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ABSTRACT

The Network File System (NFS) utilizes a stateless protocol between clients and servers; the
major advantage of this statelessness is that NFS crash recovery is very easy. However, the
protocol requires that data modification operations such as write be fully committed to stable
storage before replying to the client. The cost of this is significant in terms of response latency
and server CPU and I/O loading. This paper describes a write gathering technique that exploits
the fact that there are often several write requests for the same file presented to the server at
about the same time. With this technique the data portions of these writes are combined and a
single metadata update is done that applies to them all. No replies are sent to the client until
after this metadata update has been fully committed, thus the NFS crash recovery design is not
violated. This technique can be used in most NFS server implementations and requires no
client modifications.

1. Introduction
The Network File System (NFS) remains a de facto standard in the UNIX industry. NFS utilizes a stateless proto-
col between clients and servers. The major advantage of this statelessness is that NFS crash recovery is very easy.
Neither client nor server must detect the other’s crashes. Since a server has no state information to maintain, there
is nothing for it to throw away after a client crashes. Likewise, there is no state information to re-build when the
server returns after a crash. However, this protocol requires that data modification operations, e.g. write, be fully
committed to stable storage before replying to the client [SAND85].

The write operation is usually the most costly of all NFS server operations (see NFS Writes, below). A heavy
write load typically yields poorer server performance than loads of other types. It is not unusual, e.g., to see the
write operation portion (15%) of the SPEC SFS 1.0 NFS server benchmark (SPEC/LADDIS) account for two
thirds or more of the total latency and contribute more than its share to server CPU and I/O loading [WITT93].
Also, the large latencies of NFS write operations can lead to more serious problems on the server when it is faced
with retransmissions from impatient clients [JUSZ89].

This paper describes the implementation of a write gathering technique that exploits the fact that there are often
several write requests for the same file presented to the server at about the same time. With this technique the
data portions of these writes are combined and a single metadata update is done that applies to them all. No
replies are sent to the client until after this metadata update has been fully committed, thus the NFS crash recovery
design is not violated. This technique can be used in most NFS server implementations. It requires no client
modifications; it exploits behavior that is common among existing workstation clients. The implementation of this
technique has resulted in a significant increase in server write bandwidth and an increase in overall server capacity
and responsiveness (see Results).
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2. Related Work
I do not claim to have originated the notion of write gathering as a performance optimization for NFS writes.
Prior to 1990, while at Epoch Systems, Inc., Dave Noveck did some similar work within the filesystem below the
NFS server layer [BROW90]. Dave is now at the Open Software Foundation, Cambridge, MA. Drew Perkins,
while at Interstream, did an NFS server layer implementation for a SunOS after-market product; a demo of this
product at the 1991 NFS Connectathon event got me interested in the problem. Drew is now at Fore Systems,
Inc., Pittsburgh, PA. Sun has an NFS server layer implementation in current versions of Solaris that may make its
way into a future reference port of NFS; it is rumored that they chose from one of several in-house implementa-
tions. I suspect other NFS server vendors also have implementations. Suresh Sivaprakasam describes an imple-
mentation for SunOS that clusters NFS writes in [SIVA93]; I make some comparisons to my implementation later
(see Write Gathering).

I do claim to have an original implementation that has proven to be useful. I found no discussion of this topic in
the literature when I did the work in 1991/92; to date, I can find only [SIVA93]. Thanks to some nudging by Jeff
Mogul, I am sharing my implementation details via this paper in the interest of sparking some discussion. Hope-
fully the level of NFS service provided by the vendor community will benefit.

3. Goals
My goal in originating this work in 1991 was to increase NFS write speed from the perspective of a single client
writing a large file, and to do so without consuming an inordinate amount of server capacity. We were in the pro-
cess of modifying our local filesystem to cluster reads and writes for higher disk file throughputs (similar to
[MCVO91]). I wanted remote NFS clients to achieve throughputs similar to those of local processes modulo net-
work limitations.

