i nt eger ].  A content-based 
subscription is a predicate against the event schema, 
such as (i ssue = ” I BM”  & pr i ce < 120 & 
vol ume > 1000).  Only events that satisfy (match) 
the subscription predicate are delivered to the 
subscriber. 

With content-based subscription, subscribers 
have the added flexibility of choosing filtering criteria 
along multiple dimensions, without requiring pre-
definition of subjects.  In the stock trading example, a 
subject-based subscriber could be forced to select trades 
by issue name because those are the only subjects 
available.  In contrast, a content-based subscriber is free 
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Fig. 1: An example of a publish-subscr ibe system. 

 

to use any orthogonal criterion, such as volume, or 
indeed a predicate on any collection of criteria, such as 
issue, price, and volume.   

The applications listed above require different 
security guarantees.  For example, an application 
distributing premium stock reports may require 
confidentiality to make sure that only authorized 
(paying) subscribers can access the data.  Integrity may 
be required to ensure that reports have not been 
modified in transit from publishers to subscribers and 
sender authenticity to make sure that fake reports are 
not sent by third parties.  The lack of those security 
guarantees in content-based systems has prevented their 
wider use even in applications that could greatly benefit 
from content-based subscriptions.   

The fact that in content-based systems every 
event can potentially go to a different subset of 
subscribers makes efficient implementation of 
confidentiality guarantees difficult.  There are 2N 
possible subsets, where N is the number of subscribers. 
With thousands (tens of thousands or hundreds of 
thousands) of subscribers it is infeasible to setup static 
security groups for every possible subset.  Even the use 
of a limited number of intermediate trusted 
servers/brokers to reduce the complexity can leave each 
broker with hundreds or thousands of subscribers, 
making the number of possible groups too large.   

This paper presents and compares several 
algorithms for secure delivery of events from a broker 
to its subscribers.  Section 2 states the problem in detail.  
Section 3 presents related work. Section 4 explores a 
number of approaches based on the idea of using and 
caching multiple subgroup keys to address the secure 
end-point delivery problem. We described the use of 
these schemes and also present theoretical analysis of 
many of these approaches.  Section 5 describes our 
simulation setup, experiment results and analysis of 
those results.  Section 6 discusses the results and 
presents some theoretical bounds on the problem. 

Finally, Section 7 presents conclusions and directions 
for future work. 

 
2 Problem Description 

A messaging system routes events from a 
publisher to end-point brokers.  The brokers then 
distribute those events to their subscribers.  In content-
based systems, each message could potentially go to a 
different set of subscribers (see Fig. 2).  The picture 
shows two events (E1 and E2) delivered by the delivery 
system to the broker.  Each event is then sent to a 
different subset of subscribers connected to the broker. 
We want to add certain security guarantees to content-
based systems.  The security requirement that we focus 
on in this paper is confidentiality.  The system must 
guarantee that only authorized subscribers can read an 
event.  Data must be protected from other (not 
authorized) subscribers as well as other malicious users 
on the network.   

This paper describes issues and solutions for 
only a subset of the complex security problem in an 
entire publish-subscribe system.  To provide event 
confidentiality, we assume that events are protected on 
their way from a publisher, through the delivery system, 
to the end-point brokers.  In this paper, we focus on the 
data security on the last leg from end-point brokers to 
subscribers in an efficient way when each broker may 
have a large number of clients.  In this paper, we 
assume that all brokers are trusted and that all 
subscribers and publishers are properly authenticated to 
the system.  All subscribers and publishers also have an 
individual symmetric pair-key shared only with their 
broker (generated during the authentication process). 
The issues of security in transit between publishers and 
end-point brokers as well as the issue of broker trust are 
the subjects of our future work.  

 The publish-subscribe system allows dynamic 
access control to the events.  This means that a 
predicate can be used at event publish time to check the 
set of subscribers who are authorized to receive the 



 

Fig. 2: Secure end-point delivery problem. 
 

event.  It is possible for a subscriber to be interested in 
an event (have a subscription for a particular event) but 
not be authorized to read that event (because of 
restrictions from a publisher).  To simplify discussion, 
we assume that all interested subscribers are also 
authorized subscribers, i.e., each subscriber is 
authorized to read all events it subscribes to.  Dynamic 
access control makes it infeasible to set up static 
security groups as each event can potentially have a 
different set of authorized subscribers (as well as a 
different set of interested subscribers).  

Given the above restrictions and assumptions, 
providing confidentiality in content-based systems in an 
efficient way is non-trivial.  Since every event can 
potentially go to a different subset of subscribers, it is 
infeasible (for large numbers of clients) to set-up static 
security groups.   The simplest solution would be to 
encrypt each event separately for every subscriber 
receiving the event (using individual subscriber keys).  
For large systems where each broker has thousands of 
subscribers, this could mean hundreds or thousands of 
encryptions per event.  An additional performance hit 
involves changing keys for each of the encryptions, 
which drastically slows down encryption algorithms 
like DES [Pub97].  We tested this by encrypting a 
random 64-bit piece of data with DES. We compared 
throughput when continuously encrypting with one key 
and when using 500 different keys on a Pentium III 550 
Mhz machine running Red Hat Linux.  The results 
showed that changing keys for each subscription results 
in throughput as low as 10% of the total throughput 
when using only one key. 

