SAFE USE OF X WINDOW
SYSTEM PROTOCOL ACROSS
A FIREWALL

Brian L. Kahn
blk@mitre.org

The MITRE Corporation
202 Burlington Road
Bedford, Massachusetts 01730

Abstract

This paper describes a method for safe use of the X
window system protocol across a firewall. The
approach uses an agent in the communications
stream to enforce an access control policy. Topics
covered include risks, policy, implementation, and a
summary of prototype efforts. Results can be
applied to other distributed or client/server
applications.

Background

Many organizations are now using or installing a
firewall to protect their local networks against
threats from public and wide area networks. A
firewall is positioned between networks and protects
resources by controlling access across the boundary.
A typical firewall might allow electronic mail to
pass through and support Telnet sessions from the
protected network to the other side. A firewall
allows corporate and institutional users to have
controlled access to outside resources, such as the
Internet, while protecting their private assets.

Many of these same users would like to use the
remote display capabilities of the X window system
to run X clients on hosts outside the firewall and
display the results on a host inside the firewall. The
X window system provides graphical user interface
and other display services to clients running on local
or remote machines. Unfortunately for the users,
there are a number of serious security risks
associated with X window system connections
across a firewall.

This paper first explains some of these risks. We
establish the context for this research, and we define
some useful terms. Next, we describe an X
Gateway module that is able to control the risks by
enforcing restrictions on the X protocol. We
describe a policy for X Gateway, both in general

and for a specific implementation. A discussion of
our experience with a prototype of the X Gateway
completes the paper.

Firewall Protection

Connecting systems together in a network has large
benefits, but this also creates a large number of
risks. A network is a shared medium, so there is a
risk of eavesdropping or data capture. Network
services allow interaction between the systems on
the network, but they are vulnerable to spoofing,
denial of service, and penetration attacks. Before an
organization allows systems to be connected
together into a network, there should be an
assessment of the risks and benefits. For many
organizations, there is no need for an explicit risk
assessment because a level of trust is given to the
users just by being allowed on the premises. In such
an organization, there may be a few sensitive
systems which are not networked, but the physical
plant security is adequate to deal with the risks of
internal networking.

All assumptions change when networks are
connected together, especially when an
organization's private network is connected to a
public network. The resources which become
available to the user community may be very
tempting, but the vulnerability must be carefully
considered. A firewall can provide protection for a
network while allowing some resources on the two
networks to be shared.

A firewall provides controlled communications
between two points and is usually used to regulate
traffic between networks. A firewall is typically
built from network components, such as routers and
dual-headed boundary hosts, configured to partially
isolate the private network. Such a firewall can
provide access across a boundary with reasonably
low cost and processing overhead.

However, firewall is not a panacea. The main
problem with using a firewall for protection is the
course granularity of control. A filtering router can
be programmed to block packets based on the
source or destination address and low level protocol
type. A connection layer protocol may serve many
different purposes, some of which are desired and
some of which are not. A boundary host can be
employed to provide application proxy service, or
clients, to let the firewall pass specific services
discriminated at a much higher level of the protocol

USENIX Association

5th UNIX Security Symposium, June 5-7, 1995

105

stack. For example, the client and server
implementing File Transfer Protocol (FTP) use the
TCP/IP protocol. FTP service can be provided by
the boundary host at the application level even
though general TCP/IP use is blocked at the
firewall.

A Context for this Research

A company operates a distributed network of
personal computers, workstations, and servers for
the computing needs of technical and support staff.
The Corporate LAN Interconnection Network
(CLIN) spans the two main sites and several remote
sites. The configuration is always changing and
growing. The CLIN also connects to the Internet
public network through several routers and 56Kb
high speed modems.

The firewall filters the network traffic, blocking
many packets but allowing certain protocols and
connections to pass through. The CLIN routers
form a security perimeter which defines the edge of
the firewall to protect the rest of the CLIN against
misuse or intrusion by Internet users. The complete
firewall consists of the routers and their routing
tables, the physical layout of the CLIN, several
dual-headed boundary hosts, and corporate policy
covering network access by company employees.

The company firewall design and policy prohibits
direct communication across the firewall between a
company workstation and an outside host. This
protects the company network, but it also constrains
access to the Internet. To support access to public
resources, a company boundary host provides
application level proxies for fip, Telnet, and mosaic.

The X window system is a particularly interesting
case. The X protocol enables software (the X client)
to run on one machine while using the screen and
keyboard of another machine (the X server). The X
protocol allows X clients to share the keyboard,
mouse, and screen of the host running an X server.
The clients may be on the same machine as the X
server or on a remote machine. Enabling X
connections across the firewall would allow an
employee to sit at a company workstation and see
the graphical output from software running on a
super-computer at a university. The current
company security policy does not allow employees
1o start an X client on an outside host and display
the client's output on an X server within the firewall

because of concemns about the security risks posed
by X connections with the outside.