4. Background
This section contains background information on various NFS topics; it is provided to help understand the
environment in which write gathering operates. References to "typical" NFS clients and servers refer to imple-
mentations of NFS derived from the 4.3BSD based kernel implementation available from Sun Microsystems, Inc.
Similarly, the term reference port will refer to this implementation. My work was done with version 4.2 of the
reference port. The following characterizations should largely apply to other NFS implementations as well.

4.1. NFS Clients
NFS client systems range in size from single-threaded (dumb) PCs to small workstations to large multi-processor
timesharing systems with hundreds of users.

Typical NFS clients (and servers) communicate via UDP messages with an effective maximum size (excluding
protocol headers) of 8K. A typical client will retransmit a request if it has not received a response from the server
for that request within an interval of time that defaults to a starting value of 1.1 seconds. The retransmission inter-
val is dynamically adjusted based on past server performance. Server write performance is an important part of the
client backoff algorithm. Since the write operation is typically the most expensize for the server to perform, and
with the highest latency, write performance is used as an indicator of server performance for heavyweight opera-
tion types. Poor write performance will affect client behavior with respect to other types of requests. (The other
two indicators are performance of read (middleweight) and lookup (lightweight) operations.)

A client system can have multiple outstanding read and/or write requests. A client process blocks whenever a read
or write request cannot be satisfied locally and must be processed by the server. When it blocks, another process
can run; that process may also generate a read or write request. A single process can have multiple outstanding
read and/or write requests if the client system is running NFS block I/O (biod(8) or nfsiod(8)) daemons, referred to
simply as biods from here on. Biods perform client read-ahead and write-behind functions asynchronously, allow-
ing the client process to continue execution in parallel with client/server communication.

Let’s assume a typical workstation-class client system that is running biods, and a client process, C, that is gen-
erating write requests. When C generates a write that "needs to go to the wire" (a client kernel decision, typically
decided by the application writing to the end of an 8K cache block), the task of communicating the write request
is handed off to a biod and C continues. If no biod is available for hand-off, then C will block until that
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particular request has received a response. This is independent of responses received for earlier writes handed off
to biods. The blocking of C provides a simple client/server flow control.

Most NFS clients impose a sync on close semantic where the close(2) call blocks until all outstanding writes have
received responses. Mostly this is to capture an ENOSPACE server response to asynchronous write requests and
communicate it to the client application process.

4.2. NFS Servers
NFS server systems range in size from workstation-class systems with several disks to large multi-processor sys-
tems with disk farms.

A typical NFS server system simply waits for work to appear on an incoming request queue. This queue is the
socket buffer allocated for the NFS socket. Incoming requests are converted into a form understandable by the
local filesystem routines that actually perform the work of getting data to/from a disk. The incoming request
queue is typically of fixed size. If the queue fills (requests coming in faster than they can be processed) then some
incoming requests may be lost and client backoff/retransmission comes into play. The server depends upon its
clients to attenuate their request loads as it becomes heavily loaded (i.e. the aggregate load is coming in faster than
can be processed). Write requests are typically large and time consuming; processing them more quickly and
efficiently can help keep a server ahead of its clients.

The amount of work that a server can perform is called server bandwidth or capacity. It is usually limited by
exhaustion of one of the following three:

d CPU capacity,

d network interface capacity, or

d disk subsystem capacity.

Server capacity is sometimes measured in a general manner, e.g. NFS operations/second over some sort of opera-
tion mix (e.g. SPEC/LADDIS), and sometimes specifically, e.g. read or write speed in Kbytes/second. When seek-
ing maximum capacity, a benchmarker typically adds network and I/O capacity until CPU is exhausted.

A typical server does not assign priorities to incoming requests based on type of request or originating client. It
processes incoming requests within the context of several nfsd daemons. The number of nfsds controls the number
of NFS requests that a server can work on concurrently.

