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Abstract

We propose a new technique for making
mix nets robust, called randomized partial
checking (RPC). The basic idea is that rather
than providing a proof of completely correct
operation, each server provides strong evi-
dence of its correct operation by revealing
a pseudo-randomly selected subset of its in-
put/output relations.

Randomized partial checking is exception-
ally efficient compared to previous proposals
for providing robustness; the evidence pro-
vided at each layer is shorter than the out-
put of that layer, and producing the evi-
dence is easier than doing the mixing. It
works with mix nets based on any encryp-
tion scheme (i.e., on public-key alone, and on
hybrid schemes using public-key/symmetric-
key combinations). It also works both with
Chaumian mix nets where the messages are
successively encrypted with each servers’ key,
and with mix nets based on a single public key
with randomized re-encryption at each layer.

Randomized partial checking is particu-
larly well suited for voting systems, as it en-
sures voter privacy and provides assurance of
correct operation. Voter privacy is ensured
(either probabilistically or cryptographically)
with appropriate design and parameter selec-
tion. Unlike previous work, our work pro-
vides voter privacy as a global property of the
mix net rather than as a property ensured by
a single honest server. RPC-based mix nets
also provide very high assurance of a correct

election result, since a corrupt server is very
likely to be caught if it attempts to tamper
with even a couple of ballots.

Keywords: mix network, mix net, shuffle
network, electronic voting, randomized par-
tial checking, public verifiability.

1 Introduction

Chaum [7] introduced the notion of a mix
net as a tool for achieving anonymity in email
and in electronic elections. A mix net con-
sists of a sequence of servers, called mixes.
Each server receives a batch of input mes-
sages and produces as output the batch in
permuted (mixed) order. Such mix nets are
sometimes called mix cascades or shuffle net-
works. When used for voting, the input mes-
sages are the ballots of the voters. An ob-
server should not be able to tell how the in-
puts correspond to the outputs; this property
provides voter privacy in an electronic elec-
tion. In Chaum’s original proposal, before a
message is sent through the mix net it is first
successively encrypted with the public keys
of the mixes it will traverse in reverse order;
each mix then decrypts each message before
sending it on to the next mix.

When a mix net is used to provide voter
privacy in an election, it is desirable that it
be robust—i.e., that each mix should also
output a proof that it has operated cor-
rectly. The concern is that otherwise a cor-



rupt server could replace a ballot with an-
other one, appropriately encrypted, without
anybody noticing.

Abstractly, a robust mix net should:

1. operate correctly: the output should cor-
respond to a permutation of the input,

2. provide privacy: an observer should not
be able to determine which input element
corresponds to a given output element
(and vice versa) in any way better than
guessing, and

3. be robust : provide a proof or at least
strong evidence that it has operated cor-
rectly. In addition, it is beneficial if
any interested party is able to check the
proof or evaluate the evidence; a prop-
erty called public verifiability.

We review previous work on robust mix
nets in Section 2; numerous techniques have
been proposed for achieving robust mix nets.

1.1 Randomized Partial Checking

We introduce a novel robustness technique,
which we call Randomized Partial Checking,
and show how it can be applied to obtain a
highly efficient robust and private mix net,
which we call an RPC mix net. We also show
how an RPC mix net is well suited for use in
electronic elections.

In an RPC mix net, the inputs are mixed
as usual by a sequence of servers. The servers
then produce strong evidence of their correct
operation, rather than a proof of their cor-
rect operation. The strong evidence takes
the form of a partial revelation of their in-
put/output relation. For example, a server
with n inputs might reveal, for each of n/2
randomly selected inputs (or some other suf-
ficiently large fraction), which is the cor-
responding output. (Of course, the server
should have little or no control over which
inputs are selected.) This procedure allows
for a probabilistic verification of the correct
operation of each server.

With an RPC mix net, privacy is a some-
what more delicate affair, as servers will be
routinely disclosing information about their
input/output relations in order to provide ev-
idence of correct operation. We shall see how
privacy can be ensured nonetheless as a global
property of the RPC mix net. In one version
of our proposal, adjacent servers are paired,
such that if one server reveals information
about a link, the paired server does not re-
veal information about that same link. See
Figure 1 for an illustration.
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Figure 1: This figure shows a particular per-
mutation for a mix net, partially revealed.
The bold lines show input/output correspon-
dences that are revealed; the dashed lines
show correspondences that would be hidden.
Server S1 is paired with S2, and server S3 is
paired with S4; no input/output correspon-
dence is revealed across a pair. Thus, to a
casual observer, only the correspondences re-
lating to the bold lines can be inferred.

Another advantage of RPC mix nets is that
they are very versatile – they can be used with
almost any encryption scheme, whether with
or without sharing of the secret keys among
the mix servers.

1.2 Privacy in RPC mix nets

Privacy in an RPC mix net is a different
and somewhat more subtle issue than it is
for a traditional mix net. In a traditional
mix net, privacy is obtained whenever any
one server is honest (i.e., whenever any one
server keeps its input/output relation totally
secret). In an RPC mix net, however, ev-
ery server intentionally reveals a portion of its
input/output relation. Therefore, privacy be-



comes a global property of the mix net rather
than the result of any single honest server.

Our basic strategy for ensuring privacy is
such that after the servers reveal partial in-
formation, there is still no way to connect any
input with a particular output, even if some of
the servers are corrupt. Using this approach,
an RPC mix net guarantees privacy against
any minority of cheating servers. While dif-
ferent privacy guarantees can be made, we
consider a construction in which each element
is ”hidden among” at least half of all the can-
didate elements.

