
USENIX Association

Proceedings of the
10th USENIX Security

Symposium

Washington, D.C., USA
August 13–17, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Secure Distr ibution of Events in Content-Based Publish Subscr ibe Systems

Lukasz Opyrchal and Atul Prakash
Electrical Engineering and Computer Science Department

University of Michigan
Ann Arbor, MI 48109-2122

{ lukasz,aprakash} @eecs.umich.edu

Abstract

Content-based publish-subscribe systems are an emerging paradigm for building a range of distributed applications.
A specific problem in content-based systems is the secure distribution of events to clients subscribing to those
events. In content-based systems, every event can potentially have a different set of interested subscribers. To
provide confidentiality guarantee, we would like to encrypt messages so that only interested subscribers can read the
message. In the worst case, for n clients, there can be 2n subgroups, and each event can go to a potentially different
subgroup. A major problem is managing subgroup keys so that the number of encryptions required per event can be
kept low. We first show the difficulties in applying existing group key management techniques to addressing the
problem. We then propose and compare a number of approaches to reduce the number of encryptions and to increase
message throughput. We present analytical analysis of described algorithms as well as simulation results.

1 Introduction

Many of today’s Internet applications require
high scalability as well as strict security guarantees.
This new breed of applications includes large wireless
delivery services with thousands to millions of clients,
inter-enterprise supply-chain management applications,
financial applications, workflow applications, and
network management.

Messaging technology has been introduced to
create much more flexible and scalable distributed
systems. An emerging paradigm of messaging
technology is publish-subscribe [B93]. In such
systems, customers (or subscribers) specify the type of
content they want to receive via subscriptions.
Publishers publish messages (events), and the publish-
subscribe system delivers them only to the interested
subscribers. Publishers are often decoupled from
subscribers, creating more scalable solutions. Figure
1shows a typical publish-subscribe system. Events may
be delivered via intermediate brokers, who determine
the set of subscribers that an event should be delivered
to. Decoupling of publishers and subscribers works well
for increasing scalability but, as we will see, makes it
difficult to develop secure solutions.

 This work is supported in part by the IBM Research Partnership
Award and by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-00-2-0508. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
DARPA, the Air Force Research Laboratory, or the U.S.
Government.

The earliest publish-subscribe systems used
subject-based subscription [B93, TIBCO]. In such
systems, every message is labeled by the publisher as
belonging to one of a fixed set of subjects (also known
as groups, channels, or topics). Subscribers subscribe
to all the messages within a particular subject or set of
subjects. Strength of this approach is the potential to
easily leverage group-based multicast techniques to
provide scalability and performance, by assigning each
subject to a multicast group. In fact, group
communication can be considered to be a special case
of subject-based subscription where the subject is the
name of the group. A significant restriction with
subject-based publish-subscribe is that the selectivity of
subscriptions is limited to the predefined subjects.

An emerging alternative to subject-based
systems is content-based messaging systems [BCM99,
C98, CDF, GKP99, KR95, MS97, SA97]. These
systems support an event schema defining the type of
information contained in each event (message). For
example, applications interested in stock trades may use
the event schema [i ssue: st r i ng, pr i ce:
dol l ar , vol ume: i nt eger]. A content-based
subscription is a predicate against the event schema,
such as (i ssue = ” I BM” & pr i ce < 120 &
vol ume > 1000). Only events that satisfy (match)
the subscription predicate are delivered to the
subscriber.

With content-based subscription, subscribers
have the added flexibility of choosing filtering criteria
along multiple dimensions, without requiring pre-
definition of subjects. In the stock trading example, a
subject-based subscriber could be forced to select trades
by issue name because those are the only subjects
available. In contrast, a content-based subscriber is free

Publish-Subscribe System

Broker

Broker

Broker

Client

Client

Client

Client

Client

Client

Publisher

Fig. 1: An example of a publish-subscr ibe system.

to use any orthogonal criterion, such as volume, or
indeed a predicate on any collection of criteria, such as
issue, price, and volume.

The applications listed above require different
security guarantees. For example, an application
distributing premium stock reports may require
confidentiality to make sure that only authorized
(paying) subscribers can access the data. Integrity may
be required to ensure that reports have not been
modified in transit from publishers to subscribers and
sender authenticity to make sure that fake reports are
not sent by third parties. The lack of those security
guarantees in content-based systems has prevented their
wider use even in applications that could greatly benefit
from content-based subscriptions.

The fact that in content-based systems every
event can potentially go to a different subset of
subscribers makes efficient implementation of
confidentiality guarantees difficult. There are 2N
possible subsets, where N is the number of subscribers.
With thousands (tens of thousands or hundreds of
thousands) of subscribers it is infeasible to setup static
security groups for every possible subset. Even the use
of a limited number of intermediate trusted
servers/brokers to reduce the complexity can leave each
broker with hundreds or thousands of subscribers,
making the number of possible groups too large.

This paper presents and compares several
algorithms for secure delivery of events from a broker
to its subscribers. Section 2 states the problem in detail.
Section 3 presents related work. Section 4 explores a
number of approaches based on the idea of using and
caching multiple subgroup keys to address the secure
end-point delivery problem. We described the use of
these schemes and also present theoretical analysis of
many of these approaches. Section 5 describes our
simulation setup, experiment results and analysis of
those results. Section 6 discusses the results and
presents some theoretical bounds on the problem.

Finally, Section 7 presents conclusions and directions
for future work.

2 Problem Description

A messaging system routes events from a
publisher to end-point brokers. The brokers then
distribute those events to their subscribers. In content-
based systems, each message could potentially go to a
different set of subscribers (see Fig. 2). The picture
shows two events (E1 and E2) delivered by the delivery
system to the broker. Each event is then sent to a
different subset of subscribers connected to the broker.
We want to add certain security guarantees to content-
based systems. The security requirement that we focus
on in this paper is confidentiality. The system must
guarantee that only authorized subscribers can read an
event. Data must be protected from other (not
authorized) subscribers as well as other malicious users
on the network.

This paper describes issues and solutions for
only a subset of the complex security problem in an
entire publish-subscribe system. To provide event
confidentiality, we assume that events are protected on
their way from a publisher, through the delivery system,
to the end-point brokers. In this paper, we focus on the
data security on the last leg from end-point brokers to
subscribers in an efficient way when each broker may
have a large number of clients. In this paper, we
assume that all brokers are trusted and that all
subscribers and publishers are properly authenticated to
the system. All subscribers and publishers also have an
individual symmetric pair-key shared only with their
broker (generated during the authentication process).
The issues of security in transit between publishers and
end-point brokers as well as the issue of broker trust are
the subjects of our future work.