The Problem with X Across the Firewall

Enabling X window connections across a firewall is
straightforward and well understood. The X
protocol requires a reliable transport connection,
which in practice is either DECNet or TCP/IP
between machines. To move X packets across a
firewall, it is only necessary to start a proxy running
on a boundary host that listens at an agreed port and
forwards the packets to the intended X server. The
outside client sees the boundary host as the X server
host, and the client neither knows nor cares that the
X packets are being forwarded inside the firewall.
Enabling X across the firewall is not a problem; the
problem is making a safe way for outside clients to
share the X server with inside clients.

Here is a brief description of the risks related to X.
Later in this paper, a more detailed description of X
vulnerabilities is given:

« The X window system has no access
control beyond client/server connection
time. After a client connects to the server,
it has full access to all X objects and
TESOUTCES.

» X clients share the keyboard, mouse,
display screen, and an operating
environment containing graphical objects
and data items.

» An X client may elect to receive the user
input from any X window, so it is easy for
one client to eavesdrop on keystrokes
intended for another client.

* Aclient can view or draw into the windows
created by any other client, capturing or
faking output.

* One X client may even change the run-time
behavior of another client by binding a
different function to a button or action.

To summarize the risks, consider this simplified
description of the X window system environment—
all X clients have access to the screen, keyboard,
and mouse of the X server including any objects
created by other X clients.

106

5th UNIX Security Symposium, June 5-7, 1995

USENIX Association

The X Gateway Solution

The risks associated with an X protocol connection
can be controlled by restricting the capabilities of
the X client. A large set of X clients are self-
contained, in that they do not need to interact with
other X clients or the resources created by other X
clients. These clients can be considered "safe"
because they do not interfere with any other client.
This set of clients includes many useful programs,
and it is very desirable to allow these clients (but
only these clients) to cross the firewall.

The X Gateway enables safe X clients and disables
clients that engage in "dangerous" behavior. The X
gateway is a software module which resides on a
boundary host. Clients outside of the firewall see
the X Gateway as an X server running on the
boundary host. The X Gateway actually acts as a
proxy agent, forwarding packets between an X
server within the firewall and the outside X clients.

The X Gateway enforces a security policy on the
client/server channel that isolates the outside X
clients from the inside clients. The X Gateway does
this by imposing restrictions on use of the X
protocol. Each packet in the X protocol channel
across the firewall is examined by the X gateway to
ensure adherence to the isolation policy. The
external client connecting through the X gateway
does not have all the capabilities of an inside client,
but the available functionality is adequate for safe
applications.

Terms and Concepts

The X window system is an architecture
independent system for display of graphical user
interfaces (GUIs). The X window system is created,
maintained, and freely distributed by MIT and the X
Consortium. An X server is a display and keyboard
controller that implements the X protocol. An X
client is a program that uses the X protocol to
communicate with an X server. The server provides
display and input handling services to the client.
The X server runs on the computer attached to the
console display screen, keyboard, and mouse. The
X client may run on the same machine as the X
server or on another machine. The X protocol is a
two way exchange between an X client and an X
server over some reliable transport, such as TCP/IP.
The X client initiates all X protocol connections.

The X protocol constraint enforcement software is
referred to as the X Gateway or Xgate. The X
Gateway allows X clients running on hosts outside
the company security perimeter to display on X
server console screens within the company firewall
perimeter. A client connected to a server through
the X Gateway is called an X Gateway client or an
outside client.

The user is a human seated at the X display console.
A host located within the company firewall and
connected to the CLIN is called a company host. A
host used by the company as part of the firewall
(connected to the company network and the outside
network) is a boundary host. An X client running
on a company host is an inside client, and an X
client running on an outside host is an outside client.

An X object in this document is a resource
referenced by an identifier known as an XID. An X
object is a data structure created and held by the X
server. Client objects are created in response to a
client request, using an ID provided by the client.
Client objects are windows, pixmaps, cursors,
graphics contexts, and client colormaps. Properties
are considered to be named attributes of a window.
Server objects are created by the server for common
use by all clients. Server objects are fonts, the
default colormap, and the root window. The server
also maintains lists and structures to control server
operations. The following server resources are
referred to as server objects in this document: the
host list, the save list, the key and button grab list,
the keymap, the keyboard state, and the cursor
position. There may be other server resources not
listed here, depending on server implementation.
Most fonts are loaded in response to a client request,
but they are not considered to be client objects.

The client ID is an identifier assigned to a client by
the X server at client/server connection time. The
server permanently associates the client ID with the
communication channel being used by the client. A
XID is a 32 bit identifier used within the X protocol
to identify the objects managed by the X server.
XIDs uniquely identify objects. The XID is
provided by the client in the request to create an
object. The X server ensures that the high bits of a
XID match the client ID associated with the channel
and that the ID is not already in use. Thus, each
XID reliably indicates which client created the
object. All remaining client objects are destroyed

USENIX Association

5th UNIX Security Symposium, June 5-7, 1995

107

when a client disconnects from the server so that
clients cannot "inherit" objects from previous
clients.