In short, the problem presented here is to 
preserve confidentiality using small number of 
encryptions while distributing events from end-point 
broker to its subscribers.  Due to lack of good 
workloads in this area, we consider two extreme 

scenarios --- (1) where events go to random subgroups 
of subscribers and (2) where there are some popular 
subgroups and some unpopular subgroups.  The 
simplest solution is to encrypt each event separately for 
every subscriber receiving the event.  This solution 
does not scale to large, high volume systems due to the 
throughput reduction of encryption algorithms like 
DES.  This paper explores a number of dynamic 
caching approaches to reduce the number of 
encryptions and to increase message throughput. 

3 Related Work 

Until this point, the problem of efficiently 
delivering events in a confidential manner to only 
interested subscribers has not been addressed in 
content-based systems.  However, a related and active 
area of research is secure group communication.  
Specifically, group key management services are 
closely related to the problem described above.  Secure 
group communication systems are usually meant to 
provide secure channel for the exchange of data 
between group members.  Secure groups are often 
identified by a session key, known to all group 
members, which is used to encrypt all data sent to the 
group.  Key management services are used to facilitate 
member joins and leaves (including expulsions) as well 
as periodic re-keying to ensure validity of the session 
key.   

A related area of work is research on 
broadcast encryption.  It was first introduced by Fiat 
and Naor [FN93] in the context of pay-TV.  The 
authors presented methods for securely broadcasting 
information such that only a selected subset of users 
can decrypt the information while coalitions of up to k 
unprivileged users learn nothing.  Unfortunately, 
schemes presented in [FN93] as well as in extensions 
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found in [BC94, BFMS98, SvT98] require a large 
numbers of keys to be stored at the receivers or large 
broadcast messages.  Another problem in the context of 
secure content-based systems is that coalition of more 
than k unprivileged users can decrypt the information.  
Luby and Staddon [LS98] studied the trade-off between 
the number of keys stored in the receivers and the 
transmission length in large and small target receiver 
sets.  They prove a lower bound that shows that either 
the transmission must be very long or a prohibitive 
number of keys must be stored in the receivers.  An 
extension proposed in [ASW00] decreases the number 
of keys required and the length of transmissions by 
relaxing the target set.  It allows a small fraction of 
users outside the target set to be able to decrypt the 
information.  Such scheme may work well for pay-TV 
and similar applications but is unacceptable when 
confidentiality of broadcast information must be 
preserved. 

The problem of secure event delivery from 
end-point brokers to subscribers can be cast as group 
communication with very dynamic membership. Since 
in content-based systems each event goes to a 
potentially different and arbitrary subset of subscribers, 
it is likely that two events arriving one after another go 
to completely different subsets of subscribers.  If a 
group communication system were used to distribute 
events from a broker to subscribers, a group would have 
to be reconstructed (possibly entirely) for every event 
arriving at the broker.  We describe a number of group 
key management approaches and show that none of the 
existing algorithms was designed to support dynamic 
membership changes that occur in content-based 
systems.  The key management techniques for group 
communication are likely to have a large overhead 
when used in content-based system context. 

A simple group key distribution method would 
be to create a pair-key between each subscriber and its 
broker. Whenever there is a membership change, the 
new session key is distributed to each member using its 
pair key. If an event requires a new subgroup of size N, 
this requires N encryptions to send a new session key.  
Since membership in content-based systems can 
potentially change for every event,  this cost can be 
high for large groups. 

One of the first attempts at standardizing 
secure multicast, GKMP [HM97a][HM97b] defines a 
protocol under which group session keys can be 
efficiently distributed.  In GKMP, after being accepted 
into the group, newly joined members receive a Key 
Encrypting Key (KEK) under which all subsequent 
session keys are delivered.  A limitation of this 
approach is that that there is no backward or forward 
secrecy. Anyone with the possession of the KEK can 
potentially access all the past and future session keys. 
The only way in GKMP to provide backward and 

forward secrecy is to reform the group with a new 
KEK. Obviously, the GKMP protocol does not support 
confidentiality requirements of content-based systems 
where events need to be protected from all but 
interested subscribers for that specific event. 

Mittra’s Iolus system [M97] attempts to 
overcome the problems in scalability of key distribution 
by introducing locally maintained subgroups.  Each 
subgroup maintains its own session key, which is 
modified on membership events.  Subgroups are 
arranged in a tree hierarchy.  This solution is more 
scalable than the simple group key distribution method 
for membership changes. And, in fact, our approach of 
assigning subscribers to brokers is similar to the 
approach of subgrouping in Iolus. However, in the 
worst case, note that the session keys for all the 
subgroups may need to be changed for each event. And 
changing the key in a subgroup could potentially 
require linear number of encryptions in the number of 
subscribers within each subgroup. 