1.3 Robustness

Robustness of a mix net can be obtained
in serveral different ways, namely cut-and-
choose [17, 2]; repetition robustness [11, 12,
15]; standard zero-knowledge proofs in sort-
ing networks [3, 13]; use of multiple partici-
pants per layer [8, 18]; error detecting tech-
niques [14]; and techniques based on secret
sharing [10, 16]. (We explain the relations
between these in Section 2.)

In most of these schemes, a detected cheat-
ing attempt results in the emulation of of
the cheater (such as in [14]) or the restart-
ing of the protocol after a replacement of the
cheater (such as in [17]). In some schemes,
such as [8, 18], the outputs of the cheaters
are simply ignored by the honest majority,
and the execution continues without any in-
terruption. (These schemes, though, tolerate
a substantially lower fraction of cheaters.) In
our scheme, either of the two first approaches
can be taken upon detection of a cheater,
although the best approach may depend on
the type of encryption used. In particular, if
an encryption scheme allowing re-encryption
(such as ElGamal) is employed, then either
approach may be taken, while emulation is
the better approach in hybrid schemes, and
in schemes of the Chaumian type. This is so
since the operation performed by the servers
on their input elements is deterministic (if we
do not take the permutation aspect into con-
sideration.) For the same reason, schemes of
this latter type requires us to perform the
correctness check in phase with the mixing,

as opposed to after all mixing has been per-
formed. For simplicity, we focus on schemes
based on re-encryption in the following, but
note that given appropriate attention to the
recovery from cheating, our techniques apply
straighforwardly to other types of encryption
as well.

If no servers are caught cheating, it is still
possible that some undetected cheating has
occurred. For example, a corrupt server may
have deleted one of its correct output mes-
sages and replaced it with an arbitrary incor-
rect one. We shall see, however, that it is very
unlikely that a meaningful amount of unde-
tected cheating has occurred, where cheating
is meaningful if and only if it changes the out-
come of the election. Thus, our solution is
geared in particular towards use in election
schemes or similar applications. To quantify
the likelyhood that cheating occured unno-
ticed, we introduce the notion of boundary
checks, and employ them to assess when the
output can be relied on. In extremely close
races, our techniques may have to be aug-
mented by additional or alternative robust-
ness techniques, while even in reasonably close
races, it will suffice. For example, we show
that our techniques would more than suffice
to prove robustness in an election such as the
recent Florida state presidential election.

1.4 Application to Electronic Vot-
ing

RPC mix nets are well suited to vot-
ing, since anyone can calculate strong up-
per bounds on the probability that an adver-
sary could have successfully tampered with
enough ballots to change the election out-
come. If this probability is negligible (as it al-
most certainly would be in practice), the ob-
served result of the election is endorsed as “of-
ficial”. Otherwise, we may fall back to an al-
ternative and potentially more costly scheme
to count the cast votes.

Thus, our scheme is optimistic in a slightly
different sense than schemes that simply as-
sume, in the absence of detection, that there
are no cheaters.



1.5 Outline of this paper

Section 2 reviews previous work on robust
mix nets. Section 3 then provides a com-
mon framwork and common notation for dis-
cussing mix nets. Section 4 describes our
main idea—that each mix server should re-
veal a randomly selected portion of its in-
put/output relations. Section 5 then sketches
how one can use RPC nets to implement elec-
tronic voting in a practical and trustworthy
manner. Section 6 shows how RPC mix nets
achieve public verifiability in the sense that
any voter or other interested party can check
that the probability that the election outcome
is correct is extremely high.

2 Previous Work on Robust
Mix Nets

In the first proposal for a robust mix net,
due to Ogata, Kurosawa, Sako, and Takatani
in 1997 [17], robustness was achieved by
means of cut-and-choose methods. Similar
techniques were later also employed in [2].
The primary drawback of this approach is
its inefficiency, both in terms of computation
and communication. While the schemes of-
fer public verifiability, efficiency constraints
make this feature difficult to obtain in a prac-
tical sense for large-scale elections.

An alternative technique employed by Abe
[3] and similarly by Jakobsson and Juels [13]
relies on more efficient zero-knowledge proofs
of ciphertext equivalence. The resulting mix
net construction mimics a sorting network in
its architecture, but uses local random per-
mutations instead of local sorting in its nodes.
While it offers public verifiability at reason-
able cost, its asymptotic behavior makes it
useful primarly for batches of small or mod-
erate sizes; it becomes impractical for large
elections.

More recently, techniques developed inde-
pendently by Furukawa and Sako [10] and
by Neff [16] employ what may loosely be re-
garded as secret-sharing mechanisms to de-
tect corruptions of data. Both of these tech-

niques are publicly verifiable, and have costs
linear in the number of inputs (and servers).
While they offer features well suited for use in
large-scale elections, our proposed technique
achieves further efficiency and versatility.

Researchers have also considered a weak-
ening of the requirement for public verifia-
bility in mix nets, instead relying on a trust
assumption that a certain number of servers
are honest. An early technique in this vein,
introduced by Jakobsson [11], is that of rep-
etition robustness. Repetition robustness in-
volves processing and comparison of several
randomized instances of input items. The
same technique is also employed in [12, 15].
Repetition robustness is primarily useful for
very large batches.