A Review of the Risks

There are many vulnerabilities associated with using
the standard X protocol. The general risk areas are
described here, and the risk profile is then evaluated
to establish a safety policy.

The main risks posed to the company by
unrestricted X protocol connections across the
firewall are penetration attacks and eavesdropping
by an outside agent. A simple example of
eavesdropping is an outside X client requesting
keystroke events from the window of an inside
xterm client in order to steal the password from a
Telnet session. A simple example of a penetration
attack is an outside X client sending fake mouse
button events to an inside mail reader client which
causes the inside client to send out some interesting
files in email.

Most of the risks result from a total lack of access
control within the X environment. The only security
decision taken by the X server is whether to allow
an X client to make a connection to the server.
There are several initial client authorization methods
optionally performed at client/server connect time—
the method selected depends upon configuration
parameters set either by a server start-up database or
by a connected client. Once connected, all X clients
have equal access to the X objects. Clients can
manipulate, modify, or destroy any object (window,
scrollbar, etc.) regardless of which client is the
owner.

The X server reports events (such as keystrokes or
mouse clicks) to any client that registers a request
for the event type with regards to a particular
window. There is no privacy within X unless a
client grabs! the keyboard, pointer, or entire server
for its exclusive use. In general, every client may
eavesdrop and monitor all of the user keystrokes,
pointer movement, and mouse button presses
regardless of which client or window is actively
responding to the user. From the user perspective,
the keystrokes and button clicks appear to be picked
up by one client application at a time, usually in the

1 Use of the X grab functions tends to hog the server and is
understandably considered to be antisocial behavior for any
extended period, so well-behaved clients only issue a grab for
short term events like popping menus or dialogue panels.

window under the mouse. Internally, all events are
available to every client that expresses an interest.

Another risk results from abstraction of the input
devices, the pointer device ("mouse"), and
keyboard. This helps X to be operating system and
architecture independent because the physical
keyboard and mouse are mapped by software to key
symbol events and pointer events. This approach
also allows clients to restructure the input system.
This can be used to trick the user into "typing" an
unintended key sequence or to disable the mouse
buttons for denial of service.

Another set of risks stems from the "callback"
paradigm adopted by many X client libraries. This
approach dynamically binds events to functions
within the code. Many X clients accept detailed
run-time configuration parameters from a shared
database stored in the RESOURCE_MANAGER
property on the root window. Some clients will
reconfigure themselves in response to a certain kind
of message from another client after their initial
startup configuration. Client messages are a special
event type intended for interclient communications,
and there is a protocol called EditRes which allows
one client to alter the internal structure of another
client. EditRes is part of the basic X tool kit library
(Xt). Itis used by the Athena widget library and is
easily included into other tool kits. For example,
xterm from the X11 distribution and Gnu Emacs
respond to the EditRes protocol. Run-time binding
can change many things in subtle ways, but here is a
simple example: a rogue outside client could alter
the operation of an inside client by rebinding the
Save & Exit panel button to the function
exit_without_saving_changes().

Clients may request the server to create and send
synthetic events that closely resemble real events,
and many clients will respond to these fake events.
This leads to a serious penetration risk when there
are command shell clients such as xterm, hpterm,
decterm, or commandtool running and connected to
the display. A rogue outside client can send fake
keystrokes to an inside client and cause arbitrary
commands, or programs, to be run on the system
running the inside client, just as if the user had typed
the keys. This vulnerability extends well beyond the
client's running command shells because any
sequence of key presses and pointer events can be
sent to any inside client. This vulnerability may be
used with any client to effect penetration or other
types of attacks. Most of the shell tools in the xterm

108

5th UNIX Security Symposium, June 5-7, 1995

USENIX Association

family ignore synthetic events by default, but this
risk can be combined with the reconfiguration risks
described in the previous paragraph to make current
or future clients respond to synthetic events.

Combinations of attacks using the standard X
protocol risk the use of company resources and
permissions to mount attacks from one outside host
against another outside host. The problem is most
easily expressed in a scenario: if user, JohnA, starts
up clients on two outside machines, SponsorHostB
and CollegeHostC, then another user, JaneD, may
be able to launch an attack against SponsorHostB
from CollegeHostC by exploiting shared resources
through the X Gateway.

A denial of service attack is easy to carry out but
difficult to counter in a generic way. X clients
routinely grab the server for exclusive use when
menus are dropped or dialogue panels are raised, so
it is not an abnormal occurrence. Besides this, there
are a number of ways to prevent other clients from
engaging in normal X operations. However, this
attack is not a serious concern for company users
because recovery from a worst case scenario only
requires restarting the X server.