The cost of changing keys in Iolus within 
subgroups can be reduced by making smaller 
subgroups. In the extreme case, for example, a small 
fixed number, K, of subscribers can be assigned to each 
subgroup, irrespective of the total number of 
subscribers, N.  In that case, however, one ends up with 
a large number of intermediate servers (N/K) who must 
be trusted with the content of all the events sent via the 
system. We would like to explore solutions that reduce 
the number of servers we trust with event contents to as 
low values as feasible.  

Approaches based on logical key hierarchies 
[WHA98][WGL98][YL00] provide an efficient 
approach to achieving scalable, secure key distribution 
on membership changes in group communication 
systems.  A logical key hierarchy (LKH) is singly 
rooted d-ary tree of cryptographic keys (where d is 
usually 2, but can be arbitrary).  A trusted session 
leader assigns the interior node keys, and each leaf node 
key is a secret key shared between the session leader 
and a single member.  Once the group has been 
established, each member knows all the keys along the 
path from their leaf node key and the root.  As changes 
in membership occur, re-keying is performed by 
replacing only those keys known (required) by the 
leaving (joining) member. It can be shown that the total 
cost of re-keying in key hierarchies in response to a 
single join or leave scales logarithmically with group 
size [WHA98][WGL98]. If the change in membership 
from the initial tree is O(N), as is the case with a 
random group change, it may require up to O(N log(N)) 
number of encryptions if members are removed (or 
added) individually. We consider that too high. If the 
tree is entirely reconstituted for each event being sent to 
a subgroup of size k, the number of encryptions 
required per event is at least k, which can still be large. 



 

Another approach based on LKH uses the 
intermediate keys of the full tree.  Instead of rebuilding 
the tree to represent the appropriate subgroup for each 
event, the tree can be searched to find the smallest 
subset of intermediate keys that cover all subscribers 
interested in the particular event.  The search process is 
O(N) but the number of encryptions can be much 
smaller than in the tree rebuilding case.  We compare 
our algorithms to this scheme in Section 5. 

The VersaKey system [WCS99] extends the 
LKH algorithm by converting the key hierarchy into a 
table of keys, based on binary digits in the identifiers of 
the members.  In this scheme, in the case of joins, no 
key distribution to current members is necessary.  
However, the VersaKey approach is vulnerable to 
collusion of ejected members.  For example, two 
colluding members with complimentary identifiers 
cannot be ejected without simultaneously replacing the 
entire table.  It is likely therefore that the table would 
need to be replaced for a large percentage of events 
going through the end-point broker. 

A number of key agreement protocols (as 
opposed to key distribution approaches outlined above) 
have been suggested in which group keys are created 
from contributions of inputs (or key shares) of desired 
members [ITW82, SSD88, BD94, BW98, STW00, 
KPT00].  The general approach taken in these protocols 
is to extend the 2-party Diffie-Helman exchange 
protocol to N parties. Due to the contributory nature and 
perfect key independence, most of these protocols 
require exponentiations linear in the number of 
members [Steiner 2000] for most group updates. Kim et 
al unify the notion from key hierarchies and Diffie-
Helman key exchange to achieve a cost of O(log(N)) 
exponentiations for individual joins; however, the 
number of exponentiations for k joins or leaves will still 
be usually at least linear in k (unless the nodes that are 
leaving happen to be all clustered in the same parts of 
the key tree). Since exponentiation is expensive, these 
protocols are primarily suitable for establishing small 
groups at present and not suitable when group 
membership can change drastically from event to event. 
We thus exclude them for further consideration in this 
paper, and instead focus on approaches based on key 
distribution protocols. 

Since the secure end-point delivery problem is 
only a part of a larger publish-subscribe system, we 
briefly describe related publish subscribe systems as 
well. 

Relatively few event distribution systems 
[W98] allow subscriptions to be expressed as predicates 
over the entire message content.  A few noteworthy 
examples of this emerging category are SIENA [C98], 
READY [GKP99], Elvin [SA97], JEDI [CDF], Yeast 
[KR95], GEM [MS97], and Gryphon [BCM99].  All of 
these systems support rich subscription predicates, and 
thus face problems of scalability in their event 
distribution algorithms.  None of the above systems 
offers any security features. 

Other, traditionally subject-based, publish-
subscribe systems are also moving towards richer 
subscription languages.  The Java Message Service 
(JMS) [SUN] enables the use of message selectors, 
which are predicates over a set of message properties.  
The OMG Notification Service [OMG] describes 
structured events with a “ filterable body”  portion.  The 
TIB/Rendezvous system [TIBCO] available from the 
TIBCO Corporation has a hierarchy of subjects and 
permits subscription patterns over the resulting 
segmented subject field, also approximating some of 
the richness available with content-based subscription. 