4.3. NFS Server Writes and Stable Storage
An NFS server should commit any modified data to stable storage before responding to the client that the request
is complete [SAND85]. If a server is not following this rule, then it is not living up to its part of the agreement
implicit in the NFS crash recovery design. An asynchronous operation carries with it the promise to fully com-
plete that operation at some later time. The NFS protocol contains no provisions for recalling past promises
(which is precisely why crash recovery is so easy). Without a way to recall past unkept promises, a server should
not make them. Traditionally, this meant that the server had to fully commit all data and modified metadata asso-
ciated with the write operation to disk before responding.

The cost, in latency and server loading, of meeting this requirement is significant, and has led to varying vendor
reactions and developments:

d The appearance of filesystem accelerators consisting of s/w and non-volatile RAM (NVRAM) h/w, e.g.
Prestoserve [MORA90], [PRES93], that address the issues of latency and, to some degree, I/O loading (but
not server CPU loading) while operating within the stable storage paradigm.

d Some vendors have chosen to make async NFS writes, a.k.a "dangerous mode", an administrative option.
In this scenario, the server responds after data is committed to volatile storage, whether main memory or
disk controller, an option. Some vendors have made this mode the default behavior and supply an un-
interruptible power supply (UPS) with their servers. Some vendors simply make it the default behavior
without UPS.

After much discussion, SPEC has arrived at the following requirement for reporting SPEC/LADDIS baseline
results [SPEC93]. A baseline-conforming NFS server must:
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d commit all write data and associated metadata to disk,

d or to other stable storage (e.g. NVRAM) that is recovered and flushed to disk after server failure,

d or to volatile RAM (main memory) if powered by UPS *and* if the OS supports data recovery following
power and h/w failures.

This paper assumes that the server conforms to the SPEC baseline reporting requirements with respect to stable
storage guarantees by using one of the first two operational techniques listed above.

4.4. Local Filesystem Operations
This paper assumes that the filesystem being served is of BSD FFS vintage [MCKU84], as is the case with the
reference port. My work was done using a BSD 4.3 filesystem (UFS) with extensions that cluster reads and writes
into larger device request sizes (up to 64K) in a manner similar to that described in [MCVO91].

For each remote write request, at least one, and possibly two or three synchronous disk operations must be per-
formed by the server before a response can be sent to the client indicating that the request has been completed. At
the very least, the data block in question must be written. If the write increased the size of the file, or on-disk
structures have changed (e.g. adding a direct block to fill a "hole" in the file), then the block containing the inode
must be written. Finally, if an indirect block was modified, then it too must be written before responding.

The reference port makes a special case for the file modify time in the inode. If modify time is the only item
changed in the inode as a result of a write operation, i.e. a write to a previously allocated block, then the inode
update to disk is performed asynchronously. This (the file modification time) is one promise that the server may
not keep; this risk is taken for the benefits of better performance.

5. A Case Study
Let’s assume we are using a network monitoring tool (like tcpdump(8)) to observe the network while client pro-
cess C, described earlier, writes a reasonably large new file, and for the sake of simplicity assume that the client is
doing nothing else, and that this is a private network. Finally, let’s assume that the client and a typical server, S,
are well matched enough so that we don’t have any lost requests or responses, timeouts, etc.

As C begins to run, network traffic will resemble a freight train of 8K (actually a little larger due to protocol
headers, etc.) datagrams fragmented into transport units directed toward S. The total length of the train is depen-
dent upon the number of biods available for use by C. Many biods mean a very long train. The time needed for S
to process the first write request (which was handed off to a biod) is typically larger than the time needed for C to
generate more requests. Several, and perhaps many, writes can build up on the server side before the first
response is sent. Process C blocks when the biods all become busy. The traffic direction now changes to one of
responses directed toward C at intervals of time needed by S to process the buffered write requests. No further
requests are generated by C until a response is received for the last write request; the traffic direction now switches
again as C resumes processing. A cycle of these uni-directional traffic shifts continues as described above until the
entire file has been transferred.