X Gateway - Policy and Implementation

This section describes the policy developed for the
X Gateway and presents issues relevant to building
our Xgate prototype. The policy is presented in
three ways: a high level statement of seven policy
objectives, a longer explanation of each policy
objective, and design statements reflecting how each
objective is supported in the prototype
implementation. Experience with the Xgate
prototype is briefly summarized. There is also some
discussion of policy alternatives and connections
from inside clients to outside servers.

Developing a security policy for X is difficult due to
a great complexity in the protocol (over 120 packet
types), together with complex interactions between
clients and objects. The following policy was
developed, after several false starts, by starting with
a simple policy that describes a well-behaved client
and elaborating with more detailed clauses to cover
the peculiarities of the X window system
functionality.

It is not always possible or practical to add security
after the fact, and it is almost always more difficult
than addressing security during the design phase.

The X protocol is suited for an in-line policy
enforcement module because the information
needed for an access control decision is available
within each X protocol packet. The operation
indicated by a packet is determined by the packet
type and some of the parameters. The client
invoking the operation is determined by the point-
to-point communication channel (typically TCP/IP).
The objects of the operation are, in most cases,
explicitly identified in the packet, and the XID used
to identify each object also indicates which client
created that object. The successful X gateway
prototype suggests that it is sometimes practical to
add security to a client/server relation by using a

constraint processor in-line with the protocol stream.

The X Gateway policy is based on one fundamental
observation: most clients do not need all of the X
protocol functionality. The X Gateway is
considered a success if it enables many of the
programs which users want to run across the
firewall. Most X clients are only interested in their
own windows and objects; and, except for the
standard cut-and-paste mechanism, most clients
make no attempt to interact with other clients.

X Gateway Client Isolation Policy

The X Gateway policy describes isolation of outside
clients.

1. Client object access: X Gateway shall
isolate outside clients by restricting object
use. An outside client may not use objects
created by any other client.

2. Server object access: X Gateway shall
protect normal operations by restricting
access from outside clients to server state
or control objects.

3. Selection requests: X Gateway shall
protect the client selection mechanism by
restricting use of the interclient exchange
initiated by ConvertSelection.

4. User Notification: X Gateway shall notify
the user of significant changes that are
allowed by policy but significantly affect
the access control profile.

5. Image Capture: X Gateway shall prohibit
outside clients from accessing portions of

the screen image generated by other clients.

USENIX Association

5th UNIX Security Symposium, June 5-7, 1995

Denial of Service: X Gateway shall
provide some counter to denial of service
attacks.

Audit: X Gateway shall provide a
mechanism for audit security-relevant
events and should also support audit of
normal X protocol and audit reduction.

Explanation of Client Isolation Policy

The X Gateway policy describes isolation of outside
clients in respect to objects created by other clients,
server objects, the physical screen, and control flow.
Note that this policy does not restrict inside clients
in any way.

1.

The primary clause of the policy is the
restriction on interactions between clients.
Window managers need to interact with
other clients a great deal, and so, it is not
possible to run a window manager as a
remote client through the X Gateway.
Most X applications do not interact with
other clients, with the notable exception of
the cut-and-paste exchange. Indeed, the
loss of the cut-and-paste capability from
outside clients to inside clients is the
greatest drawback of the X Gateway
policy. This issue is addressed below in
Policy Alternatives.

The server creates a number of objects
shared by many clients, notably the root
window, the default colormap, and
character fonts.2 There are also a number
of configuration structures maintained by
the server that affect various operations. It
is possible to write an X Gateway that
captures references to the default server
objects and redirects these to X Gateway
objects, but allowing selective access to
server objects has the advantage of lesser
complexity and code size.

The X selection mechanism is intended for
interclient communications. The cut-and-
paste exchange is the most common use for

2 Atoms are a relation between strings and identifiers

maintained by the X server. Atoms may

rto be an

important object type or resource, but the X Gateway is not
concemed with them. Atoms can only be created, never
changed or destroyed, so their information content is very

small.

selections. The problem with cut-and-paste
(or other selections) is that exchange goes
on between clients and may not have been
initiated or intended by the user. The X
Gateway controls when an outside client
may request a paste, but it does not control
the paste action itself which is performed
by the inside client.

User notification is a general-purpose salve
for areas that are sensitive to exploitation
but cannot be avoided. Two areas are
called out here; but other situations may be
handled the same, depending upon the
policy most appropriate for the user site.

Most X servers support a number or
mechanisms for authentication of client
identity at client/server connection time.
Unfortunately, strong authentication
mechanisms may be a burden to administer
or may not be supported by every server,
and many sites or users will end up with
one of the weaker mechanisms. It is
considered worthwhile to alert the user (or
to obtain user approval) before any new
client connects via the X Gateway.

The keyboard focus is held by a single
window, and any key stroke events are
associated with that window. Most of the
time, the focus is transferred by the
window manager when the user moves the
mouse pointer or presses a key sequence
requesting a focus change. The X server
will also change the focus in response to a
client request, and the user may not be
aware that key events are channeled to an
outside client without a visible indicator.