Another approach for achieving robustness
is to simply let each layer of the mixing
be processed by a set of servers (instead of
only one), basing the correctness of the result
on the honesty of a majority in each layer.
This technique was suggested by Desmedt
and Kurosawa [8] for asymmetric ciphertexts,
and later also used for hybrid encryption [18].
Diverging from the other proposals, mix nets
of this type are resilient against corruption
of less than a square root of the number
of servers, instead of against a minority as
is standard. On the other hand, the very
straightforward structure makes this type of
mix net trivial to analyse and understand.

While asymmetric mix networks are well
suited for short plaintexts, they have prob-
lems handling longer plaintexts. These are
either in the form of efficiency problems
(with very large moduli) or with keeping
plaintexts parts together after passing them
through a mix network in a “chopped-up”
manner (this, in turn, may result in lower
efficiency.) Therefore, hybrid mixes have to
be employed for longer plaintexts (note that
these should all be of the same size after
having been padded). As mentioned above,
one approach, used by Abe [18], is to repli-
cate servers. Another technique, introduced
by Jakobsson and Juels [14], involves use
of cryptographically-based error detection to
identify cheating. This approach has the ad-
vantage of permitting symmetric and asym-
metric encryption to be interleaved, leading



to efficient processing of long input items.
The underlying trust assumption is that a
majority of servers is honest. This mix net
is quite fast for a small number of inputs,
although in this case is not quite as fast as
[12, 15] if the inputs are short. Additionally,
it only works as a decryption mix net, not a
re-encryption mix net.

3 Notation

We now provide notation describing the op-
eration of a simple mix net without robust-
ness against server faults.

A voting scheme can employ either of two
basic flavors of mix net.

The first of these is known as a re-
encryption mix net. In this type of mix
net, both inputs and outputs are cipher-
texts under the public key of some (seman-
tically secure) cryptosystem that admits for
re-encryption without knowledge of the corre-
sponding private key; El Gamal is a common
choice. The action of each server in the net is
to re-encrypt inputs and then permute them.
People providing inputs typically do not need
to know the number of servers/layers of the
mix network.

The second type of mix net is known as
a decryption mix net. This is the basic mix
scheme formulated by Chaum. Inputs to the
mix net are ciphertexts constructed through
successive encryption under the public keys
of individual servers. To process inputs, each
server decrypts the layer corresponding to its
own public key in each ciphertext and then
permutes the resulting items.

Our RPC scheme is applicable to either
type of mix net. We now introduce general
notation that is applicable to either kind of
mix net.

We assume that there is a sequence of n
ciphertexts corresponding to input messages
M1, M2, . . . , Mn to the mix net, each such
ciphertext submitted by a distinct party Vi.
In the application to electronic voting, Mi is

the ballot of voter Vi. These inputs are secret ;
input Mi is known only to party Vi.

The output of the mix net is a sequence
Z1, Z2, . . . , Zn. When the mix net operates
correctly, this sequence is a permutation of
the input sequence.

We assume that there are one or more pub-
lic parameters (e.g., public keys) of the mix
net, denoted collectively as PK, known to all
voters. There are also one or more secret pa-
rameters (e.g., secret keys), denoted collec-
tively as SK, which may be shared among the
servers, or alternatively by some other set of
authorities.
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Figure 2: Generalized mix net, shown for
n=8, t=4. The n inputs M1, M2,. . . , Mn are
first privately encrypted by their providers
using encryption function E. The t mix
servers S1, S2, . . . , St then each privately
transform and permute their inputs, and pro-
vide the result to the next server. The fi-
nal decryption operationD yields a permuted
version Z1,Z2, . . . , Zn of the original input se-
quence. This final stage may be integrated in
the previous transforms.

The general operation of a mix net is de-
picted in Figure 2. There is an initial encryp-
tion of each input message by its provider.
The resulting sequence of ciphertexts is then
provided to the first mix server S1 of a se-
quence of t mix servers S1, S2, . . . , St. Each
mix server cryptographically transforms each
input, permutes the results, and provides the
result as input to the next server. A final
decryption operation produces the sequence
Z1, Z2, . . . , Zn which is a permutation of the
original input sequence of messages.

We assume the existence of a public bul-
letin board where messages (digitally signed
by their poster) can be posted by anyone,
and read by anyone. This board is written in



append-only mode; nothing can be deleted or
modified once posted. The original encrypted
input sequence to the first mix server, the
output sequence of each mix server, and the
final decrypted message sequence will all be
posted on the bulletin board.

We denote the initial encrypted version of
message Mi as Ci,0. That is,

Ci,0 = EPK(Mi) .

The sequence C1,0, C2,0, . . . , Cn,0 is input to
the first server.

The postings must be non-malleable or
plaintext aware [9, 4, 6]. Thus, it may con-
sist of a ciphertext in an underlying cryp-
tosystem such as El Gamal, coupled with
a proof of knowledge of the corresponding
plaintext [20, 11, 19], or, given the multiple
layers of encryption, a proof of knowledge of
an (and any) inner layer. The reason for this
is to prevent attacks in which one (potentially
corrupt) voter posts a re-encryption of the
ballot of some other voter. (For example, sup-
pose that a corrupt voter suspects another,
target voter of having submitted an unusual
write-in vote like “Julius Caesar”. The cor-
rupt voter could re-encrypt and re-post the
vote of the target voter. If “Julius Caesar”
appears twice in the finally tally, then the
suspicions of the corrupt voter would be con-
firmed. Similar attacks can also, as is well
known, be employed for vote buying or coer-
cion.)