 The publish-subscribe system allows dynamic
access control to the events. This means that a
predicate can be used at event publish time to check the
set of subscribers who are authorized to receive the

Fig. 2: Secure end-point delivery problem.

event. It is possible for a subscriber to be interested in
an event (have a subscription for a particular event) but
not be authorized to read that event (because of
restrictions from a publisher). To simplify discussion,
we assume that all interested subscribers are also
authorized subscribers, i.e., each subscriber is
authorized to read all events it subscribes to. Dynamic
access control makes it infeasible to set up static
security groups as each event can potentially have a
different set of authorized subscribers (as well as a
different set of interested subscribers).

Given the above restrictions and assumptions,
providing confidentiality in content-based systems in an
efficient way is non-trivial. Since every event can
potentially go to a different subset of subscribers, it is
infeasible (for large numbers of clients) to set-up static
security groups. The simplest solution would be to
encrypt each event separately for every subscriber
receiving the event (using individual subscriber keys).
For large systems where each broker has thousands of
subscribers, this could mean hundreds or thousands of
encryptions per event. An additional performance hit
involves changing keys for each of the encryptions,
which drastically slows down encryption algorithms
like DES [Pub97]. We tested this by encrypting a
random 64-bit piece of data with DES. We compared
throughput when continuously encrypting with one key
and when using 500 different keys on a Pentium III 550
Mhz machine running Red Hat Linux. The results
showed that changing keys for each subscription results
in throughput as low as 10% of the total throughput
when using only one key.

In short, the problem presented here is to
preserve confidentiality using small number of
encryptions while distributing events from end-point
broker to its subscribers. Due to lack of good
workloads in this area, we consider two extreme

scenarios --- (1) where events go to random subgroups
of subscribers and (2) where there are some popular
subgroups and some unpopular subgroups. The
simplest solution is to encrypt each event separately for
every subscriber receiving the event. This solution
does not scale to large, high volume systems due to the
throughput reduction of encryption algorithms like
DES. This paper explores a number of dynamic
caching approaches to reduce the number of
encryptions and to increase message throughput.

3 Related Work

Until this point, the problem of efficiently
delivering events in a confidential manner to only
interested subscribers has not been addressed in
content-based systems. However, a related and active
area of research is secure group communication.
Specifically, group key management services are
closely related to the problem described above. Secure
group communication systems are usually meant to
provide secure channel for the exchange of data
between group members. Secure groups are often
identified by a session key, known to all group
members, which is used to encrypt all data sent to the
group. Key management services are used to facilitate
member joins and leaves (including expulsions) as well
as periodic re-keying to ensure validity of the session
key.

A related area of work is research on
broadcast encryption. It was first introduced by Fiat
and Naor [FN93] in the context of pay-TV. The
authors presented methods for securely broadcasting
information such that only a selected subset of users
can decrypt the information while coalitions of up to k
unprivileged users learn nothing. Unfortunately,
schemes presented in [FN93] as well as in extensions

Information
Delivery System

Broker

subscriber

E1

E2

Subscribers
matching E1

Subscribers
matching E2

E1, E2 events

found in [BC94, BFMS98, SvT98] require a large
numbers of keys to be stored at the receivers or large
broadcast messages. Another problem in the context of
secure content-based systems is that coalition of more
than k unprivileged users can decrypt the information.
Luby and Staddon [LS98] studied the trade-off between
the number of keys stored in the receivers and the
transmission length in large and small target receiver
sets. They prove a lower bound that shows that either
the transmission must be very long or a prohibitive
number of keys must be stored in the receivers. An
extension proposed in [ASW00] decreases the number
of keys required and the length of transmissions by
relaxing the target set. It allows a small fraction of
users outside the target set to be able to decrypt the
information. Such scheme may work well for pay-TV
and similar applications but is unacceptable when
confidentiality of broadcast information must be
preserved.

The problem of secure event delivery from
end-point brokers to subscribers can be cast as group
communication with very dynamic membership. Since
in content-based systems each event goes to a
potentially different and arbitrary subset of subscribers,
it is likely that two events arriving one after another go
to completely different subsets of subscribers. If a
group communication system were used to distribute
events from a broker to subscribers, a group would have
to be reconstructed (possibly entirely) for every event
arriving at the broker. We describe a number of group
key management approaches and show that none of the
existing algorithms was designed to support dynamic
membership changes that occur in content-based
systems. The key management techniques for group
communication are likely to have a large overhead
when used in content-based system context.

A simple group key distribution method would
be to create a pair-key between each subscriber and its
broker. Whenever there is a membership change, the
new session key is distributed to each member using its
pair key. If an event requires a new subgroup of size N,
this requires N encryptions to send a new session key.
Since membership in content-based systems can
potentially change for every event, this cost can be
high for large groups.

One of the first attempts at standardizing
secure multicast, GKMP [HM97a][HM97b] defines a
protocol under which group session keys can be
efficiently distributed. In GKMP, after being accepted
into the group, newly joined members receive a Key
Encrypting Key (KEK) under which all subsequent
session keys are delivered. A limitation of this
approach is that that there is no backward or forward
secrecy. Anyone with the possession of the KEK can
potentially access all the past and future session keys.
The only way in GKMP to provide backward and

forward secrecy is to reform the group with a new
KEK. Obviously, the GKMP protocol does not support
confidentiality requirements of content-based systems
where events need to be protected from all but
interested subscribers for that specific event.

Mittra’s Iolus system [M97] attempts to
overcome the problems in scalability of key distribution
by introducing locally maintained subgroups. Each
subgroup maintains its own session key, which is
modified on membership events. Subgroups are
arranged in a tree hierarchy. This solution is more
scalable than the simple group key distribution method
for membership changes. And, in fact, our approach of
assigning subscribers to brokers is similar to the
approach of subgrouping in Iolus. However, in the
worst case, note that the session keys for all the
subgroups may need to be changed for each event. And
changing the key in a subgroup could potentially
require linear number of encryptions in the number of
subscribers within each subgroup.

The cost of changing keys in Iolus within
subgroups can be reduced by making smaller
subgroups. In the extreme case, for example, a small
fixed number, K, of subscribers can be assigned to each
subgroup, irrespective of the total number of
subscribers, N. In that case, however, one ends up with
a large number of intermediate servers (N/K) who must
be trusted with the content of all the events sent via the
system. We would like to explore solutions that reduce
the number of servers we trust with event contents to as
low values as feasible.