Some implementations may rely on the
window manager (WM) to indicate
keyboard focus. The WM usually indicates
the keyboard focus through a change in the
window border or title bar. The
disadvantage of this approach is the
implied trust of the WM, which is complex
software.

Clients may obtain images from the display
in two ways by inheriting an image of the
screen at window creation or by querying
the server for a copy of some portion of the
screen. Few clients need this capability,

110

5th UNIX Security Symposium, June 5-7, 1995

USENIX Association

and we chose to preclude this as a matter of
policy. On the other hand, some
applications (for example, several
groupware programs) may have good
reason to extract images with other clients.
Support for such clients would call for a
change in this policy clause.

6. Denial of service is difficult to prevent, as a
matter of policy, without disrupting the
operation of the client's user interface. Itis
not uncommon for well-behaved clients to
grab complete control over the keyboard,
pointer, or entire server for brief periods.
The X Gateway may be implemented to
block or immediately release any explicit
or implicit server grabs while maintaining
the correct keyboard focus and visual
effect. Another approach is to provide the
user a way out when under attack by
providing a kind of trusted path to the X
Gateway with options to kill off offending
processes or specific server grabs.

7. Audit is an important, and often
overlooked, property of security software.
The determination of which events are
interesting to audit is open for debate—
certainly, new client connections but
possibly, violations of policy. It should be
understood that many clients will make
minor violations of the policy that are
blocked or countered by the X Gateway.

Implementation of Client Isolation Policy

Here are details of the simple client isolation policy
with minimal extensions. Implementation clauses
marked with a square bracket are not yet supported
in the Xgate prototype.

1. Client object access: check the high bits of
all XIDs used as parameters.

a. A match with the client ID indicates
that the client created the object
allowed.

b. Server objects have a unique value in
place of the client ID (usually zero),
and these are covered in clause 2, or
the request is blocked.

2. Server object access: restrict access o
objects that cannot contain sensitive
information.

a. All references to fonts and the default
color map are allowed.

b. The root window may be used as the
parent in CreateWindow request or as
the drawable in CreateGC and
CreatePixmap requests.

¢. The cursor position may be accessed
normally.

d. Server grabs are prohibited.

e. The keymap and keyboard state may
not be accessed.

*Sanitize response to QueryKeymap
request.

*KeymapNotify events are blocked or
sanitized.

f. The host list and the access control
mode may not be accessed.

g. The root window may not be used in
any other way including window
properties, redirected events, image
queries, etc.

3. Xgate will block ConvertSelection requests
when the client is not the selection owner.

a. Simply checking ownership with
GetSelectionOwner creates a race
condition.

b. Xgate may return a NoOwner error for
all ConvertSelection requests.

c. Xgate may use the following protocol
in place of a ConvertSelection request.

*GrabServer and GetSelectionOwner.
*If owner is the outside client, then do
ConvertSelection or else return

NoOwner.

*UngrabServer.

USENIX Association 5th UNIX Security Symposium, June 5-7, 1995 111

d. Xgate may change the selection type to
a selection held by Xgate.

*Xgate may act as an intermediary for
a interclient subpolicy.

*Site policy may allow a cut-and-paste
with explicit user authorization.

4, Xgate notifies the user when new clients

connect and when the keyboard events are
being associated with an outside client
window.

a. Xgate posts a yes/no query button
asking the user for permission to
initiate the connection for each client,
identifying the IP address of the
client's host.

b. Xgate provides a visual indication
when keyboard focus is held by an
outside client.

*A small, simple focus indicator
graphic is shown when key events are
going out.

+Xgate will request FocusChange
events on all windows of all outside
clients.

+Focus indicator is kept visible
whenever it is being shown (mapped).

+Repeated obscuring of the focus
indicator is a security-relevant event.

*The focus indicator is posted when
key events are sent to an outside client
if the focus is held by root (this
happens if the client is under the

pointer).

*These rules are fully enforced during
all grabs.

5. Xgate will restrict explicit and implicit
pixel reads.

a. New window creates requests with a
parent value of ROOT, and a
background pixel value of NONE will

be modified to a background of
BLACK_PIXEL or
PARENT_RELATIVE.

b. Explicit reads are prohibited by clauses
1and 2,

6. Xgate provides an escape for the user.

a. Event stream is monitored during
keyboard grabs.

b. Xgate "hot key" sequence to kill one or
all Xgate clients.

7. The audit mechanism is two tiered.

a. Xgate logs client connections and
terminations directly to a file.

b. Xgate performs configurable audit
reduction.

*Xgate accepts audit rules on stdin;
generates audit log on stdout.

*Five levels of detail in the formatted
output.

*Logging level can be set for the four
major packet groups and for
individually identified packets.

*Supports selective blocking of
packets by type.

