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Abstract

Severa studies have shown that operating system performance has lagged behind improvements in applica
tion performance. In this paper we show how operating systems can be improved to make better use of RISC
architectures, particularly in some of the networking code, using a compiling technique known as Profile Based
Optimization (PBO). PBO uses profiles from the execution of a program to determine how to best organize the
binary code to reduce the number of dynamically taken branches and reduce instruction cache misses. In the case
of an operating system, PBO can use profiles produced by instrumented kernels to optimize a kernel image to
reflect patterns of use on a particular system. Tests applying PBO to an HP-UX kernel running on an HP9000/720
show that certain parts of the system code (most notably the networking code) achieve substantial performance
improvements of up to 35% on micro benchmarks. Overall system performance typically improves by about 5%.

1. Introduction

Achieving good operating system performance on a given processor remains a challenge. Operating systems
have not experienced the same improvement in transitioning from CISC to RISC processors that has been experi-
enced by applications. It is becoming apparent that the differences between RISC and CISC processors have
greater significance for operating systems than for applications. (This discovery should, in retrospect, probably not
be very surprising. An operating system is far more closely linked to the hardware it runs on than is the average
application).

The operating system community is still working to fully understand the important differences between
RISC and CISC systems. Ousterhout did a study in 1990 that showed that the failure of memory systems to keep
pace with improvements in RISC processor performance has had a disproportionately large effect on operating
system performance [1]. Mogul and Borg [2] showed that context switches in RISC processors take a surprisingly
long time and suggested cases where busy waiting was actually more efficient than taking a context switch. Imple-
mentation work by Van Jacobson at Lawrence Berkeley Labs [3] (supported by work by Partridge and Pink [4])
has shown that techniques such as fitting the instructions to do an 1P checksum into the otherwise unused instruc-
tion cycles between load and store instructions in a memory copy can dramatically improve networking perfor-
mance. These studies are probably only the beginning of a series of improvements that will come about as operat-
ing systems designers better understand RISC platforms.

(We should note that newer CISC processors are increasingly using features such as pipelines and super-
scalar architectures pioneered by RISC systems. As aresult, many of the optimizations used on RISC processors
now can be applied to kernels on CISC processors as well. However, to simplify discussion the rest of this paper
will continue to talk of *“RISC” systems).

This paper looks at another performance question in operating system performance on RISC systems. By
their nature, operating systems spend a lot of time doing tests such as confirming that arguments to system calls
arevalid, that packet headers received from a network are valid, or that adeviceisidle (or busy). Ultimately, these
logical tests are encoded as conditional branch instructions on the target processor.

The frequent tests have at least two causes. First, operating systems typically have multiple concurrent oper-
ations in progress at once, and must regularly check that the operations do not interfere. Second, an operating



system spends much of its time handling small requests from possibly defective (and thus untrustworthy) applica-
tions and therefore must confirm that any information it receives is correct. One can contrast this approach with
programs, which rarely support concurrency and often do large amounts of computation without having to worry
about external sources of errors.

Because operating systems have to do so much testing, we hypothesized that one reason operating systems
do less well than applications on RISC systems is that they suffer more from branch penalties and cache misses.
In other words, because operating systems have a lot of branches and because mispredicting which way a branch
will go often causes a processor pipeline stall and even a cache miss, operating systems lose a lot of performance
due to mispredicted branches. (For instance, in the HP-UX operating system [5] on the PA-RISC processor [6],
nearly one instruction in five is a branch instruction, and almost half of those are conditional branches). In our
work, we expected branch-related performance problems would be particularly notable in the networking code,
because networking code must deal with both input from applications and input from the network. To test our
hypothesis, we examined ways to tune the kernel to minimize mispredicted branches, with particular attention paid
to performance improvements in the networking code.

2. RISC Processors and Profile Based Optimization

The technique we used to experiment with kernel performance is called profile based optimization (PBO).
This section describes RISC architectures in brief to illustrate the problems PBO tries to solve and then explains
PBO.

2.1. RISC Processors

RISC processors differ from other processor architectures primarily in the extreme uniformity enforced on
the instruction set in order to create a simple instruction pipeline. Because our work was done on a PA-RISC pro-
cessor (the PA-RISC 1.0, known as Mustang), this section will use that processor as the example.