Approaches based on logical key hierarchies
[WHA98][WGL98][YL00] provide an efficient
approach to achieving scalable, secure key distribution
on membership changes in group communication
systems. A logical key hierarchy (LKH) is singly
rooted d-ary tree of cryptographic keys (where d is
usually 2, but can be arbitrary). A trusted session
leader assigns the interior node keys, and each leaf node
key is a secret key shared between the session leader
and a single member. Once the group has been
established, each member knows all the keys along the
path from their leaf node key and the root. As changes
in membership occur, re-keying is performed by
replacing only those keys known (required) by the
leaving (joining) member. It can be shown that the total
cost of re-keying in key hierarchies in response to a
single join or leave scales logarithmically with group
size [WHA98][WGL98]. If the change in membership
from the initial tree is O(N), as is the case with a
random group change, it may require up to O(N log(N))
number of encryptions if members are removed (or
added) individually. We consider that too high. If the
tree is entirely reconstituted for each event being sent to
a subgroup of size k, the number of encryptions
required per event is at least k, which can still be large.

Another approach based on LKH uses the
intermediate keys of the full tree. Instead of rebuilding
the tree to represent the appropriate subgroup for each
event, the tree can be searched to find the smallest
subset of intermediate keys that cover all subscribers
interested in the particular event. The search process is
O(N) but the number of encryptions can be much
smaller than in the tree rebuilding case. We compare
our algorithms to this scheme in Section 5.

The VersaKey system [WCS99] extends the
LKH algorithm by converting the key hierarchy into a
table of keys, based on binary digits in the identifiers of
the members. In this scheme, in the case of joins, no
key distribution to current members is necessary.
However, the VersaKey approach is vulnerable to
collusion of ejected members. For example, two
colluding members with complimentary identifiers
cannot be ejected without simultaneously replacing the
entire table. It is likely therefore that the table would
need to be replaced for a large percentage of events
going through the end-point broker.

A number of key agreement protocols (as
opposed to key distribution approaches outlined above)
have been suggested in which group keys are created
from contributions of inputs (or key shares) of desired
members [ITW82, SSD88, BD94, BW98, STW00,
KPT00]. The general approach taken in these protocols
is to extend the 2-party Diffie-Helman exchange
protocol to N parties. Due to the contributory nature and
perfect key independence, most of these protocols
require exponentiations linear in the number of
members [Steiner 2000] for most group updates. Kim et
al unify the notion from key hierarchies and Diffie-
Helman key exchange to achieve a cost of O(log(N))
exponentiations for individual joins; however, the
number of exponentiations for k joins or leaves will still
be usually at least linear in k (unless the nodes that are
leaving happen to be all clustered in the same parts of
the key tree). Since exponentiation is expensive, these
protocols are primarily suitable for establishing small
groups at present and not suitable when group
membership can change drastically from event to event.
We thus exclude them for further consideration in this
paper, and instead focus on approaches based on key
distribution protocols.

Since the secure end-point delivery problem is
only a part of a larger publish-subscribe system, we
briefly describe related publish subscribe systems as
well.

Relatively few event distribution systems
[W98] allow subscriptions to be expressed as predicates
over the entire message content. A few noteworthy
examples of this emerging category are SIENA [C98],
READY [GKP99], Elvin [SA97], JEDI [CDF], Yeast
[KR95], GEM [MS97], and Gryphon [BCM99]. All of
these systems support rich subscription predicates, and
thus face problems of scalability in their event
distribution algorithms. None of the above systems
offers any security features.

Other, traditionally subject-based, publish-
subscribe systems are also moving towards richer
subscription languages. The Java Message Service
(JMS) [SUN] enables the use of message selectors,
which are predicates over a set of message properties.
The OMG Notification Service [OMG] describes
structured events with a “ filterable body” portion. The
TIB/Rendezvous system [TIBCO] available from the
TIBCO Corporation has a hierarchy of subjects and
permits subscription patterns over the resulting
segmented subject field, also approximating some of
the richness available with content-based subscription.

A new version of the Elvin system, Elvin 4
[SAB00], introduces a notion of keys for security
[ABH00]; the details available are sketchy but it
appears that the correct use and distribution of keys is
up to the clients and servers, rather than being
automatically managed by the underlying infrastructure
based on subscriptions and event contents.

4 Group K ey Caching

Our main goal is to reduce the number of
encryptions required to ensure confidentiality when
sending events from end-point brokers to subscribers.
This reduction in number of encryptions in turn
increases event throughput necessary for large and
scalable systems. Due to the complexity of the problem
– there are 2N possible subgroups (where N is the
number of subscribers) and every event can potentially
go to a different subgroup – this paper explores only
dynamic caching algorithms.

Our algorithms are compared to the naïve
solution (described below) and the number of
encryptions required by the naïve solution is our upper
bound. Our algorithms must use less encryptions than
the naïve algorithm without introducing other
performance overheads. The naïve approach is
described in figure 3:

1. new event E arrives at a broker and is matched to a set of subscribers
G = [S1, S2, …, SL] (where S1, …, SL indicate interested and authorized subscribers)

2. generate a new key KG
3. create a message [{ E} KG, { KG} KS1, { KG} KS2, …, { KG} KSL] and send it to

subscribers S1 through SL
Fig. 3: Naïve approach.

For every event arriving at an end-point broker
and matching to K subscribers, the naïve approach
needs K encryptions. For a broker with N subscribers,
and a random distribution of groups (sets of subscribers
interested in an event), an average event goes to N/2
subscribers. This means that with 1000 subscribers per
broker, a broker must on average perform 500
encryptions per event.

Our approaches aim to improve on that number. All of
our dynamic caching algorithms require the broker and
subscriber to keep a certain size cache. In general, the
cache stores keys for most popular groups. Cache
entries have the following format: < G, KG >

G is a bit vector identifying which subscribers
belong to the group and KG is the key associated with
the group. KG is used to encrypt events going to this
particular set of subscribers. We assume that all
subscribers have enough resources to cache all
necessary keys. Subscriber S1 must cache every entry <
GX, KX > cached at the broker such that S1 ∈ G. In
practice, subscribers with limited resources may have
smaller caches. This means that such subscriber may
not have all the appropriate keys cached at the broker.
A secure protocol for key request/exchange has to be
developed to in order for our caching algorithms to
support subscribers with limited resources. Currently,
we assume every subscriber has all the cache entries { <
G, K > | S ∈ G} cached at the broker.