A new version of the Elvin system, Elvin 4 
[SAB00], introduces a notion of keys for security 
[ABH00]; the details available are sketchy but it 
appears that the correct use and distribution of keys is 
up to the clients and servers, rather than being 
automatically managed by the underlying infrastructure 
based on subscriptions and event contents. 

4 Group K ey Caching 

Our main goal is to reduce the number of 
encryptions required to ensure confidentiality when 
sending events from end-point brokers to subscribers.  
This reduction in number of encryptions in turn 
increases event throughput necessary for large and 
scalable systems.  Due to the complexity of the problem 
– there are 2N possible subgroups (where N is the 
number of subscribers) and every event can potentially 
go to a different subgroup – this paper explores only 
dynamic caching algorithms.   

Our algorithms are compared to the naïve 
solution (described below) and the number of 
encryptions required by the naïve solution is our upper 
bound.  Our algorithms must use less encryptions than 
the naïve algorithm without introducing other 
performance overheads.  The naïve approach is 
described in figure 3: 

1. new event E arrives at a broker and is matched to a set of subscribers  
G = [S1, S2, …, SL]  (where S1, …, SL indicate interested and authorized subscribers) 

2. generate a new key KG 
3. create a message  [ { E} KG,  { KG} KS1,  { KG} KS2,  …,  { KG} KSL]  and send it to 

subscribers S1 through SL 
Fig. 3: Naïve approach. 



 

For every event arriving at an end-point broker 
and matching to K subscribers, the naïve approach 
needs K encryptions.  For a broker with N subscribers, 
and a random distribution of groups (sets of subscribers 
interested in an event), an average event goes to N/2 
subscribers.  This means that with 1000 subscribers per 
broker, a broker must on average perform 500 
encryptions per event. 

Our approaches aim to improve on that number.  All of 
our dynamic caching algorithms require the broker and 
subscriber to keep a certain size cache.  In general, the 
cache stores keys for most popular groups.  Cache 
entries have the following format: < G, KG > 

G is a bit vector identifying which subscribers 
belong to the group and KG is the key associated with 
the group.  KG is used to encrypt events going to this 
particular set of subscribers.  We assume that all 
subscribers have enough resources to cache all 
necessary keys.  Subscriber S1 must cache every entry < 
GX, KX > cached at the broker such that S1 ∈ G.  In 
practice, subscribers with limited resources may have 
smaller caches.  This means that such subscriber may 
not have all the appropriate keys cached at the broker.  
A secure protocol for key request/exchange has to be 
developed to in order for our caching algorithms to 
support subscribers with limited resources.  Currently, 
we assume every subscriber has all the cache entries { < 
G, K > | S ∈ G}  cached at the broker. 

The next few sections describe each of our 
algorithms in detail.  We present theoretical analysis 
and simulation results comparing each of our 
approaches and the naïve solution.  We also present 
simulation results for LKH-based solution for 
comparison.  We derive approximate expressions for 
the average number of encryptions for two different 
distributions of groups: 

Random – each arriving event goes to a random subset 
of subscribers.  Every one of the possible 2N groups has 
the same probability of occurrence. 
Popular  Set1 – there is a set of groups that happen 
more often than others.  An event has a higher 
probability of matching a group from the popular group 
set S.  The distribution has the following parameters: 

|S|: the size of set S (number of groups in the 
popular set) 

p: probability that an event matches a group 
from S 

Every event matches a random group from S 
with probability p.  Every event matches a totally 
random group with probability (p – 1). 

                                                        
1 The groups are based on subscriptions and therefore it is 
virtually impossible that every one of the 2N possible groups 
has the same probability of occurrence.  The popular set 
distribution is meant to better approximate real distribution. 

To enable simpler derivation, we assume the 
cache to be smart.  This means that it caches only 
groups from set S (if cache size is less than or equal to 
|S|).  In practice, it is possible to closely approximate 
this behavior by using a frequency-based cache.  By 
caching groups that occur more frequently, this 
approach would cache groups from set S after long 
enough time (since groups from S happen more 
frequently than other random groups). 

We introduce a measure of average number of 
encryptions per message E.  Due to uniform distribution 
of subscribers in a group, the average number of 
subscribers in a group is N/2, so:  

2
N

naiveE =    (1) 

4.1 Simple Caching 

The simplest solution to reducing the number 
of encryptions in the system is to use a plain caching 
scheme.  This approach assumes that, based on 
customer subscriptions, many events will go to the 
same subset of subscribers.  Creating and caching a 
separate key for those groups would take advantage of 
repeating groups and it would reduce the number of 
encryptions performed at the broker.  The major 
parameters affecting the performance of this approach 
are the number of clients, cache size, and the 
distribution of groups.  The basic algorithm works as 
follows: 

1. new event E arrives at a broker and is matched to a 
set of subscribers G = [S1 … SN] 