The left half of Figure 1 (the communication between Client and Standard Server) depicts a portion of this traffic
flow for the 4 biod case, after the client has written about 100K of data.

If the file in question was newly created and of size N*8K, and the server filesystem was of blocksize 8K, then the
total number of server disk operations was roughly 3N:

d N data writes,

d N inode block updates,

d N indirect block updates (minus n direct blocks)

6. Write Gathering
The write gathering technique described here attempts to reduce the 3N disk operations described in the previous
section (A Case Study) to as close to N as it can. With an underlying filesystem that supports clustering
[MCVO91], and a sequential write pattern, the number of disk operations can be reduced far below N. Optimal
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write gathering occurs when the minimal number of disk transactions is generated for a particular load with a par-
ticular underlying filesystem. The description of write gathering that follows assumes an underlying server filesys-
tem (e.g. UFS) that supports write clustering.

The object of this technique, from the perspective of an nfsd, is to avoid doing the metadata update. An nfsd, D,
tries to assign this task to some other nfsd which will send D’s response as well as its own.

If we use the network monitoring example from the previous section with a write gathering server instead, the
change we see is in the timing of the replies from server to client. The server "digests" all the write requests and
sends replies in first in, first out order; all the replies have the same file modify time in the returned file attributes.
The total elapsed time from first request to last reply is less due to disk efficiencies (fewer, larger writes, fewer
seeks).

The right half of Figure 1 (the communication between Client and Gathering Server) depicts a portion of this
traffic flow for the 4 biod case, after the client has written about 100K of data. In this case, optimal write gathering
of 3 disk transactions has been achieved.

6.1. NFS/RPC Architectural Changes
In a reference port server, each nfsd process makes a call into kernel level RPC (the svc_run() routine) with a tran-
sport handle (used to store client and request information) and the address of an NFS layer routine (rfs_dispatch())
that dispatches incoming requests to appropriate server layer action routines (e.g. rfs_write() for incoming write
requests). Svc_run() does not return until the nfsd process dies. Information needed to send a response is stored
in the transport handle which is tied to the nfsd process that started work on the request. When the action routine
returns, rfs_dispatch() sends the reply to the client and returns to svc_run().

This architecture was modified so that one nfsd can process a write request to a certain point and then arrange for
another nfsd to send the reply. The first nfsd is then free to look for other work. It returns an indication to
rfs_dispatch() that the reply is delayed, who conveys this back into the RPC layer; another transport handle is
taken from a cache of free handles and the nfsd process is ready to process other work, possibly another write to
the same file. This architecture allows optimal write gathering to take place with as few as one nfsd available on
the server; this is an architecture that should scale well for large servers with many active client writers.

6.2. New Data Structures
A global array of nfsd state was created so that one nfsd can ascertain the state of others. Most notably, whether
another nfsd is processing a write, and to which file, and to which offset and length, and at what stage the nfsd is
in the processing of a write. With this information an nfsd can decide whether it can leave the task of metadata
update to another, "following" nfsd.

As mentioned above, a cache of free transport handles was implemented, along with data structures that package
up active write requests for handoff and a queue of these active requests.

OSF/1 provides a vnode spin lock, but not a sleep lock. I added a vnode sleep lock for nfsd serialization and syn-
chronization.

6.3. Prestoserve/NVRAM Acceleration vs. Disks
NVRAM accelerated disks have radically different latency properties from non-accelerated ones. With a non-
accelerated disk, the best policy is to cache/coalesce/cluster writes within UFS as long as possible in the hope of
doing fewer, larger disk writes. With a Prestoserve accelerated disk, the best policy is to get individual writes
down to the Prestoserve driver (Presto) as soon as possible. Presto does its own clustering. With Presto there is
no benefit to holding writes within UFS as when using a non-accelerated disk; in fact it is less efficient because
Presto can drive disks asynchronously and in parallel with NFS write and reply processing. Also, due to the rela-
tively small size of the NVRAM cache (typically one or more MB), Presto may decline to accept requests above a
certain size (typically 8K), resulting in performance that degrades to underlying disk speed.