The next few sections describe each of our
algorithms in detail. We present theoretical analysis
and simulation results comparing each of our
approaches and the naïve solution. We also present
simulation results for LKH-based solution for
comparison. We derive approximate expressions for
the average number of encryptions for two different
distributions of groups:

Random – each arriving event goes to a random subset
of subscribers. Every one of the possible 2N groups has
the same probability of occurrence.
Popular Set1 – there is a set of groups that happen
more often than others. An event has a higher
probability of matching a group from the popular group
set S. The distribution has the following parameters:

|S|: the size of set S (number of groups in the
popular set)

p: probability that an event matches a group
from S

Every event matches a random group from S
with probability p. Every event matches a totally
random group with probability (p – 1).

1 The groups are based on subscriptions and therefore it is
virtually impossible that every one of the 2N possible groups
has the same probability of occurrence. The popular set
distribution is meant to better approximate real distribution.

To enable simpler derivation, we assume the
cache to be smart. This means that it caches only
groups from set S (if cache size is less than or equal to
|S|). In practice, it is possible to closely approximate
this behavior by using a frequency-based cache. By
caching groups that occur more frequently, this
approach would cache groups from set S after long
enough time (since groups from S happen more
frequently than other random groups).

We introduce a measure of average number of
encryptions per message E. Due to uniform distribution
of subscribers in a group, the average number of
subscribers in a group is N/2, so:

2
N

naiveE = (1)

4.1 Simple Caching

The simplest solution to reducing the number
of encryptions in the system is to use a plain caching
scheme. This approach assumes that, based on
customer subscriptions, many events will go to the
same subset of subscribers. Creating and caching a
separate key for those groups would take advantage of
repeating groups and it would reduce the number of
encryptions performed at the broker. The major
parameters affecting the performance of this approach
are the number of clients, cache size, and the
distribution of groups. The basic algorithm works as
follows:

1. new event E arrives at a broker and is matched to a
set of subscribers G = [S1 … SN]

2. search the current cache
2.1. if an entry <G, KG> is found in cache

• send { E} KG to all subscribers in G
2.2. if entry <G, KG> is not found in cache

• generate a new key KG
• create the following message and send

it to subscribers:
 [{ E} KG, { KG} KS1, …, { KG} KSN]

and send it to the set of subscribers G
• add new entry <G, KG> to cache

This approach works well if many events need
to be delivered to the exact same set of subscribers. We
present approximate formulas for average numbers of
encryptions:

Random distr ibution: we know that if there
is a cache hit (incoming event matches a group stored in
cache), the event only needs to be encrypted once with
the stored key. If there is a cache miss, then the number

� � � � � � � � � � � �
�������
	���
�����
�
�
�
���
�
�
��
�
�
�
�
�
�
�����
�
��
�
�������������
�
�
��
�
���
�
�
�
���������

Fig. 4: Build-up cache.

of encryptions is the same as in the naïve case. The
probability of a cache hit is:

Nch

C
P

2
= (2a)

Where C is the cache size and N is the number
of subscribers. The probability of a cache miss is:

N

N

cm

C
P

2

2 −= (2b)

From equations 2a and 2b we can get the
expression for the average number of encryptions per
message:

�
���� � ����� −+

� ����
=

2
*

2

2
1*

2

NCC
E

N

N

N
 NC 2< (2)

We can see that as the number of subscribers

gets larger, the simple cache will perform only slightly
better than the naïve approach. For 100 subscribers and
a cache of size 10,000, this approach averages 50
encryptions per message (just like the naïve solution).

Popular -set distr ibution: there are 2 cases:
whether the group comes from the popular set or not
(since the smart cache only caches groups from the
popular set). If the group does not come from the
popular set (with probability (1-p)) then the average
number of encryptions is:

2
NEnp = (3a)

If the group comes from the popular set, then
the number of encryptions depends on whether there
was a cache hit or not. Similarly to the simple cache
with random groups, the average number of encryptions
for groups coming from the popular set is:

�
���� � !!"# ×−+

� !!"# ×=
2||

||
1

||

N

S

CS

S

C
Ep || SC < (3b)

Combining equations 4a and 4b, we get the
expression for average number of encryptions with
simple cache and popular set distribution:

() $
%&'() *++,- ×−+

) *++,- ×+−=
2||

||
1

||2
1

N

S

CS

S

C
p

N
pE

 || SC < (3)

For the same parameters as in the random
distribution case and the popular set of size 10,000 and
probability p = .9, simple cache requires only 6
encryptions on average.

4.2 Build-up Cache

This algorithm extends the simple caching approach.
The base of this solution is an observation that many
groups are subsets of other, larger groups. In other
words, larger groups can often be constructed by
combining smaller groups. The algorithm takes
advantage of this observation by performing partial
cache matching. It searches for subsets of a given
group G trying to reconstruct G using a number of
smaller groups already in the cache. Figure 4 shows the
basic idea behind the algorithm. Optimally, the
algorithm would try to find a minimum number of
groups from cache that completely cover group G. This
would make the algorithm intractable. We use a
heuristic that reduces the complexity of the search
process to O(C), where C is the size of the cache. We
search the cache from largest to smallest entries based
on the assumption that finding a larger matching group
will lead to a better overall match. The details are as
follows:

1. new event E arrives at a broker and is matched to
a set of subscribers G

2. search the cache for subgroups of G, starting
from largest size groups
2.1. if a full match is found (entry < G, KG > is

found in cache)
• send { E} KG to all subscribers in G

2.2. if a partial match is found (< G1, KG1 >
where G1 ⊂ G and G1 ≠ G)
• store < G1, KG1 > in a temporary set S
• take the difference of Gnew = G – G1

3. Repeat 2 until Gnew = ∅ or there are no more
entries in cache to search

4. if a match for G is not found in cache
• save new entry in cache as in step 2.2 of

the simple algorithm

Due to complexity, we cannot present a
derivation of a formula for the average number of

encryptions for the build-up cache at this time. We
compare this approach to other algorithms in a set of
simulations presented in section 5.

4.3 Clustered Cache

A known technique for reducing complexity of
certain problems is clustering [reference]. There are 2N
possible groups and the above approaches may require
very large cache sizes when the number of subscribers
grows into thousands. This section describes a new
clustered cache technique, which needs much smaller
number of encryptions than the first two algorithms.