2. search the current cache 
2.1. if an entry <G, KG> is found in cache 

• send { E} KG to all subscribers in G 
2.2. if entry <G, KG> is not found in cache 

• generate a new key KG 
• create the following message and send 

it to subscribers: 
 [ { E} KG,  { KG} KS1,  …,  { KG} KSN ]  

and send it to the set of subscribers G   
• add new entry <G, KG> to cache 

This approach works well if many events need 
to be delivered to the exact same set of subscribers.  We 
present approximate formulas for average numbers of 
encryptions: 

Random distr ibution: we know that if there 
is a cache hit (incoming event matches a group stored in 
cache), the event only needs to be encrypted once with 
the stored key.  If there is a cache miss, then the number  
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Fig. 4: Build-up cache. 
 

of encryptions is the same as in the naïve case.  The 
probability of a cache hit is: 

Nch

C
P

2
=     (2a) 

Where C is the cache size and N is the number 
of subscribers.  The probability of a cache miss is: 

N

N

cm

C
P

2

2 −=     (2b) 

From equations 2a and 2b we can get the 
expression for the average number of encryptions per 
message: 
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We can see that as the number of subscribers 

gets larger, the simple cache will perform only slightly 
better than the naïve approach.  For 100 subscribers and 
a cache of size 10,000, this approach averages 50 
encryptions per message (just like the naïve solution). 

Popular -set distr ibution: there are 2 cases: 
whether the group comes from the popular set or not 
(since the smart cache only caches groups from the 
popular set).  If the group does not come from the 
popular set (with probability (1-p)) then the average 
number of encryptions is: 

2
NEnp =     (3a) 

If the group comes from the popular set, then 
the number of encryptions depends on whether there 
was a cache hit or not.  Similarly to the simple cache 
with random groups, the average number of encryptions 
for groups coming from the popular set is: 
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Combining equations 4a and 4b, we get the 
expression for average number of encryptions with 
simple cache and popular set distribution: 
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For the same parameters as in the random 
distribution case and the popular set of size 10,000 and 
probability p = .9, simple cache requires only 6 
encryptions on average. 

4.2 Build-up Cache 

This algorithm extends the simple caching approach.  
The base of this solution is an observation that many 
groups are subsets of other, larger groups.  In other 
words, larger groups can often be constructed by 
combining smaller groups.  The algorithm takes 
advantage of this observation by performing partial 
cache matching.  It searches for subsets of a given 
group G trying to reconstruct G using a number of 
smaller groups already in the cache.  Figure 4 shows the 
basic idea behind the algorithm.  Optimally, the 
algorithm would try to find a minimum number of 
groups from cache that completely cover group G.  This 
would make the algorithm intractable.  We use a 
heuristic that reduces the complexity of the search 
process to O(C), where C is the size of the cache.  We 
search the cache from largest to smallest entries based 
on the assumption that finding a larger matching group 
will lead to a better overall match.  The details are as 
follows: 

1. new event E arrives at a broker and is matched to 
a set of subscribers G 

2. search the cache for subgroups of G, starting 
from largest size groups 
2.1. if a full match is found (entry < G, KG > is 

found in cache) 
• send { E} KG to all subscribers in G 

2.2. if a partial match is found (< G1, KG1 > 
where G1 ⊂ G and G1 ≠ G) 
• store < G1, KG1 > in a temporary set S 
• take the difference of Gnew = G – G1  

3. Repeat 2 until Gnew = ∅ or there are no more 
entries in cache to search 

4. if a match for G is not found in cache 
• save new entry in cache as in step 2.2 of 

the simple algorithm 

Due to complexity, we cannot present a 
derivation of a formula for the average number of 



 

encryptions for the build-up cache at this time.  We 
compare this approach to other algorithms in a set of 
simulations presented in section 5. 

4.3 Clustered Cache 

A known technique for reducing complexity of 
certain problems is clustering [reference].  There are 2N 
possible groups and the above approaches may require 
very large cache sizes when the number of subscribers 
grows into thousands.  This section describes a new 
clustered cache technique, which needs much smaller 
number of encryptions than the first two algorithms. 

For a server with N clients, we divide the set 
of clients into K clusters.  The server has to keep K 
separate cluster caches, but those caches can be much 
smaller than the caches from section 4.1 and 4.2.  Each 
cluster cache holds entries of the same format as the 
simple and buildup caches (< G, KG >), but G only 
consists of subscribers belonging to the particular 
cluster.  The algorithm works in the following way: 

1. new event E arrives at a broker and is matched 
to a set of subscribers G 

2. G is divided into K subsets according to the 
cluster choices (G1, G2, …, GK) 

3. for each cluster 
3.1. search cluster cache for the appropriate 

group (one of G1 through GK) 
• the algorithm works as the simple 

cache approach for each cluster 
• send message to the appropriate 

group in the cluster 
• add new entries to cluster cache as 

dictated by the simple algorithm 

An event has to be encrypted separately for 
each cluster.  Assuming a cache hit in every cluster, an 
event has to be encrypted K times.   