The observations above lead to a duality within the server write layer; it was modified to query Presto as to
acceleration state of a filesystem (on/off) and operate in different ways depending upon state.



- 6 -

6.4. Filesystem Hints Through VFS
The VFS (GFS for ULTRIX) layer was modified so that the server layer could send hints to the underlying filesys-
tem.

If the filesystem is accelerated, the VOP_WRITE routine is called with the IO_SYNC and the (new)
IO_DATAONLY flags, delivering the data to Presto but delaying any metadata copies (and consumption of CPU
cycles). If the filesystem is not accelerated, the VOP_WRITE routine is called with the (new) IO_DELAYDATA
flag, freeing UFS to choose its own clustering policy (and perhaps starting an asynchronous write). Metadata is
flushed via a call to VOP_FSYNC with the FWRITE and the (new) FWRITE_METADATA flags to ensure that
only the inode and indirect blocks are flushed.

For non-accelerated disks, when write gathering terminates (described below) and metadata is flushed, data blocks
are flushed via a call to the (new) VOP_SYNCDATA routine with beginning and ending offsets as hints.

6.5. The Socket Buffer
With Prestoserve acceleration, there is often no I/O event associated with a VOP_WRITE, and the nfsd process D
does not block. If it does not block there is no opportunity for write requests to be delivered to other nfsds even if
they have been placed on the socket buffer. A routine (the mbuf hunter) was written (hacked) to scan the socket
buffer searching for NFS writes for a given file and returning true/false. The mbuf hunter is a gross violation of
kernel layering, but with a fast server this technique is often a win (and thus the hack has redeeming virtue).

6.6. Procrastinate
(pro-kras’-ti-nate) verb. To put off, esp. habitually, doing something until a future time. --pro-cras’ti-na’tor.
This is probably the most controversial aspect of write gathering. The technique injects a small amount of latency
into the processing cycle, hoping to give another write request an opportunity to arrive at the server. This latency
is approx. (modulo h/w clock accuracy) 8 msec for Ethernet or multi-segment requests and 5 msec for FDDI based
requests. These values were derived via empirical lab experiments. Private networks were used to ascertain values
that allowed for optimal gathering, and a tick or two was added for conservatism. Also, systems in more general
use have been monitored for gathering success rates (but conclusions are sometimes difficult to draw without
detailed knowledge of request patterns).

I wish I could say I know how to calculate the "right" number, but I don’t. Clearly there is room for more work
here. When write gathering "fails" because the server didn’t wait long enough, it falls back to typical, standard,
server processing behavior.

The implementation described in [SIVA93] takes the first write encountered and sends it to disk, using this opera-
tion as "the latency device" which gives more write requests time to arrive at the server. I considered this approach
early on and abandoned it for two reasons:

First, running spindles with a request pattern of anything other than a pure stream of large requests is sub-
optimal in both drive throughput and CPU utilization. It’s difficult to approach raw device speeds with 8K
requests in the device queue without dangerous mode operation (controller write caching). Ignoring protocol
requirements, still leaves too many trips through the driver.

Second, it just won’t work with NVRAM acceleration where the first write is done faster than other writes
can arrive.

6.7. Order of Replies
At first it seemed a good idea to order replies in LIFO order so as to wake up a blocked client process C (see A
Case Study, above). In fact, this yielded dismal results for the common file transfer case because C would generate
fewer (and maybe none for a fast client) writes before blocking the next time if there were not enough biods avail-
able. LIFO was abandoned for FIFO; this optimized the case of a single sequential file writer. It also seems rea-
sonable to free up biods on the client for other work (by other processes) sooner, in the multiprocessing client
case. Note that FIFO is the order used by typical (standard) existing servers, and this is not a change in behavior.
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6.8. The Write Gathering Algorithm
D is an nfsd handed a write request:

Hand off data to UFS via VOP_WRITE (as described above).