*Xgate provides a GUI interface to the
daemon for ease of use.

Xgate Prototype

The MITRE Corporation has built a prototype of the
X Gateway module named Xgate. This section
describes the approach taken and summarizes
lessons learned from the effort.

The MITRE Xgate prototype is built on top of a
freely available package named Xmon.3 The
purpose of Xmon is to monitor the X protocol
stream and audit packets at the selected level of
detail. A developer can watch the X protocol

3 Available on several Intemet archive sites. One URL is
fip://fip.uu.net/Usenet/comp.sources.x/volume9/Xmon.

112

5th UNIX Security Symposium, June 5-7, 1995

USENIX Association

packets go past and determine exactly what is
happening at any point. This is useful, both for
debugging problems and for determining how X
clients are using the X server. Each of the 120 plus
packet types can be individually selected for audit
using a graphical user interface, and Xmon can also
block transmission of selected packet types. These
built-in capabilities make Xmon a good choice for a
prototyping effort.

The Xgate prototype required approximately 12
weeks of staff effort, generating close to 6000 lines
of code in 150KB of file space. The design
analysis, comprising the bulk of this paper, required
a similar investment of staff time.

Once development moves beyond the prototype
stage it may be possible to increase efficiency by
trimming back the code. We expect to improve
packet latency, throughput, and resource utilization
in later implementations. After the details of the
policy and design decisions are well settled, we
expect to recode an Xgate module from scratch or
rebuild on top of a simpler code base. Xroute is
another publicly available package to consider at
that point, a tiny X connection router which simply
bounces X packets from one machine to another.

Experience with the prototype led to changes in the
X Gateway policy interpretation. We used the
flexible auditing capabilities inherited from Xmon
to examine the specific use of the X protocol by
various popular X clients. We observed a number
of policy violations by X clients that were not
related to any kind of attack.

We had planned to limit Xgate processing to
requests flowing from the clients to the server. It is
possible to enforce policy simply by blocking some
requests. Some implementers may choose to build
an X Gateway to only monitor and filter the client-
to-server stream, as we originally intended, resulting
in simpler and faster code. Our early tests showed
us, however, that some clients make a few policy
violations but should be allowed to run because
these are basically safe clients with no intent to
subvert or entangle other clients. We chose to
manipulate the query/response stream to control the
behavior of certain important clients, "persuading”
these clients to act within the policy bounds.

Some well known X clients violate a simple
interpretation of the policy to cover unusual
situations or make an application more robust. In

example, the Xv image viewer client (often used
with Mosaic) examines the top level windows of
other clients in an attempt to discover which
window manager is in use. Blocking the offending
packets tends to kill the applications, yet there is no
threat from the clients themselves. We figured out
several fixed content messages that can be returned
to the client without compromising the policy. The
specifics are described in the following section,
"Implementation Extensions to Enhance
Compatibility." The disadvantage in this approach
is a small amount of extra code inside Xgate. There
is also a performance penalty, because this
manipulation of the protocol requires Xgate to scan
both the incoming request stream and the outgoing
reply/event/error stream.

Particular attention should be given to the
documentation and structure of the Xgate software.
Confidence in the analysis phase is crucial because
the Xgate implementation is a security critical
component.

Performance is a concem for our users, but we do
not see any problem with Xgate in place. On an
Ethernet based network, there is a slight, but
noticeable, difference between a plain application
and one running through Xgate. Our experience
indicates that network connections (such asa T1
link) impose more delay than the Xgate prototype.
Furthermore, the prototype has not yet been tuned
for performance, yet its performance is more than
adequate for our users. Unfortunately for this
discussion, performance under X windows is very
difficult to measure, both in selection of meaningful
tests and interpretation of test results.

There is no perceptible difference in response time
with or without Xgate for our typical user: an X
connection across an Ethernet network between two
Sun SPARC workstations which is creating and
destroying complex widgets. There is a slight
difference in response for this same client connected
to a local server (no network hop) when compared
with the client connected to the local server via
Xgate. The conclusion is that the latency delay
imposed by Xgate is hidden by the latency imposed
by a local area network.

Tests performed with X11perf (a server test tool
from the X11 distribution) shows that Xgate causcs
an approximate 7% decrease in maximum
performance for a mix of X11 actions. Note that
X11perf determines the client/server round trip time

USENIX Association

5th UNIX Security Symposium, June 5-7, 1995

113

and extracts that time from the test results. The
results below compare Xroute (a simple X
forwarder) with Xgate. These results are of interest
but may not apply to an X client running the X
server at less than full capacity. The load on the
Sun SPARC running the Xgate module ranged from
2% to 11%.

xgate[129] time x11perf -display boundary:1 -repeat
1 -f8text -popup -scroll100 copypixwin100
-fspellipse100 -ostrap100

x11perf - X11 performance program, version 1.3
MIT X Consortium server on security:1.0
from vanity
Wed Oct 19 18:28:32 1994
Sync time adjustment is 10.8001 msecs.