Server Sj , for 1 ≤ j ≤ t, cryptographically
transforms each input Ci,j−1 using a crypto-
graphic transformation function Xj . Here Xj

may depend on secret key information SK j

known only to server Sj , as well as on the
public parameters PK. The transformation
Xj may also be randomized. Each server Sj

also permutes its inputs based on a secret per-
mutation πj of {1, 2, . . . , n}, so that

Ci,j = Xj(Cπj(i),j−1) . (1)

In the case of a re-encryption mix, a final
decryption operationD may be applied to the
output of the final mix server:

Zi = DSK(Ci,t) .

This decryption operation will be null in the
case of a decryption mix net, since the Xj

transforms performed all necessary decryp-
tions. In the case of a re-encryption mix net,
one or more decryption authorities knowing
SK perform this final decryption.

For a Chaumian mix net (i.e. a decryption
mix net), the public keying material PK in-
cludes an individual public key PKj for each
server Sj in the underlying cryptosystem,
e.g., RSA. Server Sj then holds one of the
corresponding private keys, SK j . Thus, the
encryption scheme E in this case involves suc-
cessive (random-padded) encryption of the
message Mi under PKt, PKt−1, . . . , PK1 re-
spectively. To satisfy the need for plaintext
awareness in E, we might employ an encryp-
tion scheme like OAEP-based RSA [5]. In a
decryption mix net, we naturally replace Xj

with a decryption function: each server Sj de-
crypts a ciphertext Cπj(i),j−1 using its private
key SKj , thereby stripping away a ciphertext
layer. As the output of server St is thus a set
of plaintexts, there is no need in a Chaumian
mix net for a further decryption operation D.

For a re-encryption mix net, the initial en-
cryption function may be a suitable plaintext-
aware version of El Gamal, as noted above.
(Note that the corresponding proofs of knowl-
edge do not have to be passed through the
mix network, but stripped off after hav-
ing been checked initially.) Each crypto-
graphic transform Xj will be a randomized
re-encryption. The final decryption operator
D will be El Gamal decryption.

3.1 Committing to private permu-
tations

To assist in verification of correct behav-
ior as explored in the next section, each
server Sj supplements its list of output val-
ues with a commitment to its private permu-
tation πj . So as to enable partial revelation
of πj , servers in fact commit to individual in-
put/output mappings, as we now describe.

To provide rough notation, let ζw[i] de-
note a commitment to integer i under wit-
ness w. There are two equivalent ways for a



server Sj to commit to its private permuta-
tion πj . The first is to express πj in terms
of mappings of input elements to output ele-
ments, i.e., as a list of commitments to the
sequence {πj(1), πj(2), . . . , πj(n)}. We de-
note a commitment of this form by Γ(In)

j =
{ζwji [πj(i)]}n

i=1. A second way to specify
the private permutation πj in terms of the
mappings of output elements to input el-
ements, i.e., as a commitment to the se-
quence {π−1

j (1), π−1
j (2), . . . , π−1

j (n)}. We de-

note the commitment to this list by Γ(Out)
j =

{ζwji [π
−1
j (i)]}n

i=1. For either of the two forms
of commitment, we let γi,j denote the ith

commitment of server Sj .

In our constructions described in the next
section, a server Sj will provide with its out-
put a commitment to πj . The server will em-
ploy the form Γ(In)

j or Γ(Out)
j depending on

its role in the mix network.

In practice, in the interest of speed, we
might instantiate the commitment scheme ζ
by means of a hash function h such as SHA-
1. To commit to an integer i, the committer
selects a random bitstring w, and computes
ζw[i] = h(w ‖ i), where ‖ denotes bitstring
concatenation. (To ensure input of a 512-
bits block for the compression function in the
case where h is chosen to be, e.g., SHA-1,
it is convenient to express the integer i as a
string of �log2 n� bits, and w as a bitstring of
length 512 − �log2 n�.) It may be observed
that this form of commitment is computa-
tionally binding, with security dependent on
the collision-freeness of h. Provided that w
is long enough, the commitment is uncondi-
tionally hiding with high probability over the
choice of witness. This is because for a given
image h(w ‖ i) there are likely to exist many
values of w′ and i such that w′ ‖ i′ consti-
tutes a valid preimage.

4 Randomized Partial Checking
of a Mix Net

Of course, anyone may check that each
server has produced the same number of out-
puts as it has inputs. But a server might have

deleted a proper output, and replaced it by a
copy of another one, or by an output that it
generated itself. In this latter case, it would
be an appropriately encrypted output.

In our proposal, each server will – during
the checking phase – reveal a fraction p > 0 of
its input/output correspondences. The sub-
set to be revealed is selected by the other
servers, or by using a random oracle. Thus,
only some messages will have their origins
hidden by the first mix server. But as the
messages progress through the net, eventu-
ally every message will have its origin hidden.
For an electronic election, voter privacy then
emerges as a global property of the mix net,
not a local property of each mix server.

In our formulation of the problem, the
penalty for misbehavior by a server will be
very large. We thus presume that the threat
of detection of misbehavior by a server will
be enough to ensure that the server will be-
have properly. We do not worry about the
possibility that some server will try to block
an election by, say, refusing to carry out its
duties. (Threshold mix nets are designed to
counter this threat; another approach would
be to require that each server escrow shares
of its secret key with the other servers before
voting begins.)

Similarly, the chance that a server who at-
tempts to substitute ballots will be caught
will go up exponentially fast with the num-
ber of ballots he attempts to replace. Thus,
a server could not reasonably expect to get
away with changing more than a single ballot,
or possibly two. But even when tampering
with a single ballot, his chance of discovery
is more than one-half, for reasonable settings
of the system parameters, and so we presume
that he will be deterred from even attempting
to cheat.