For a server with N clients, we divide the set
of clients into K clusters. The server has to keep K
separate cluster caches, but those caches can be much
smaller than the caches from section 4.1 and 4.2. Each
cluster cache holds entries of the same format as the
simple and buildup caches (< G, KG >), but G only
consists of subscribers belonging to the particular
cluster. The algorithm works in the following way:

1. new event E arrives at a broker and is matched
to a set of subscribers G

2. G is divided into K subsets according to the
cluster choices (G1, G2, …, GK)

3. for each cluster
3.1. search cluster cache for the appropriate

group (one of G1 through GK)
• the algorithm works as the simple

cache approach for each cluster
• send message to the appropriate

group in the cluster
• add new entries to cluster cache as

dictated by the simple algorithm

An event has to be encrypted separately for
each cluster. Assuming a cache hit in every cluster, an
event has to be encrypted K times.

An interesting issue in this algorithm is the
choice of clusters. A simple solution is to assign
subscribers to clusters randomly (or according to
subscriber ids: first X subscribers to cluster 1, next X to
cluster 2, etc.). Another approach would be to assign
clusters based on subscription similarity. Subscribers
with similar subscriptions would be assigned to the
same cluster.

We calculate the average number of
encryptions per each cluster and multiply it by the
number of clusters to get the total. A cluster of size NK,
with individual cache of size Ck is very much like the
simple cache from previous section. We present
approximate formulas for random distribution only.
Derived from equation 2, the average number of
encryptions per cluster is:

.
/

0012 3 45567 −
+

3 4567
=

2
*

2

2
1*

2
K

N
K

N

N
K

K

NCC
E

K

K

K
 (4a)

The average number of encryptions for
clustered cache is Ek * K, so:

K
NCC

E K

N

K
N

N

K

K

K

K
*

2
*

2

2
1*

2 8
9

::;< = >??@
A

−
+

= >?@A=

 KN
KC 2≤ (4)

To simplify derivation and the resulting
formulas we do not account for the fact that some
clusters may have no subscribers matching a particular
event, therefore reducing the number of encryptions.
Equation 4 gives us an upper bound on the average
number of encryptions for the clustered cache and
random group distribution. For the same parameters as
in the previous algorithms, the clustered cache requires
at most 11 encryptions on average.

Next section describes an algorithm combining
clustered and simple caches that combines the
advantages of both approaches.

4.4 Clustered-Popular Cache

The clustered cache works well in a generic
case of random groups. It doesn’ t take advantage of the
fact that some groups occur more frequently, as in the
popular-set distribution. The clustered-popular
algorithm was designed to enhance clustered cache with
support for frequently occurring (popular) groups. The
basic idea is to combine clustered cache with simple
cache in one. For each event, both caches are checked.
If there is no hit in the simple part of the cache, the
clustered approach is used to reduce the number of
encryptions. The algorithm works as follows:

1. new event E arrives at a broker and is matched
to a set of subscribers G

2. search the simple cache
2.1. if an entry <G, KG> is found in cache

• send { E} KG to all subscribers in G
2.2. if entry <G, KG> is not found in cache

• generate new key KG and add new
entry <G, KG> to cache

• search the clustered cache as in
section 4.3

• send messages to the appropriate
group in each cluster

We derive formulas for average number of
encryptions for both random and popular-set
distributions of groups. The formulas are based on the
appropriate formulas for simple and clustered cache

approaches. We present the derivation separately for
both group distributions.

Random distr ibution: if there is hit in the
simple part of the cache, we need only 1 encryption.
Otherwise, the number of encryptions is the same as in
the clustered cache. Here, C is the size of the simple
part of the cache and CK is the size of clusters in the
clustered part of the cache. We assume the following
two conditions:

KN
KC 2≤ and NC 2≤

With those conditions, the approximate
formulas for the average number of encryptions are
shown in figure 5, equation 5.

Popular distr ibution: We know that if the
group does not come from the popular set (probability
(1 – p)), there is no hit in the simple part of the cache
(smart cache and we assume that C < |S|). In this case,
the average number of encryptions is based only on the
clustered part of the cache (figure 5, equation 6a).

If the group comes from the popular set then
there is a hit in the simple cache with probability

|| S

C
PPS = (6b)

In case of simple cache miss, clustered cache
is checked with probability

||

||

S

CS
PPC

−= (6c)

The average number of encryptions when a
group comes form the popular set S is shown in figure
5, equation 6d

Combination of equations 6a and 6d gives us a
formula for the average number of encryptions for the
clustered-popular cache and popular-set group
distribution (figure 5, equation 6).

Table 1 shows average numbers of encryptions
calculated using formulas derived above for two
different sets of parameters. The clustered-popular
approach always uses half of the cache for the simple
part and second half for the clustered part. The small
set has the following parameters: there are 100 clients
and cache size is 10,000 entries. The clustered
approach uses 10 clusters of 10 subscribers each with
cluster cache size of 1000. The clustered-popular cache
uses 11 clusters of about 9 subscribers each. The
popular set distribution uses a set of 10,000 groups and
probability p = .9. The large set has the following
parameters: there are 1,000 clients and cache size is
100,000 entries. The clustered cache uses 100 clusters
of 10 subscribers. The clustered-popular cache uses
114 clusters of 8 or 9 subscribers each. The popular set
has 100,000 groups and probability p = .8.

K
NCCCC

E K
N

K
N

N
K

N

N

N K

K

K
*

2
*

2

2
1*

2
*

2

2
1*

2 B
CDEF G HIIJK −+

G HIJKG HIIJK −+
G HIJK

= (5)

K
NCC

E K
N

K
N

N
K

NP
K

K

K
*

2
*

2

2
1*

2 L
M

NNOP Q RSSTU −
+

Q RSTU
= (6a)

K
NCC

S

CS

S

C
E K

N
K

N

N
K

P
K

K

K
*

2
*

2

2
1*

2
*

||

||
1*

|| V
WXYZ −

+−+= (6d)

[
\

]]^_ ` abbcd −
+−+

+[
\

]]^_ ` abbcd −
+

` abcd
−=

K
NCC

S

CS

S

C
p

K
NCC

pE

K
N

K
N

N
K

K
N

K
N

N
K

K

K

K

K

K

K

*
2

*
2

2
1*

2
*

||

||
1*

||

*
2

*
2

2
1*

2
)1(

 (6)

Fig. 5: Formulas for numbers of encryptions.