18000 reps @ 0.2856 msec (3500.0/sec): 100-pixel
fill slice partial ellipse

20000 reps @ 0.2153 msec (4650.0/sec): Fill
100x100 opaque stippled trapezoid
504000 reps @ 0.0075 msec (134000.0/sec): Char
in 70-char line (8x13)

10000 reps @ 0.5436 msec (1840.0/sec): Scroll
100x100 pixels

4000 reps @ 1.3480 msec (742.0/sec): Copy
100x 100 from pixmap to window

20000 reps @ 0.2494 msec (4010.0/sec):
Hide/expose window via popup (25 kids)

30000 reps @ 0.2182 msec (4580.0/sec):
Hide/expose window via popup (100 kids)
111.6 real 1.1 user 1.7 sys

xgate[130] time x11perf -display boundary:2 -repeat
1 -f8text -popup -scroll100 -copypixwin100
-fspellipse100 -ostrap100

x11perf - X11 performance program, version 1.3
MIT X Consortium server on security:1.0
from vanity
Wed Oct 19 18:32:06 1994
Sync time adjustment is 5.6688 msecs.

18000 reps @ 0.2871 msec (3480.0/sec): 100-pixel
fill slice partial ellipse

30000 reps @ 0.2049 msec (4880.0/sec): Fill
100x100 opaque stippled trapezoid
720000 reps @ 0.0074 msec (135000.0/sec): Char
in 70-char line (8x13)

10000 reps @ 0.5396 msec (1850.0/sec): Scroll
100x100 pixels

4000 reps @ 1.8645 msec (536.0/sec): Copy
100x100 from pixmap to window

20000 reps @ 0.2583 msec (3870.0/sec):
Hide/expose window via popup (25 kids)

30000 reps @ 0.2221 msec (4500.0/sec):
Hide/expose window via popup (100 kids)
119.9 real 1.3 user 3.0 sys

PID TT STAT TIME SL RE PAGEIN SIZE RSS
LIM %CPU %$MEM COMMAND
24419p2S 0:04 043 0 168 384 =xx10.5
0.6 xgate

PID TT STAT TIME SL RE PAGEIN SIZE RSS
LIM %CPU %MEM COMMAND
24419p2S 0:05 272 0 168 384 =xx 2.0
0.6 xgate

The prototype is not available for public release at
this time.

Implementation Extensions to Enhance
Compatibility

The X Gateway enforces a security policy by
imposing restrictions on the use of the X protocol.
There are some X clients which cannot work
through Xgate, and this is the desired result: we do
not want outside clients to manipulate all the
windows as a window manager does, and we do not
want outside clients to copy the screen image as the
xgrab utility does. Unfortunately, there are expected
to be some X clients which users want to use; and
yet, do not conform to the Xgate policy. The Xgate
prototype includes some extensions which are not
needed for security but do enhance compatibility.

Unless otherwise stated, X protocol requests that do
not meet the policy requirements are simply dropped
from the client/server stream without any error
notification. The dropped packets are replaced in
the stream by X protocol no operation (NOP)
packets in order to maintain synchronization of
sequence numbering in the client/server stream.

Blocking requests which normally generate a reply
from the server will disrupt operation of the
offending client. Some of these clients can be
persuaded to run within the policy constraints by
simulating a sterile environment. The Xgate may be
implemented to allow requests to pass into the X
server and then replace the reply with a fixed-
content packet that corresponds to "no such object"
or otherwise null response. This can only be
allowed for informational requests that make no
changes to objects or server state. Passing these
requests, and then changing the reply packet, works
well enough; but it would be conceptually cleaner if

114

5th UNIX Security Symposium, June 5-7, 1995

USENIX Association

Xgate were to replace the request with a NOP and
manufacture a null response. The problem is that
replies, events, and errors must be returned in the
same order as the requests which generated them,
and it is difficult to insert the null reply packet into
the right spot in the response stream. Examples of
some common requests which are disallowed by the
Xgate policy, but may be covered by a null
response, are ListProperties, GetProperty, and
GetSelectionOwner. This approach may allow
normal operation of clients, which would otherwise
fail to work with the Xgate, but it must be balanced
against the undesirable complexity of additional
code in the Xgate module.

The QueryTree request is a candidate for a slightly,
more complex, form of censorship. The X windows
are organized into a tree with the root window at the
root of the tree. The QueryTree request normally
returns the parent and a list of the children for the
target window. There is no way for sensitive
information to be compromised by QueryTree, so
the request could be allowed through. However, we
have found some popular X clients which check
values of properties on the windows of other clients
to gather information about the user's environment,
Modifying the server response to QueryTree using
the following two rules will convince a client that
there are no other clients displaying on the server.