An interesting issue in this algorithm is the 
choice of clusters.  A simple solution is to assign 
subscribers to clusters randomly (or according to 
subscriber ids: first X subscribers to cluster 1, next X to 
cluster 2, etc.).  Another approach would be to assign 
clusters based on subscription similarity.  Subscribers 
with similar subscriptions would be assigned to the 
same cluster. 

We calculate the average number of 
encryptions per each cluster and multiply it by the 
number of clusters to get the total.  A cluster of size NK, 
with individual cache of size Ck is very much like the 
simple cache from previous section.  We present 
approximate formulas for random distribution only.  
Derived from equation 2, the average number of 
encryptions per cluster is: 
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The average number of encryptions for 
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To simplify derivation and the resulting 
formulas we do not account for the fact that some 
clusters may have no subscribers matching a particular 
event, therefore reducing the number of encryptions.  
Equation 4 gives us an upper bound on the average 
number of encryptions for the clustered cache and 
random group distribution.  For the same parameters as 
in the previous algorithms, the clustered cache requires 
at most 11 encryptions on average. 

Next section describes an algorithm combining 
clustered and simple caches that combines the 
advantages of both approaches. 

4.4 Clustered-Popular Cache 

The clustered cache works well in a generic 
case of random groups.  It doesn’ t take advantage of the 
fact that some groups occur more frequently, as in the 
popular-set distribution.  The clustered-popular 
algorithm was designed to enhance clustered cache with 
support for frequently occurring (popular) groups.  The 
basic idea is to combine clustered cache with simple 
cache in one.  For each event, both caches are checked.  
If there is no hit in the simple part of the cache, the 
clustered approach is used to reduce the number of 
encryptions.  The algorithm works as follows: 

1. new event E arrives at a broker and is matched 
to a set of subscribers G 

2. search the simple cache 
2.1. if an entry <G, KG> is found in cache 

• send { E} KG to all subscribers in G 
2.2. if entry <G, KG> is not found in cache 

• generate new key KG and add new 
entry <G, KG> to cache 

• search the clustered cache as in 
section 4.3 

• send messages to the appropriate 
group in each cluster 

We derive formulas for average number of 
encryptions for both random and popular-set 
distributions of groups.  The formulas are based on the 
appropriate formulas for simple and clustered cache 



 

approaches.  We present the derivation separately for 
both group distributions. 

Random distr ibution: if there is hit in the 
simple part of the cache, we need only 1 encryption.  
Otherwise, the number of encryptions is the same as in 
the clustered cache.  Here, C is the size of the simple 
part of the cache and CK is the size of clusters in the 
clustered part of the cache.  We assume the following 
two conditions: 

KN
KC 2≤  and NC 2≤  

With those conditions, the approximate 
formulas for the average number of encryptions are 
shown in figure 5, equation 5. 

Popular  distr ibution: We know that if the 
group does not come from the popular set (probability 
(1 – p)), there is no hit in the simple part of the cache 
(smart cache and we assume that C < |S|).  In this case, 
the average number of encryptions is based only on the 
clustered part of the cache (figure 5, equation 6a).  

If the group comes from the popular set then 
there is a hit in the simple cache with probability 

|| S

C
PPS =    (6b) 

In case of simple cache miss, clustered cache 
is checked with probability 

||

||

S

CS
PPC

−=    (6c) 

The average number of encryptions when a 
group comes form the popular set S is shown in figure 
5, equation 6d 

Combination of equations 6a and 6d gives us a 
formula for the average number of encryptions for the 
clustered-popular cache and popular-set group 
distribution (figure 5, equation 6).  

Table 1 shows average numbers of encryptions 
calculated using formulas derived above for two 
different sets of parameters.  The clustered-popular 
approach always uses half of the cache for the simple 
part and second half for the clustered part.  The small 
set has the following parameters: there are 100 clients 
and cache size is 10,000 entries.  The clustered 
approach uses 10 clusters of 10 subscribers each with 
cluster cache size of 1000.  The clustered-popular cache 
uses 11 clusters of about 9 subscribers each.  The 
popular set distribution uses a set of 10,000 groups and 
probability p = .9.  The large set has the following 
parameters: there are 1,000 clients and cache size is 
100,000 entries.  The clustered cache uses 100 clusters 
of 10 subscribers.  The clustered-popular cache uses 
114 clusters of 8 or 9 subscribers each.  The popular set 
has 100,000 groups and probability p = .8.   
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Fig. 5: Formulas for  numbers of encryptions. 