Clustered-popular cache performs best in the
large set and the popular-set group distribution. Next
section shows that the clustered-popular approach
outperforms other algorithms as the size of the cache
increases. The actual numbers for both clustered
algorithms should be lower than the theoretical values.
This is because we did not account for the fact that for
some events, not all clusters will have interested
subscribers. This was done to simplify derivation.
Also, the values for simple cache should be higher

because of our assumption of smart cache. We were
not able to approach the smart cache because of the size
of our sample in the simulations.

5 Simulations

We ran a number of simulations to confirm our
theoretical results as well as to compare the simple,
clustered, and clustered-popular approaches to the
build-up cache as well as to an LKH-based approach

 No cache Simple cache Clustered cache
Clustered-popular

cache

Uniform groups 50 50 11 17

Sm
al

l

Popular groups 50 6 ~11 6.7

Uniform groups 500 500 109 112

L
ar

ge

Popular groups 500 101 ~109 68

Table 1: Calculated average numbers of encryptions

random gr oups - cache 10,000

0

100

200

300

400

500

600

0 200 400 600 800 1000
num ber of s ubs cr iber s

en
cr

yp
ti

o
n

s
p

er
 m

es
sa

g
e

simple

build-up

clustered

clustered-popular

LKH

popular set groups - cache 10,000

0

50

100

150

200

250

0 200 400 600 800 1000
number of subscribers

en
cr

yp
ti

o
n

s
p

er
 m

es
sa

g
e

simple

build-up

clustered

clustered-popular

LKH-int

Fig. 6: Number of encryptions, cache size 10,000.

presented for comparison. The LKH based approach
works by creating a hierarchical tree of keys. When an
event arrives at broker and is matched to a group of
subscribers G, the tree is searched, bottom-up, for keys
that are common to as many as possible subscribers
from G but are not know to subscribers not in G. The
LKH-based scheme corresponds to a fixed cache size –
the key tree only changes with changes in the number
of subscribers. We ran a number of simulations testing
different parameter settings. Each simulation consisted
of 15,000 events. All caches were warm. We show
results for both, random and popular-set, group
distributions. The number of clusters used by the
cluster-based algorithms depends on the number of
clients. When solving equation 4 for the number of
clusters K, we get the optimal number of clusters when

K
N CK =2 (NK is the number of clients per clusters

and CK is the cluster cache size). We chose the largest

K which gave K
N CK ≥2 . We used the same method

to determine number of clusters for the clustered
popular approach.

Figure 6 shows results for cache size 10,000,
and figure 7 shows results for cache size 20,000.
Figure 7 shows results for only the clustered, clustered-
popular, and LKH-based approaches.

The clustered-popular is the only algorithm
that performs differently with popular-set group
distribution. We can see that clustered, clustered-
popular, and LKH-based algorithms outperform the
simple and build-up caches for random groups. In the
case of popular-set distribution, all perform similarly
with LKH-based approach being the worst. When the
cache size is increased to 20,000, the clustered
approaches clearly outperform the LKH-based
algorithm. Figure 8 shows the effect of increasing
cache size on the number of encryptions required by
each algorithm for different group distributions. The

results (except for the LKH-based approach, which is
based on simulation results) in this figure are based on
the approximate formulas derived in section 4. As we
can see, clustered and clustered-popular approaches are
similar with random group distribution, but the
clustered-popular algorithm clearly outperforms all
other solutions when the popular-set distribution is
used. In order to make judgments about usefulness of
any of these algorithms, we need to relate number of
encryptions to a performance measure like throughput.
We claimed that algorithms that reduce the number of
encryptions required are desirable because large
number of encryptions per message reduces message
throughput at the broker. We measured throughput of
the DES algorithm depending on the number of
encryptions per message to show that this is the case.
We ran a number of experiments encrypting an 8-byte
piece of data. We varied the number of different keys
used. We used the DES algorithm on a 550Mhz
Pentium III running RedHat Linux operating system.

0

50

100

150

200

250

0 1 2 3 4 5
cache size (millions of entries)

en
cr

yp
ti

o
n

s
p

er
 m

es
sa

g
e

clustered
(random)

clustered-
popular
(random)

clustered-
popular
(popular-
set)
simple
(popular)

LKH

Fig. 8: Effects of cache size on the number of encryptions.

Cache 20,000

0

50

100

150

200

250

0 200 400 600 800 1000
number of subscribers

en
cr

yp
ti

o
n

s
p

er
 m

es
sa

g
e

LKH

clustered

clustered-popular
(random)

clustered-popular
(popular-set)

Fig. 7: Number of encryptions, cache size 20,000.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 20 40 60 80 100 120 140 160 180 200 220
encryptions per message

th
ro

u
g

h
p

u
t

(K
b

yt
es

/s
ec

)

Fig. 9: Message throughput as a function of the number of

encryptions per message.

The results of our experiment are showed in
fig. 9. The adverse effect of number of encryptions on
throughput is clearly visible. Based on our results, we
see that clustered-popular has higher throughput than
LKH-based approach by approximately 100% in the
case of popular-set distribution and by about 33% in the
case of random group distribution. Clustered-popular is
also about 50% better than clustered algorithm for
popular-set distribution, it, however, underperforms
clustered algorithm by about 10-20% in the case of
random distribution. The LKH-based approach also has
approximately 40% lower throughput than the clustered
algorithms.

6 Discussion

We can draw the following conclusions from
the above results:
 e

clustering of users into an appropriate number
of subgroups can substantially reduce the
number of encryptions required for both the
random case and the popular case. e
caching added to clustering can further reduce
the number of encryptions substantially (with
corresponding increase in message
throughput). e
build-up cache, where previously cached keys
are used to generate new keys, has remarkably
little effect on number of encryptions required
over simple cache, besides being more
expensive to search when for entries that
should be used to generate a new key.

The LKH scheme performed better than the

simple cache for the random case despite the fact that
the LKH scheme essentially requires a fixed amount of

storage for a given number of clients (e.g., 1999
individual and internal group keys for 1000 clients), but
not as well as clustering schemes. LKH scheme can
also be more expensive to use in terms of search costs -
-- algorithmically, finding an optimal cover of LKH
keys for a new subgroup usually takes more steps than
searching the cluster-cache.

The reduction over simple caching and LKH
that we considered appears to be asymptotically a
constant factor for the same size cache. A question that
arises is whether it is possible to do reduce the number
of encryptions to O(log N) per event in the worst case,
by either using multiple static LKH trees or by using a
large cache. The answer appears to be no as the
following analysis shows unless the cache size is
exponential in the number of clients. Since the internal
nodes of an LKH tree can also be considered to be
cache entries, the result also says that an exponential
number of LKH trees are required to reduce the worst-
case bound on the number of encryptions to be
O(log(N)) per event. In the analysis below, we only
consider the situation where generating a group key for
a new event uses an optimal combination of existing
keys in the cache.