1. If a child window does not belong to the
requesting client, remove it from the list.

2. If the parent window does not belong to the
requesting client, change it to the root
window.

Outside clients cannot be allowed to read every
property on the root window because some
properties may contain information we want to
protect. It may be desirable to support the use of the
RESOURCE_MANAGER for program defaults (set
by xrdb). Some clients may need access to an
application specific root window property.

Selective access to root window properties, either
read-only or read-write, may be simulated by
redirecting specific requests to a window owned by
Xgate. A trusted cut-and-paste mechanism with
explicit user approval could be supported by Xgate
using a similar redirection technique.

Policy Alternatives

Several alternatives to the policy described above
are reasonable for sites with different priorities or
concerns, Care should be taken when making
changes to any security policy because changes
which seem modest may have subtle interactions
with other policy clauses. That said, these
alternatives are worth considering. Any of the
following can be used to enable cut-and-paste
between inside and outside clients, a capability
expected to top the list of features requested by
users.

1. Allow groups of X Gateway clients to
communicate as per standard X.

a. All outside clients allowed to interact.

b. A group of clients specifically selected
by the user allowed to interact.

c. Clients on the same remote host
allowed to interact.

2. Allow certain inside clients to interact with
outside clients.

a. A trusted cut-and-paste clipboard
could be started up by the X Gateway.

b. The trusted clients must be specially
"hardened” to resist attacks via the X
protocol.

3. Enhance the client authentication
mechanism.

a. Use a one-time key in place of the
XAUTH key because the XAUTH key
can be reused by any client from the
same host until the X server restarts.

b. Replace the enhanced authentication
string with a standard mechanism
(probably XAUTH) when forwarding
the connect request to the server.

Policy for Connecting Inside Clients to
Outside Servers

The X Gateway enforces policy over X connections
which are inbound, that is X clients outside of the
firewall displaying on a server within the firewall.

USENIX Association

5th UNIX Security Symposium, June 5-7, 1995 115

Users are also interested in outbound X connections,
that is an X client within the firewall displaying on
an outside server. The risks associated with
outbound X connections are more difficult to
counter because less of the environment is under the
controlled conditions within the firewall. The direct
risk is uncertainty about the integrity of the inputs
received from the X server. The indirect risks are
the actions which the client may take in response to
this low integrity input.

There are several aspects to this risk. These aspects
may be placed into an order by the difficulty of the
attack:

1. Outside clients connected to the outside X
server using the X protocol.

2. The outside X server may have been
corrupted.

3. The connection between the server and the
inside client may be compromised.

The specific attacks which may be mounted against
an outbound X client are the same as the penetration
attacks described for the X Gateway policy. In the
worst case, the X client may be induced to take any
action permitted by the host operating system.

Since it is not possible to provide guarantees on the
integrity of input events when company clients
display on outside servers, the following policy
assumes that the outside server is sound and that
protections are to counter rogue X clients connected
to the outside server. For this reason, there should
also be a convincing argument showing why a
company client cannot release sensitive information,
regardless of the input stream, before use is allowed
in an outbound X connection. It should also be
noted that anything displayed on the outside server
is visible to all other clients connected to that server
(with very little effort) and to every host connected
to the same networks (with a little more effort). The
input events sent to the company client are also
publicly visible.

A sensible precaution, whatever other measures are
used, is to take extra steps to isolate the outbound
client from company resources and assets. The
company client should be run on a host which
supports isolation of users (such as UNIX or VMS),
and the client should execute from a restricted
account. This relies on operating system protections

to prevent release of information in case the
outbound client is compromised. Another approach
is to demonstrate that the client software is limited
to a safe set of operations by analysis and review of
the code.

Within these constraints, two simple policies will
help to protect against attack by outside clients
when displaying on an outside server. One policy
seizes the server; the other hides behind a filter. To
prevent attacks during use of a company client:

1. Purge or set the RESOURCE_MANAGER
database property.

2. Grab the server for exclusive use by the
company client.

A shell X client can be written to avoid race
conditions. The shell can grab the server, verify the
resource database, and execute the intended client
within a single X connection. This approach is
simple and sound, but it prevents other clients from
using the X server when the company client is
running.

An alternative policy is more complex to implement
and analyze, but more pleasant to use. Assuming
the company trusts the integrity of the remote server
(or the client cannot be attacked via false inputs),
the remaining risks to the client are synthetic évents
and client messages. Both are easily identified and
filtered because the server sets the send_event flag
in the event structure.

Summary

Xgate is still in the prototype stage, but it is an
apparent success. The policy has shown to be
sufficiently restrictive for security, while compatible
enough to run numerous useful X clients. The
approach is proven to be effective and sound
without relying on unduly complex software for the
security critical policy enforcement. There is a
performance penalty, large enough to be detectable
by the user; but overall, the package is thoroughly
usable and practical. This approach also shows
promise for application to other client/server or
distributed applications with well defined protocols.

116

5th UNIX Security Symposium, June 5-7, 1995

USENIX Association