4.1 Revealing a particular in-
put/output correspondence

In the verification stages of our protocol, a
server is asked to reveal a collection of in-
put/output correspondences. If the server
has committed to input mappings, these cor-



respondences are specified in terms of the or-
dering of inputs to the server. Otherwise,
they are specified in terms of outputs to the
server.

Suppose that server Sj wishes to reveal in-
formation allowing anyone to verify a particu-
lar input/output correspondence. Let us sup-
pose that input Ck,j−1 maps to Ci,j . That is,
the secret permutation πj known only to Sj

maps i to k (see equation (1)).

The server reveals the triple

(k, i, Rjki),

where Rjki is the information necessary to
validate equation (1). For a decryption mix
net, this information Rjki make take the
form of random padding created by the initial
provider and used when encrypting Ci,j to ob-
tain Ck,j−1. For a re-encryption mix net, this
information Rjki takes the form of random
parameters used to control the re-encryption,
or a proof of knowledge of these.

Server Sj additionally reveals its commit-
ment to the mapping from Ck,j−1 maps to
Ci,j . That is, if it provided a commitment to
πj of the form Γ(In)

j , then it decommits γk,
i.e., its commitment to πj(k). If the server
provided a commitment Γ(Out)

j , then it de-
commits γi, i.e., its commitment to π−1

j (i).

4.2 Determining which correspon-
dences to reveal

Clearly, a server should not know which in-
put/output correspondences it will have to re-
veal until after it has committed its output
sequence of ciphertexts to the bulletin board.

We first focus on the problem of having
a random seed committed to before server
Sj produces its output. This seed will then
help determine which input/output corre-
spondences server Sj should reveal. There
are a variety of ways of achieving this goal;
we suggest the following straightforward ap-
proach.

After the close of the election and prior to
the opening of input/output relations, servers

jointly compute a random seed R. They may
accomplish this by having every server Sj

publish a commitment to a value Rj selected
uniformly at random from some appropriate
set. All servers then decommit and compute
R as a combination of the Rj values; for ex-
ample, they might compute R = ⊕t

j=1Rj .

Let BB here denote the full contents of the
bulletin board after all servers have published
their full transcripts, i.e., all inputs, outputs,
and commitments (but for the moment ex-
cluding input/output relations). Note that
new public transcripts are constantly added
to the bulletin board during the mix pro-
cess: thus, BB denotes both the bulletin
board and this dynamically changing value.
Servers combine the random value R with BB
through use of an appropriate hash function
h, computing a random value Q = h(R,BB).
The purpose of incorporating BB into the
random seed Q in this manner is to achieve
public verifiability for the mix scheme, as we
discuss later.

For each server Sj , a seed Qj derived from
Q can be used to determine what challenges
the server needs to answer. Here, Qj may be
computed straightforwardly using an appro-
priate hash function h. We might, for exam-
ple, compute Qj = h(Q, j).

We next assume the use of two predicates
PIn and POut that determine which inputs
and outputs should have their input/output
correspondences revealed. More precisely:

• If PIn(Qj, k) is true, then server Sj must
reveal the input/output pair containing
Ck,j−1 as input.

• If POut(Qj , i) is true, then server Sj must
reveal the input/output pair containing
Ci,j as output.

(A correspondence may be revealed be-
cause either because PIn specifies it, or be-
cause POut specifies it.) Any other in-
put/output correspondences should not be
revealed. These predicates may also depend
on other global parameters. For example,
there may be a global selection probability
p that is intended to specify the fraction of



correspondences to be revealed. For some
versions of our scheme it may be that PIn

is always false, or that POut is always false.
(That is, the pairs to be opened may be en-
tirely specified by their input positions, or by
their output positions.)

We next present two variations on the de-
tails; the second scheme is the one we favor.

4.3 Scheme One – Independent
Random Selections

In this scheme, server Sj furnishes a com-
mitment Γ(Out)

j on mappings from outputs to
inputs. When input/output relations are re-
vealed here, PIn is always false, and POut is
true with probability p. (Imagine, say, p =
1/2.) For example, we might have POut(Qj , i)
true whenever the low-order bit of h(Qj , i) is
one, for a specified pseudo-random hash func-
tion h.

When t is large enough, with high proba-
bility every path from an initial input Ck,0

to the corresponding final output Ci,t will be
“broken” (contain some unrevealed link).

For p = 1/2, if

t ≥ log2

(n

ε

)

then the chance that there exists some final
output that can be linked to its initial input
is less than ε.

We note that if a final output can not be
linked to its initial input, then there are at
least n/2 inputs from which it could have
been produced. Thus, the ambiguity of the
input corresponding to a given output may
extend over n/2 elements, rather than the full
n elements. For many practical applications,
such as voting, this should be acceptable.

This scheme works fine, but takes more
rounds (a larger value of t) than we would
prefer. For example, with n = 4096 and
ε = 2−24 we need t ≥ 36 rounds. It might
in practice be necessary to use the available
servers in some sort of “round-robin” fashion
to achieve the necessary number of rounds.

4.4 Scheme Two – Pairwise De-
pendent Selections

In scheme two, adjacent servers are
“paired”, letting each server be a member
of exactly one such pair (see Figure 1). In
particular, we assume an even number t of
servers, and regard each pair of adjacent odd
and even-numbered servers as a cohesive unit.
When servers reveal input/output relations,
the two servers in a pair each reveal non-
overlapping sets of such relations. For sim-
plicity of analysis, we assume p = 1/2 here.
This is to say that each server in a pair re-
veals half of its input/output pairs on aver-
age, and the other server reveals the comple-
mentary half, i.e., the relations not revealed
by its twin. (Of course, neither server would
make its revalations until both of them have
committed to their outputs.)