Do
Look for another nfsd blocked on the same vnode.
If one is,

Add write descriptor to the active write queue.
Return to rfs_dispatch() with a reply-pending code.

Else search the socket buffer for another write request to the same file.
If there is,

Add write descriptor to the active write queue.
Return to rfs_dispatch() with a reply-pending code.

Sleep (procrastinate) for a transport dependent interval.
While not procrastinating more than once.
Become the metadata writer and assume responsibility for this file:

Flush this and other data for active writes via VOP_SYNCDATA.
Flush the metadata via VOP_FSYNC.
Send all pending replies for the file to the client.
Return to rfs_dispatch() with a reply-done code.

6.9. Duplicate Requests, Stale File Handles, Etc.
Stale file handles are client references to files that no longer exist. See [JUSZ89] for a discussion of duplicate
NFS requests.

The existence of these requests, in the socket buffer e.g., could have caused nfsds to delay their replies. The
implementor must not to be too hasty discarding duplicates, etc. (meaning I was at first!); this could result in
orphaned writes on the active write queue with no meta data writer to send replies.

6.10. What About Dumb PCs?
Single threaded PCs (or clients with no biods, or clients that emit a single write every once in a while) are the
worst case for write gathering. There is added processing and latency for no gain. The actual measured loss from
the client’s perspective (easily simulated by killing all biods) is about 15% in throughput (over Ethernet) with a
reasonably quick server and a quick single threaded client (see Results). This loss decreases in significance as
slower clients are used.

6.11. What About Random Access?
The write gathering algorithm does not assume an ordering on the delivery of writes. A grouping of random
access writes will accrue the same benefits of metadata amortization as a grouping of sequential access writes.
The clustering of data blocks, and the resultant number of disk transactions for them, is an underlying filesystem
issue.

7. Results

7.1. NFS Sequential Write Bandwidth
This section contains the results of experiments where a 10MB file is written over private Ethernet and FDDI net-
works with and without write gathering in effect and while varying the number of client biods. The server used 8
nfsds. For Ethernet, the client and server are DEC 3400s, the server is using an RZ26 (1GB SCSI) disk. For
FDDI, I used somewhat faster systems (for no better reason than that is the way my lab is set up), the client is a
DEC 3500, the server is a DEC 3800, using either one, or a stripe set of three RZ26 disk(s), as labeled.
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Table 1 shows the experiment, without write gathering, being limited by spindle speeds for 8K transfers. Table 1
also shows the cost of write gathering in the worst case (no biods) as 15%, and the gain in the best case (15 biods)
as 228%. For the 7 biod case the gain is 145%.

Table 1. NFS 10MB file copy: Ethernet���������������������������������������������������������
# of Client Biods 0 3 7 11 15���������������������������������������������������������
Without Write Gathering

client write speed (KB/sec.) 165 194 201 203 205
server cpu util. (%) 9 11 11 12 12
server disk (KB/sec) 480 570 590 590 590
server disk (trans/sec) 61 71 72 73 74���������������������������������������������������������

With Write Gathering
client write speed (KB/sec.) 140 375 493 575 674
server cpu util. (%) 7 14 16 19 21
server disk (KB/sec) 415 550 610 660 750
server disk (trans/sec) 52 47 24 31 21

What is not obvious in Table 1 is that write gathering is conserving server CPU (by saved UFS and driver trips);
this is hidden by the greater throughput. Table 2 shows the same disk under Prestoserve acceleration, where the
latencies involved are NVRAM copies instead of moving head disk operations. With Prestoserve (where Presto is
clustering and handling the underlying disk efficiently), write gathering increases CPU efficiency at the expense of
some client throughput. The 7 biod case shows a decrease of 26% in server utilization at the cost of 15% in client
throughput. The bulk of this savings is the reduction of metadata operations through UFS and Presto.