 

Clustered-popular cache performs best in the 
large set and the popular-set group distribution.  Next 
section shows that the clustered-popular approach 
outperforms other algorithms as the size of the cache 
increases.  The actual numbers for both clustered 
algorithms should be lower than the theoretical values.  
This is because we did not account for the fact that for 
some events, not all clusters will have interested 
subscribers.  This was done to simplify derivation.  
Also, the values for simple cache should be higher 

because of our assumption of smart cache.  We were 
not able to approach the smart cache because of the size 
of our sample in the simulations. 

5 Simulations 

We ran a number of simulations to confirm our 
theoretical results as well as to compare the simple, 
clustered, and clustered-popular approaches to the 
build-up cache as well as to an LKH-based approach 

 

 No cache Simple cache Clustered cache 
Clustered-popular 

cache 

Uniform groups 50 50 11 17 

Sm
al

l 

Popular groups 50 6 ~11 6.7 

Uniform groups 500 500 109 112 

L
ar

ge
 

Popular groups 500 101 ~109 68 

Table 1: Calculated average numbers of encryptions 
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presented for comparison.  The LKH based approach 
works by creating a hierarchical tree of keys.  When an 
event arrives at broker and is matched to a group of 
subscribers G, the tree is searched, bottom-up, for keys 
that are common to as many as possible subscribers 
from G but are not know to subscribers not in G.  The 
LKH-based scheme corresponds to a fixed cache size – 
the key tree only changes with changes in the number 
of subscribers.  We ran a number of simulations testing 
different parameter settings.  Each simulation consisted 
of 15,000 events.  All caches were warm.  We show 
results for both, random and popular-set, group 
distributions.  The number of clusters used by the 
cluster-based algorithms depends on the number of 
clients.  When solving equation 4 for the number of 
clusters K, we get the optimal number of clusters when 

K
N CK =2  (NK is the number of clients per clusters 

and CK is the cluster cache size).  We chose the largest 

K which gave K
N CK ≥2 .  We used the same method 

to determine number of clusters for the clustered 
popular approach. 

Figure 6 shows results for cache size 10,000, 
and figure 7 shows results for cache size 20,000.  
Figure 7 shows results for only the clustered, clustered-
popular, and LKH-based approaches.   

The clustered-popular is the only algorithm 
that performs differently with popular-set group 
distribution.  We can see that clustered, clustered-
popular, and LKH-based algorithms outperform the 
simple and build-up caches for random groups.  In the 
case of popular-set distribution, all perform similarly 
with LKH-based approach being the worst.  When the 
cache size is increased to 20,000, the clustered 
approaches clearly outperform the LKH-based 
algorithm.  Figure 8 shows the effect of increasing 
cache size on the number of encryptions required by 
each algorithm for different group distributions.  The 

results (except for the LKH-based approach, which is 
based on simulation results) in this figure are based on 
the approximate formulas derived in section 4.  As we 
can see, clustered and clustered-popular approaches are 
similar with random group distribution, but the 
clustered-popular algorithm clearly outperforms all 
other solutions when the popular-set distribution is 
used.  In order to make judgments about usefulness of 
any of these algorithms, we need to relate number of 
encryptions to a performance measure like throughput.  
We claimed that algorithms that reduce the number of 
encryptions required are desirable because large 
number of encryptions per message reduces message 
throughput at the broker.  We measured throughput of 
the DES algorithm depending on the number of 
encryptions per message to show that this is the case.  
We ran a number of experiments encrypting an 8-byte 
piece of data.  We varied the number of different keys 
used.  We used the DES algorithm on a 550Mhz 
Pentium III running RedHat Linux operating system. 
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Fig. 9: Message throughput as a function of the number  of 

encryptions per  message. 
 

The results of our experiment are showed in 
fig. 9.  The adverse effect of number of encryptions on 
throughput is clearly visible.  Based on our results, we 
see that clustered-popular has higher throughput than 
LKH-based approach by approximately 100% in the 
case of popular-set distribution and by about 33% in the 
case of random group distribution.  Clustered-popular is 
also about 50% better than clustered algorithm for 
popular-set distribution, it, however, underperforms 
clustered algorithm by about 10-20% in the case of 
random distribution. The LKH-based approach also has 
approximately 40% lower throughput than the clustered 
algorithms. 

6 Discussion  

We can draw the following conclusions from 
the above results:  
 e

clustering of users into an appropriate number 
of subgroups can substantially reduce the 
number of encryptions required for both the 
random case and the popular case. e
caching added to clustering can further reduce 
the number of encryptions substantially (with 
corresponding increase in message 
throughput). e
build-up cache, where previously cached keys 
are used to generate new keys, has remarkably 
little effect on number of encryptions required 
over simple cache, besides being more 
expensive to search when for entries that 
should be used to generate a new key.  

 
The LKH scheme performed better than the 

simple cache for the random case despite the fact that 
the LKH scheme essentially requires a fixed amount of 

storage for a given number of clients (e.g., 1999 
individual and internal group keys for 1000 clients), but 
not as well as clustering schemes. LKH scheme can 
also be more expensive to use in terms of search costs -
-- algorithmically, finding an optimal cover of LKH 
keys for a new subgroup usually takes more steps than 
searching the cluster-cache. 