Suppose the cache size is S. If we are allowed
to pick at most p entries from the cache to form any
subgroup, the maximum number of subgroups that can
be formed from this cache is bounded by:

 pS
But, there are 2N subgroups that need to be

formed, given N clients. Therefore, if each potential
subgroup needs to be formed using at most p cache
entries, the following must hold:

 NpS 2≥
Therefore,

 NSp ≥2log

 Or p
N

S 2≥
The above result tells us that if p is any

sublinear function of N (e.g., O(ln N) or O(f N)), the
size of the cache must grow exponentially in N to
guarantee that each event can be sent securely using at
most p encryptions.

So, it appears that the worst-case number of
encryptions for an event will need to be linear in N for
reasonably sized caches, but one can try to improve the
constant of proportionality, as we have tried to do in
this paper. Note that this result applies only if a new
event needs to be encrypted individually using existing
(potentially multiple) group keys. An open question is
whether one can do better if one allows an event to be
encrypted multiple times; e.g., send a message
encrypted under both keys k1 and k2, to send the
message to only those members who possess both k1
and k2. Another open question is whether sublinear

amortized bounds can be achieved without exponential-
size caches. We leave the analysis of these questions to
future work.

7 Conclusion and Future Work

There is a growing need for security solutions
for content-based systems. This paper identifies the
“secure end-point delivery” problem and explores a
number of possible solutions. We are concerned with
providing confidentiality when sending events from
brokers to subscribers. The problem is that in content-
based systems, every event can potentially have a
different set of interested subscribers. There are 2N
possible subsets, where N is the number of subscribers.
With thousands of subscribers it is infeasible to setup
static security groups for every possible subset.

A number of key management systems for
group communication solve a similar problem but none
of them was designed to handle the dynamic nature of
content-based event delivery. We explored a number of
dynamic caching approaches. A simple solution is to
encrypt each event separately for each interested
subscriber; however this requires a large number of
encryptions for large sets of subscribers. Our main goal
is to reduce the number of encryptions required to
preserve confidentiality while sending events only to
interested subscribers. The number of encryptions is
important because it translates directly into message
throughput (see figure 9).

All of our approaches use a dynamic caching
scheme, where the broker and subscribers must cache
subgroup keys. Each cache entry has a format < G, K
>, where G identifies the set of subscribers belonging to
a subgroup and K is a key associated with the subgroup.
All secure communication intended for all subscribers
in G can be encrypted using key K. Through
theoretical analysis and simulation results, we show that
our clustered and clustered-popular approaches perform
better as cache size increases. Both cluster-based
algorithms outperform LKH-based solution for most
cases. Clustered-popular algorithm performs especially
well in the case of the popular-set group distribution.
We also show that it is impossible to achieve sublinear
encryptions growth for a large class of algorithms, even
with using multiple LKH trees, without an exponential
number of LKH trees or exponential-sized caches in the
number of subscribers per broker.

Our results show that cluster-based algorithms
can be a practical solution to the end-point delivery
problem. They do not impose heavy overhead as hash
tables can be used for cache lookup. The cache size
requirement on the subscriber side is also lower than
the simple cache or build-up cache algorithms. In the
case of the clustered cache, each subscriber only needs

Ck cache entries, where K
C

KC = . C is the total cache

size at the broker, K is the number of clusters and CK is
the size of one cluster part of cache. If client resources
are limited, a protocol for key request/exchange is
needed for a subscriber to request appropriate keys
from the broker.

We plan to investigate the effect of providing
integrity and sender authentication on message
throughput in the future. Efficient sender
authentication in the context of content-based systems
is a non-trivial problem. Throughout the paper we
make an assumption that brokers are trusted. Every
broker in the system has the ability to read every event.
We are investigating the impact of non-universal broker
trust on the design of algorithms.

References
[ABH00] D. Arnold, J. Boot, M. Henderson, T.

Phelps, and B. Segall. Elvin – Content-
Addressed Messaging Client Protocol.
Internet Draft, Network Working Group,
2000. Available from
http://elvin.dstc.edu.au/download/internet-
draft.txt.

[ASW00] M. Abdalla, Y. Shavitt, and A. Wool. Key
Management for Restricted Multicast
Using Broadcast Encryption. IEEE/ACM
Transactions on Networking, 8(4), pp 443-
454, August 2000.

[B93] K. Birman. The Process Group Approach
to Reliable Distributed Computing.
Communications of the ACM, 36(12):37
53, December 1993.

[B96] A. Ballardie. Scalable Multicast Key
Distribution. Internet Engineering Task
Force, May 1996. RFC 1949.

[BC94] C. Blundo and A. Cresti. Space
requirements for broadcast encryption. In
Advances in Cryptology –
EUROCRYPT’94, LNCS 950, pp 287-298.
Springer-Verlag, 1994.

[BCM99] Guruduth Banavar, Tushar Chandra, Bodhi
Mukherjee, Jay Nagarajarao, Robert E.
Strom, and Daniel C. Sturman. An
Efficient Multicast Protocol for Content-
Based Publish-Subscribe Systems. In
International Conference on Distributed
Computing Systems (ICDCS '99), June
1999.

[BD94] M. Burmester and Y. Desmedt. A secure
and efficient conference key distribution
system. In Advances in Cryptology –
EUROCRYPT ’94, 1995.

[BFMS98] C. Blundo, L. A. Frota Mattos, and D. R.
Stinson. Generalized Beimel-Chor schemes
for broadcast encryption and interactive
key distribution. In Theoretical Computer
Science, 200(1-2), pp 313-334, 1998.

[BW98] K. Becker and U. Wille. Communication
complexity of group key distribution. In
5th ACM Conference on Computer and
Communications Security, San Francisco,
CA, November 1998.

[C98] Antonio Carzaniga. Architectures for an
Event Notification Service Scalable to
Wide-Area Networks. PhD thesis,
Politecnico di Milano, December 1998.
Available: http://www.cs.colorado.edu/
~carzanig/papers.

[CDF] G. Cugola, E. DiNitto, and A. Fuggetta.
The JEDI event-based infrastructure and its
application to the development of the
OPSS WFMS. Submitted to Transactions
on Software Engineering

[CDZ97] K. Calvert, M. Doar, and E. Zegura.
Modeling Internet Topology. IEEE
Communications Magazine, June, 1997.