In this scheme, each odd-numbered server
Sj publishes a commitment Γ(In)

j on the
mapping from input elements to output ele-
ments; conversely, each even-numbered server
Sj publishes a commitment Γ(Out)

j on the
mapping from output elements to input el-
ements.

Let us now specify the process for reveal-
ing input/output relations. Suppose that
(Sj , Sj+1) is a server pair, where j is odd.
Then

• PIn(Qj , k) is always false.

• POut(Qj , i) is true with probability 1/2.

• PIn(Qj+1, i) is true if and only if
POut(Qj , i) is false.

• POut(Qj+1, l) is always false.

The privacy guarantee of this variant is
based on a simple observation: Provided that
a (passive) adversary controls only a minor-
ity of the servers, there is at least one server
pair that is entirely honest. Thus, suppose
that the adversary is given complete side in-
formation regarding all input/output corre-
spondences for all servers other than this hon-
est pair. Then in the view of the adversary,
every voter input is mixed uniformly with a



known half of the other inputs. It follows that
for any input value, the adversary can at best
identify the corresponding output value with
probability 2/n. (This assumes ideal cipher
characteristics. Under normal computational
hardness assumptions on the underlying ci-
pher, the adversary has some additional, neg-
ligible advantage.) This holds no matter how
many servers there are, i.e., irrespective of t,
so long as at least t/2 + 1 servers are honest.

In the context of an election, this privacy
guarantee is quite satisfactory from a prac-
tical perspective. Stated loosely, it specifies
that any ballot is hidden among those of half
of the electorate. Provided we are willing to
accept this guarantee, rather than full hiding,
this proposal presents attractively practical
functionality.

5 Electronic Voting Based on
RPC mix nets

We are now ready to sketch a simple elec-
tion scheme using an RPC mix net.

System Setup. Herein, the authorities se-
lect mix servers, publish the public keys of
these, certify voters, and distribute appropri-
ate protocols, which are assumed to be certi-
fied and correct.

Ballot Preparation and Encryption.
Each voter Vi prepares his plaintext ballot
Bi. He then computes a ciphertext Ci,0 =
EPK(Bi). Voter Vi signs Ci,0 with his own
private signing key and posts it to the bul-
letin board.

Each voter prepares his or her ballot by en-
crypting the value that encodes the ballot us-
ing the public key(s) of the authorities. This
may be done by sequential encrypting using
the public keys of the participating servers,
starting with the last one in the mix net –
here, the encryption may either be a plain
asymmetric encryption, or a hybrid encryp-
tion. We refer to [14] for a description of
hybrid encryption techniques. Alternatively,

the encryption may be performed using the
public key of the authorities. As noted ear-
lier, the encryption technique used should be
“plaintext-aware.”

Initial Ballot Checking. When the bal-
loting phase is closed, all servers check the va-
lidity of the posted ciphertexts, elimating by
consensus any ciphertexts that are ill-formed.
They also eliminate any duplicate ciphertexts
(preserving only the first posted copy). With-
out loss of generality, we let this result in n
well-formed ciphertexts.

Permutation Commitment. Each server
Sj selects a permutation πj on n elements
uniformly at random. The server publishes to
the bulletin board a commitment to πj , either
Γ(In)

j or Γ(Out)
j (depending on our choice of

mix variant and the parity of j).

Mix Net Processing. At this point, each
server Sj in turn accepts n input ciphertexts
{Ci,j}t−1

j=0. The server applies Xj to each of
them, permutes the resulting ciphertexts ac-
cording to πj , and outputs the result to the
bulletin board, along with a digital signature
thereon.

Correctness Check. The operation of the
mix servers is verified as previously outlined.

If any server is found to have cheated, and
the mixing is based on re-encryption, then
the corrupted server is either emulated or
replaced. In the latter case, the protocol
is restarted at the beginning of the mixing
stage; in the former at the stage of the em-
ulated server. If the mixing is based on de-
cryption, then the cheater is emulated.

If re-encryption mixing is used, then the
outputs of the last mix server are decrypted
at the end of the correctness check, assuming
this succeeds. The decryption typically would
be performed by a quorum of servers of the
authority sharing its secret key. (Note that
these may be different from the mix servers
as long as they collectively trust that a suf-



ficient number of mix servers were honest.)
Each decryption would be associated with a
publicly verifiable proof of correct decryption
(which typically means a proof of correct ex-
ponentiation.)

Ballot Decryption. Once the mixing op-
eration is complete, the holders of SK (the
mix servers or some other entities) jointly de-
crypt all output ciphertexts, yielding the full
list of plaintext ballots, if applicable.

Boundary Check. The authorities deter-
mine the minimum number of ballots that
would have to change in order to alter the
outcome of the election, given the tally out-
put at the end of the correctness check stage.
They then compute the probability that this
number of ballots could have been altered by
cheaters, without these being detected.

In particular, suppose that alteration of at
least κ ballots would have been necessary to
affect the election outcome. That is, κ is one-
half the difference in vote count between the
winner and the runner-up, rounded up. The
authorities estimate the probability that an
adversary could have manipulated κ ballots
without detection. (We give a bound on this
probability for our proposal below.)