The reduction over simple caching and LKH 
that we considered appears to be asymptotically a 
constant factor for the same size cache. A question that 
arises is whether it is possible to do reduce the number 
of encryptions to O(log N) per event in the worst case,  
by either using multiple static LKH trees or by using a 
large cache.  The answer appears to be no as the 
following analysis shows unless the cache size is 
exponential in the number of clients. Since the internal 
nodes of an LKH tree can also be considered to be 
cache entries, the result also says that an exponential 
number of LKH trees are required to reduce the worst-
case bound on the number of encryptions to be 
O(log(N))  per event. In the analysis below, we only 
consider the situation where generating a group key for 
a new event uses an optimal combination of existing 
keys in the cache.  

Suppose the cache size is S.  If we are allowed 
to pick at most p entries from the cache to form any 
subgroup, the maximum number of subgroups that can 
be formed from this cache is bounded by:  

     pS  
But, there are 2N subgroups that need to be 

formed, given N clients. Therefore, if each potential 
subgroup needs to be formed using at most p cache 
entries, the following must hold: 

  NpS 2≥  
Therefore, 

  NSp ≥2log  

 Or  p
N

S 2≥  
The above result tells us that if p is any 

sublinear function of N (e.g., O(ln N) or O( f N)), the 
size of the cache must grow exponentially in N to 
guarantee that each event  can be sent securely using at 
most p encryptions. 

So, it appears that the worst-case number of 
encryptions for an event will need to be linear in N for 
reasonably sized caches, but one can try to improve the 
constant of proportionality, as we have tried to do in 
this paper. Note that this result applies only if a new 
event needs to be encrypted individually using existing 
(potentially multiple) group keys.  An open question is 
whether one can do better if one allows an event to be 
encrypted multiple times; e.g., send a message 
encrypted under both keys k1 and k2, to send the 
message to only those members who possess both k1 
and k2. Another open question is whether sublinear 



 

amortized bounds can be achieved without exponential-
size caches. We leave the analysis of these questions to 
future work. 

7 Conclusion and Future Work 

There is a growing need for security solutions 
for content-based systems.  This paper identifies the 
“secure end-point delivery”  problem and explores a 
number of possible solutions.  We are concerned with 
providing confidentiality when sending events from 
brokers to subscribers.  The problem is that in content-
based systems, every event can potentially have a 
different set of interested subscribers.  There are 2N 
possible subsets, where N is the number of subscribers. 
With thousands of subscribers it is infeasible to setup 
static security groups for every possible subset.   

A number of key management systems for 
group communication solve a similar problem but none 
of them was designed to handle the dynamic nature of 
content-based event delivery.  We explored a number of 
dynamic caching approaches.  A simple solution is to 
encrypt each event separately for each interested 
subscriber; however this requires a large number of 
encryptions for large sets of subscribers.  Our main goal 
is to reduce the number of encryptions required to 
preserve confidentiality while sending events only to 
interested subscribers.  The number of encryptions is 
important because it translates directly into message 
throughput (see figure 9).   

All of our approaches use a dynamic caching 
scheme, where the broker and subscribers must cache 
subgroup keys.  Each cache entry has a format < G, K 
>, where G identifies the set of subscribers belonging to 
a subgroup and K is a key associated with the subgroup.  
All secure communication intended for all subscribers 
in G can be encrypted using key K.  Through 
theoretical analysis and simulation results, we show that 
our clustered and clustered-popular approaches perform 
better as cache size increases.  Both cluster-based 
algorithms outperform LKH-based solution for most 
cases.  Clustered-popular algorithm performs especially 
well in the case of the popular-set group distribution.  
We also show that it is impossible to achieve sublinear 
encryptions growth for a large class of algorithms, even 
with using multiple LKH trees, without an exponential 
number of LKH trees or exponential-sized caches in the 
number of subscribers per broker. 

Our results show that cluster-based algorithms 
can be a practical solution to the end-point delivery 
problem.  They do not impose heavy overhead as hash 
tables can be used for cache lookup.  The cache size 
requirement on the subscriber side is also lower than 
the simple cache or build-up cache algorithms.  In the 
case of the clustered cache, each subscriber only needs 

Ck cache entries, where K
C

KC = .  C is the total cache 

size at the broker, K is the number of clusters and CK is 
the size of one cluster part of cache.  If client resources 
are limited, a protocol for key request/exchange is 
needed for a subscriber to request appropriate keys 
from the broker.   

We plan to investigate the effect of providing 
integrity and sender authentication on message 
throughput in the future.  Efficient sender 
authentication in the context of content-based systems 
is a non-trivial problem.  Throughout the paper we 
make an assumption that brokers are trusted.  Every 
broker in the system has the ability to read every event.  
We are investigating the impact of non-universal broker 
trust on the design of algorithms. 
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