[D89] S. Deering. Host Extensions for IP
Multicasting. IETF RFC 1112, August
1989.

[GKP99] R. Gruber, B. Krishnamurthy, and E.
Panagos. An Architecture of the READY
Event Notification System. In Proceedings
of the Middleware Workshop at the
International Conference on Distributed
Computing Systems 1999, Austin, TX, June
1999.

[HH99] Hugh Harney and Eric Harder. Group
Secure Association Key Management
Protocol (Draft). Internet Engineering Task
Force, April 1999. draft-harney-sparta-
gsakmp-sec-00.txt.

[HM97a] H. Harney and C. Muckenhirn. Group Key
Management Protocol (GKMP)
Architecture. Internet Engineering Task
Force, July 1997. RFC 2094.

[HM97b] H. Harney and C. Muckenhirn. Group Key
Management Protocol (GKMP)
Specification. Internet Engineering Task
Force, July 1997. RFC 2093.

[ITW82] I. Ingemarsson, D. Tang, and C. Wong. A
conference key distribution system. IEEE
Transactions on Information Theory, vol.
28, no. 5, pp. 714-720, September 1982.

[IONA] IONA Corporation. OrbixTalk Fact Sheet.
http://www.iona.com/products/messaging/t
alk/index.html.

[KPT00] Y. Kim, A. Perrig, and G. Tsudik. Simple
and Fault-Tolerant Key Agreement for
Dynamic Collaborative Groups. In
Proceedings of 7th ACM Conference on
Computer and Communication Security
CCS 2000.

[KR95] B. Krishnamurthy and D. Rosenblum.
Yeast: A general purpose event-action
system. IEEE Transactions on Software
Engineering, 21(10), October 1995.

[LS98] M. Luby and J. Staddon. Combinatorial
bounds for broadcast encryption. In
Advances in Cryptology –
EUROCRYPT’98, LNCS 1403, pp 512-526,
Espoo, Finland, 1998.

[M97] S. Mittra. Iolus: A Framework for Scalable
Secure Multicasting. In Proceedings of
ACM SIGCOMM '97, pages 277 - 278.
ACM, September 1997.

[MPH99] P. McDaniel, A. Prakash, and P.
Honeyman. Antigone: A Flexible
Framework for Secure Group
Communication. In Proceedings of the 8th
USENIX Security Symposium, August
1999.

[MS97] M. Mansouri-Samani and M. Sloman. A
Generalised Event Monitoring Language
for Distributed Systems. EE/IOP/BCS
Distributed Systems Engineering Journal,
4(2), June 1997.

[MS98] David A. McGrew and Alan T. Sherman.
Key Establishment in Large Dynamic
Groups Using One-Way Function Trees.
TIS Report No. 0755, TIS Labs at Network
Associates, Inc., Glenwood, MD, May
1998.

[OAA00] L. Opyrchal, M. Astley, J. Auerbach, G.
Banavar, R. Strom, and D. Sturman.
Exploiting IP Multicast in Content-Based
Publish-Subscribe Systems. In
Proceedings of Middleware 2000, New
York, April 2000.

[OMG] Object Management Group. Notification
Service. http://www.omg.org/cgi-bin/
doc?telecom/98-06-15

[P99] Adrian Perrig. Efficient Collaborative Key
Management Protocols for Secure
Autonomous Group Communication. In
International Workshop on Cryptographic
Techniques and E-Commerce (CrypTEC
'99), 1999.

[Pub77] Federal Information Processing Standards
Publication. Data Encryption Standard,
1997. National Bureau of Standards.

[R94] M. Reiter. Secure Agreement Protocols:
Reliable and Atomic Group Multicast in
Rampart. In Proceedings of 2nd ACM
Conference on Computer and
Communications Security, pages 68 - 80.
ACM, November 1994.

[SA97] Bill Segall and David Arnold. Elvin has
left the building: A publish/subscribe
notification service with quenching. In
Proceedings of AUUG97, Brisbane,
Australia, September 1997.

[SAB00] B. Segall, D. Arnold, J. Boot, M.
Henderson, and T. Phelps. Content Based
Routing with Elvin4. To appear in
Proceedings AUUG2K, Canberra,
Australia, June 2000.

[SSD88] D. Steer, L. Strawczynski, W. Diffie, and
M. Wiener. A secure audio teleconference
system. In Advances in Cryptology –
CRYPTO ’88, Santa Barbara, CA, August
1998.

[SvT98] D. R. Stinson and T. van Trung. Some new
results on key distribution patterns and
broadcast encryption. Designs, Codes and
Cryptography, 14(3), pp261-279, 1998.

[STW00] M. Steiner, G. Tsudik, and M. Waidner.
Key Agreement in Dynamic Peer Groups.
IEEE Transactions on Parallel and
Distributed Systems, 2000.

[SUN] Sun Microsystems. Java Message Service.
http://java.sun.com/products/jms.

[TIBCO] TIBCO. TIB/Rendezvous White Paper.
http://www.rv.tibco.com/whitepaper.html.

[VBM96] R. Van Renesse, K. Birman, and S.
Maffeis. Horus: A Flexible Group
Communication System. Communications
of the ACM, 39(4):76 - 83, April 1996.

[WGL98] C. K. Wong, M. Gouda, and S. S. Lam.
Secure Group Communication Using Key
Graphs. In Proceedings of ACM
SIGCOMM '98, pages 68 - 79. ACM,
September 1998.

[WHA98] Debby M. Wallner, Eric J. Harder, and
Ryan C. Agee. Key Management for
Multicast: Issues and Architectures (Draft).
Internet Engineering Task Force,
September 1998. draft-wallner-key-arch-
01.txt.

[WISEN98] Workshop on Internet Scale Event
Notification. See http://www.ics.uci.edu/
IRUS/wisen/wisen98 for details.

[WCS99] M. Waldvogel, G. Caronni, D. Sun, N.
Weiler, and B. Plattner. The VersaKey
Framework: Versatile Group Key
Management. IEEE Journal on Selected
Areas in Communications, 17(9),
September 1999.

[YL00] Y. Yang and S. Lam. A Secure Key
Management Protocol Communication
Lower Bound. Technical Report TR2000-
24, The University of Texas at Austin,
Austin, TX, September 2000.

[ZCB96] E. Zegura, K. Calvert, and S.
Bhattacharjee. How to Model an
Internetwork. In Proceedings of IEEE
Infocom `96, San Francisco, CA, April
1996.