If this estimate represents an acceptable
failure probability (which we expect to be al-
most always the case), then the mix servers
proceed to the endorsement phase; otherwise
they invoke an alternative mix net on the
same inputs with a stronger guarantee of cor-
rectness.

Endorsement. If both the correctness
check and the boundary check succeeds, then
the output is considered valid. The values
needed for publicly performing the correct-
ness check are published along with the fi-
nal tally. (The initial contents of the bulletin
board are assumed to already be public.) Ev-
erybody can perform the verifications of the
correctness check (including the potential de-
cryption verifications at its end); and then
verify that the boundary conditions are sat-
isfied.

5.1 Boundary probability

To compute boundary probabilities for our
scheme, let us consider a centralized adver-
sary, i.e., one that is capable of coordinating
(in a static manner) the actions of a minority
of servers and an arbitrary number of vot-
ers. All other servers and voters are assumed
to be honest. Given no evidence of cheating,
the question we aim to answer is this: What
is the probability that the adversary could
have altered votes in such a way that the
apparent election outcome is not the correct
one? For simplicity of presentation, we focus
our analysis here on our second protocol vari-
ant involving “paired” servers, and assume a
re-encryption mix with correct decryption of
output ciphertexts. As a further simplifying
assumption, we regard the underlying cipher
and commitment schemes as “ideal”, i.e., as
providing information theoretic security. For
p = 1/2, we make the following claim:

Claim 1. Suppose that the adversary alters
elements in the mix such that the observed
election tally differs by κ votes from the cor-
rect one. Then the probability that the ad-
versary goes undetected is at most 1/2κ.

Proof 1. (Sketch.) Now let us first con-
sider a server Sj such that j is odd, i.e., the
first server in a pair. For such a server, let
us define the antecedent of an output cipher-
text Ck,j to be an input ciphertext Ci,j−1

with the following properties: (1) Ck,j rep-
resents a valid re-encryption of Ci,j−1 and
γi is a commitment to the value πj(i) = k.
Observe that Sj cannot successfully open the
input/output relationship for a given output
ciphertext without a correct antecedent.

Now consider a server Sj such that j is
even, i.e., the second server in a pair. For
such a server, let us define the successor of
an input ciphertext Ci,j−1 to be an output
ciphertext Ck,j with the following properties:
(1) Ck,j represents a valid re-encryption of
Ci,j−1 and γk is a commitment to the value
π−1

j (k) = i. Observe that Sj cannot success-
fully open the input/output relationship for
an input without a correct successor.



We refer to a ciphertext that lacks a cor-
rect antecedent or lacks a correct successor
as a dud. Based on our definitions of an-
tecedents and successors, a dud must be an
“intermediate” ciphertext, i.e., the output of
an odd-numbered server or, equivalently, the
input of an even-numbered one. A given dud
will be detected with probability at least 1/2,
as either its antecedent or successor must be
checked. It may also be seen in our scheme
that duds are checked independently, i.e., as
independent events.

Let us consider “paired” servers (Sj , Sj+1).
Suppose that the input and output cipher-
texts to this pair of servers differ in at least
Kj,j+1 values. More precisely, suppose that
any one-to-one mapping f from outputs to
inputs excludes at least Kj,j+1 output ele-
ments. It may be seen there exists such a
one-to-one mapping f that includes at least
one distinct input/output pair of ciphertexts
for every intermediate ciphertext that is not
a dud. Therefore, there are at least Kj,j+1

duds among the intermediate ciphertexts. It
is clear that K ≤ K1,2 +K3,4 + . . .+Kn−1,n.
(Intuitively, the total number of altered ci-
phertexts at each server pair cannot exceed
the number of ciphertexts altered across the
entire mix network.) Therefore, there are at
least κ duds among the intermediate cipher-
texts published by all server pairs. Since each
dud is detected independently with probabil-
ity at least 1/2, the claim follows. �


Example 1. Given an output tally of 46
Republican votes and 54 Democratic votes in
a small election, authorities would conclude
that in the worst case, an attacker might have
swung the election through manipulation of a
minimum of four initially Republican votes.
(This would be possible, for example, if the
true tally were 50 Democratic vs. 50 Repub-
lican, for example.) By Claim 1, the prob-
ability that an adversary might have swung
the election is at most 1/16.

Example 2. While the correctness assur-
ance in the above example is very low, a
more realistic example gives a substantially
lower adversarial success probability. Let us
consider the recent U.S. Presidential election

in Florida which yielded a tally with some
2,910,074 votes for Bush and some 2,909,114
votes for Gore [1]. For these tallies to be pro-
duced from ballots in which there was an ex-
act tie or in which Gore obtained more votes,
a minimum of 480 votes would have to be ma-
nipulated. By Claim 1, the probability of this
would be at most 2−480, which is truly neg-
ligible and far smaller than the probability
of breaking a typically parameterized crypto
system.

In typical circumstances, Claim 1 repre-
sents an overestimate of the success proba-
bility of such an attacker. In particular, our
computation here assumes that the attacker
alters ballots in the optimal way. This is pos-
sible for an adversary corrupting the first few
servers if voters register with their parties
– otherwise, the adversary could only guess
what ballots to alter.

6 Public Verifiability

To define the property of public verifiabil-
ity in a mix network, we require a stronger
adversarial model than for our definitions of
privacy or correctness. In particular, we must
assume an adversary that potentially controls
all servers and all voters. This is an unreal-
istically pessimistic assumption, but aims to
characterize the security of the mix scheme in
the worst case.