Table 2. NFS 10MB file copy: Ethernet, Presto�������������������������������������������������������������
# of Client Biods 0 3 7 11 15�������������������������������������������������������������
Without Write Gathering

client write speed (KB/sec.) 809 1025 1080 1103 1112
server cpu util. (%) 30 38 41 42 43
server disk (KB/sec) 789 1004 1080 1104 1080
server disk (trans/sec) 7 8 9 9 9�������������������������������������������������������������

With Write Gathering
client write speed (KB/sec.) 439 787 915 959 991
server cpu util. (%) 18 26 30 32 34
server disk (KB/sec) 430 770 885 949 985
server disk (trans/sec) 4 7 7 9 8

Now we change the configuration by moving to an FDDI network, reducing network latencies, server CPU over-
head due to packet reassembly, etc. In Table 3, for the 15 biod case, we see the server processing NFS writes at
about 1MB/sec. without Presto acceleration.

Table 3. NFS 10MB file copy: FDDI�����������������������������������������������������������
# of Client Biods 0 3 7 11 15�����������������������������������������������������������
Without Write Gathering

client write speed (KB/sec.) 207 209 207 209 208
server cpu util. (%) 6 6 6 6 6
server disk (KB/sec) 605 610 605 615 615
server disk (trans/sec) 76 77 76 75 77�����������������������������������������������������������

With Write Gathering
client write speed (KB/sec.) 177 534 846 876 1085
server cpu util. (%) 6 9 10 11 12
server disk (KB/sec) 520 780 975 1000 1175
server disk (trans/sec) 66 65 38 45 33
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Table 4 shows the RZ26 disk being driven at the raw device write bandwidth limit for 64K transfers under Presto
acceleration.

Table 4. NFS 10MB file copy: FDDI, Presto��������������������������������������������������������������
# of Client Biods 0 3 7 11 15��������������������������������������������������������������
Without Write Gathering

client write speed (KB/sec.) 1883 1898 1863 1900 1918
server cpu util. (%) 33 34 35 35 34
server disk (KB/sec) 1833 1848 1844 1844 1900
server disk (trans/sec) 16 16 15 15 16��������������������������������������������������������������

With Write Gathering
client write speed (KB/sec.) 927 1850 1888 1895 1894
server cpu util. (%) 13 24 28 27 27
server disk (KB/sec) 910 1745 1889 1882 1867
server disk (trans/sec) 8 17 16 16 16

This experiment shown by Table 4. was limited by spindle speeds again similar to Table 1., but the client is
operating at near maximal device bandwidth. Tables 5. and 6., where a 3 drive stripe set is used, shows the effect
upon the configuration of increasing disk bandwidth. In Table 5., for the 15 biod case, write speed has increased
with write gathering by 262%; CPU utilization has increased 36%. In Table 6., for the 15 biod case, write speed
has decreased with write gathering by 20%, but CPU utilization has also decreased by 40% (relative to Table 5.).

Table 5. NFS 10MB file copy: FDDI, 3 striped drives����������������������������������������������������������������������
# of Client Biods 0 3 7 11 15 19 23����������������������������������������������������������������������
Without Write Gathering

client write speed (KB/sec.) 200 275 299 304 308 308 313
server cpu util. (%) 7 10 11 11 11 11 12
server disks (KB/sec) 560 827 865 895 879 921 927
server disks (trans/sec) 72 104 110 112 111 115 117����������������������������������������������������������������������

With Write Gathering
client write speed (KB/sec.) 187 574 814 987 1115 1287 1618
server cpu util. (%) 7 11 13 15 15 18 22
server disks (KB/sec) 560 785 984 1109 1225 1384 1695
server disks (trans/sec) 71 72 60 65 67 71 74

Table 6. NFS 10MB file copy: FDDI, Presto, 3 striped drives
# of Client Biods 0 3 7 11 15 19 23����������������������������������������������������������������������������
Without Write Gathering

client write speed (KB/sec.) 2102 3403 3394 3503 3474 3360 3342
server cpu util. (%) 40 66 69 68 70 71 70
server disks (KB/sec) 2067 3146 3515 3349 3305 3575 3445
server disks (trans/sec) 47 71 80 77 76 80 78����������������������������������������������������������������������������

With Write Gathering
client write speed (KB/sec.) 1015 2144 2649 2775 2754 3078 3048
server cpu util. (%) 6 29 42 42 42 43 46
server disks (KB/sec) 1008 2143 2644 2724 2685 2501 2627
server disks (trans/sec) 22 49 61 62 63 59 63

7.2. SPEC/LADDIS Results
Writes are a small (15%) portion of Nhfsstone [LEGA89] and SPEC/LADDIS [WITT93] workloads, but they are
expensive to process. This technique yielded a positive effect on SPEC/LADDIS server throughput and latency
via its server efficiency gains. Figure 2 shows an increase of 13% in server capacity along with an 11% reduction
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in average latency for a DEC 3800 server using write gathering as measured by SPEC SFS 1.0 (LADDIS). Figure
3 shows more modest, but still positive, gains for the same configuration with Prestoserve in effect.

8. Future Work
The NFS Version 3 protocol supports reliable asynchronous writes in addition to the Version 2 stable storage write
semantics. Many V3 clients may opt for the simpler kernel implementation of V2 write semantics. This will
ensure the usefulness of write gathering in a V3 environment. It will be interesting to see if this technique applies
itself in some new way in a mixed environment of V2 clients, V3 clients using V2 semantics, and V3 clients using
reliable asynchronous writes.

The worst case scenario for the current write gathering algorithm is with single threaded clients, such as dumb
PCs, where there is never an opportunity to gather writes, and the CPU effort and added latency is a loss. This is a
tradeoff that should be considered by the implementor and/or server administrator (it’s easy to turn write gathering
off). Some might say that it’s doubtful whether a truly dumb (spelled slow) PC can tell the difference with an oth-
erwise fast server, but it would be very nice to say that there is no performance penalty for single threaded writers.
Jeff Mogul has suggested a scheme where the server builds a small database of "learned" information about indivi-
dual clients, and uses this to direct gathering behavior. Clearly there is room for improvement here.

9. Conclusions
Write gathering can help to improve server capacity. It takes a lot of CPU cycles to run the disk driver and field
device interrupts and/or copy data to NVRAM. If the NFS server layer can avoid some disk writes it is a big win;
big enough to make it worth the gamble of spending some CPU cycles trying to be clever and avoid the writes.

Write gathering improves write bandwidths. Write gathering plays well with UFS clustering; it is possible to get
closer to raw device speeds with NFS writes because fewer, larger, disk writes are done and fewer seeks and
missed rotations are experienced. I was able to achieve a significant increase in client write speeds while at the
same time often reducing server loading.

Write gathering exploits client behavior (i.e. biods) that has been typical in workstation clients since NFS was
introduced. Write gathering efficiencies increase as the number of biods increase and has led some vendors to
increase their defaults. With 8K transfers and UFS 64K clustering, 7 biods result in the ideal case on the server of
one 64K disk write for data and one metadata update per set of (application + 7 biods) requests. The addition of
more biods on the client may increase throughput if the carrying capacity of the network/server can support it (the
server socket buffer, e.g., is a limit: DEC OSF/1 currently uses a maximum of .25M for socket buffering). As a
rule of thumb, I don’t recommend more than 7 biods for general purpose/heavily used networks.

The work described here was done for a filesystem with BSD FFS vintage on-disk structure [MCKU84]. Log-
based and log-structured local filesystems are becoming more popular. Although on-disk structures may vary, the
NFS stable storage requirement imposes a relationship between disk performance and server write performance.
Hopefully this description of gathering network originated write requests in a network service layer, and the pass-
ing of hints from this layer to the underlying local filesystem, will prove useful with other filesystem types.

The implementation described here was made part of the ULTRIX Version 4.3 and DEC OSF/1 Version 1.2
operating systems.
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