In defining public verifiability, we consider
a verification function, which we denote by
ver, that is efficiently computable by any en-
tity, whether or not the entity participates in
the mixing process. Input to ver includes the
contents of the bulletin board at the conclu-
sion of the mixing process; in particular, it in-
cludes the set of ciphertexts input to the mix
networkCIn = {C0,i}n

i=1, the set of output ci-
phertexts COut = {Ct,i}n

i=1, and all commit-
ments, input/output relationships, and other
evidence published by all servers. The func-
tion ver outputs “correct” if the output of the
mix network is a correct representation of the
input, or appears to be such; it outputs “in-
correct” otherwise.



The standard definition of public verifiabil-
ity states, loosely speaking, that a mix net-
work is publicly verifiable if for some ver-
ification function ver, the adversary cannot
feasibly produce input that falsely yields the
output “correct”. In other words, an adver-
sary should not be able to spoof a verification
function ver into accepting a “mismatched”
pair (CIn, COut), i.e., a pair such that the
set of plaintexts corresponding to COut is not
equal to that corresponding to CIn.

Our scheme achieves a somewhat weaker
version of public verifiability. An adversary
with full control of all players in our scheme
can, strictly speaking, cause (with some prob-
ability) a verification function ver to accept
a mismatched pair (CIn, COut). What such
an adversary cannot do, however, is create a
sizable discrepancy between inputs and out-
puts to the mix network. More precisely, we
show that in order to alter κ posted votes
in an election scheme with high probability,
the adversary must perform computational
effort roughly 2κ. In consequence, our scheme
provides public assurance that no adversary
could have feasibly altered, say, 160 votes in
the election. (Furthermore, we know that it
is infeasible to modify even a much smaller
number of votes if not all mix servers collude
– this provides further reassurance of the cor-
rectness in case of narrow margins.)

Recall that all the servers have to commit
to their permutations, as well as to their por-
tion of what determines the challenges. This
efficiently makes the protocol deterministic
after it has begun, and makes it impossible
for a colluding set of servers to select permu-
tatations so that only “clean” elements will
be verified.

Furthermore, recall that servers reveal in-
put/output relations according to a random
seed Q. This seed is computed by applying a
hash function h to the contents of the bulletin
board after all mixing has taken place (but
prior to verification, of course). Modeling h
as a random oracle, we may assume that for
every attempt on the part of the adversary
to produce a transcript that spoofs the verifi-
cation function, the adversary must make an
oracle call to determine what challenges the
servers respond to. We consider a verifica-

tion function ver that checks all revealed in-
put/output relations in the obvious manner.
Given this model, and assuming p = 1/2, we
make the following claim.

Claim 1 Suppose that an adversary with full
control of all servers and voters wishes to gen-
erate a pair (CIn, COut) and bulletin board
contents, i.e., server transcripts, with the fol-
lowing property. The set of plaintexts corre-
sponding to CIn differs from that correspond-
ing to COut by at least κ, but ver outputs “cor-
rect”. With q queries to the oracle, the adver-
sary will be successful with probability at most
q2−κ, for a number of queries q to the ran-
dom oracle. �


Given this claim, we may state as a rough rule
of thumb that the results of an election are
publicly verifiable in a meaningful way if the
winner leads by a margin of at least 160 votes.
In this case, an adversary that performs com-
putation 280 (more precisely, makes 280 oracle
calls) has success probability at most 2−80.
In a practical setting, however, this security
analysis is rather conservative. It may be re-
laxed somewhat under assumptions such as
the following.

1. Many voters are honest: If a voter does
not collaborate with the adversary, then
her ciphertext randomizes Q in a man-
ner previously unpredictable to the ad-
versary. In consequence, the adversary
can only make useful oracle queries dur-
ing the interval of time between the last
vote posted by an honest voter and the
time that the tally is output. This places
a practical restriction on the amount
of computing power the adversary can
bring to bear on manipulation of the
election since it forces the adversary to
commence the attack after the ”honest
vote(s)” have been colleted, and thereby
prevents a ”pre-computation attack.”

2. The election includes many ballots: A
second practical security against attacks
is obtained by forcing the recomputata-
tion of long hashes in order to succeed
with an attack. Namely, recall that the
full contents of the bulletin board must



be hashed using h in order to compute
the seed Q. In a large election, there-
fore, an oracle query is an expensive op-
eration. This restricts (by some medium-
sized factor) the number of oracle queries
an adversary with a given amount of
computing power can make.

Of course, if the tally yielded by our scheme
involves too small a margin of victory to en-
sure public verifiability, it is always possible
to apply a different and more expensive, but
publicly verifiable mix network to the posted
votes, e.g., [10, 16].

7 Discussion

The most significant advantage of the mix
scheme we propose here is that the proofs are
exceptionally simple; they merely involve re-
vealing the randomizing factors for the ran-
domized encryption operations. No zero-
knowledge proofs are required. The scheme
is therefore exceptionally efficient.

With use of a Chaumian mix net, the bal-
lots may have arbitrary size or content. We
may have write-in votes, or large ballots,
without difficulty.

An adversary controlling some minority
group of servers may try to replace κ bal-
lots with its own substitutes. Given p = 1/2,
the chance of the adversary succeeding with-
out detection is at most 1/2κ. Thus trying to
cheat by more than a ballot or two is risky. A
cheating server must either confess to cheat-
ing or (equivalently) fail to produce a required
proof. The penalties for cheating would be so
severe as to preclude the attempt.

In summary, we believe that RPC mix nets
are an interesting and practical approach for
obtaining voter anonymity in an electronic
voting system.
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