The PA-RISC Mustang has the five stage CPU-pipeline as shown below:

PA-RISC Mustang CPU Pipeline
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Fetch Inst Decode | Branch | Arithmetic | Results

The pipeline can be viewed as an assembly line where one new instruction is fed into the pipeline at the start
of each clock cycle and moves one stage further through the pipeline with each clock tick. Fiveinstructions can be
processed concurrently in the pipeline. Instruction fetch takes place in the first stage, followed by instruction
decoding. After the instruction is decoded, branch targets are calculated, logic operations are done, and conditions
codes are set in the third and fourth stages. Finally, the results of the operations are written in the fifth stage.

If an instruction to be fetched in the first stageis not in the processor’s instruction cache, the processor stalls.
Execution resumes when the missing instruction is retrieved from main memory. Instructions are loaded from
main memory in groups of 8 instructions (a 32-byte cache line). The processor can start executing the missing
instruction as soon as it comes in from main memory (even if the cache load is not yet complete). The instruction
cache on this machine is adirect mapped cache and distinct from the data cache.

One problem with pipelining is that for conditional branch instructions, the instruction must move through
the first two stages of the pipeline before the processor can determine the value of the condition. The value of the
condition determines which of two instructions (the instruction after the branch, or the target of the branch) will
next be executed. Because the outcome is hot known until the branch instruction is at the end of the third stage, if
the processor is to keep the pipeline full, it must make a guess about the outcome of the condition. If the processor
guesses wrong, it must nullify the instructions that have been incorrectly started down the pipeline and then start
over, loading the correct instruction in the first stage of the pipeline. The cycles wasted due to mispredicted
branches (those occupied by instructions that were fetched incorrectly and later nullified) are called control haz-
ards or branch stalls. Their effect on execution time is roughly the same as inserting several NO-OP instructions
into the executing programs instruction stream.



Another general problem with branches (conditional or not) is that when a branch is taken, its target instruc-
tion may not be in the processor’s instruction cache, causing a processor stall (even more NO-OPs). To reduce the
chance of a cache miss, it is usually desirable to have the most likely target of the branch be near the branch
instruction so that the branch and its target are more likely to be cache resident at the sametime.

A less obvious penalty for mispredicting a branch is that the mispredicted instruction may also cause a cache
miss. This cache miss can be harmful in two ways. First, the code containing the mispredicted instruction may
overwrite a section of processor cache that contains active code (which may have to be reloaded later). Second, if
the correct instruction is also not in cache, loading the wrong 8 instructions may delay loading the correct instruc-
tion because the processor cache line is still busy loading the wrong instructions when the processor issues the
request for the correct instruction. Thus the net effect of a mispredicted branch is often that processor resources
are used very inefficiently [7].

Overdll, therefore, it is reasonable to expect that minimizing the number of mispredicted branches has the
potential to reduce the execution time of a program or operating system, both by reducing branch stalls and
increasing overall instruction cache efficiency. At a minimum, each branch stall eliminated will reduce execution
time by at least one clock cycle.

2.2. Profile Based Optimization

The work described in this paper employs a technique for improving branch prediction and instruction cache
usage using profile information gathered from a running system and analyzed by the compiler. The technique is
known as Profile Based Optimization or PBO [8]. Support for some PBO has been available in the HP-UX com-
pilers since version 8.02. We used the HP-UX 9.0 compiler which is more aggressive in its use of profile datato do
code optimization.

Although PBO has already been applied to severa user level applications such as SPEC92, database servers,
compilers and Xserver, it has not previously been applied to an operating system. We had to implement additional
profiling support in the HP-UX kernel to make these experiments possible. (PBO requires kernel modifications for
the same reason grof [9] does. Unlike applications, the kernel does not load initialization routines from alibrary
and does not normally terminate. So routines to cause the kernel to initialize PBO data structures and to retrieve
PBO data from arunning kernel were needed).

2.3. What PBO Does

The Profile Based Optimization available in version 9.0 of the HP-UX language products currently performs
two optimizations. These optimizations are:

1.  To reorder the basic blocks of a procedure such that the most heavily used basic blocks (a code
sequence without a branch) are placed contiguously in an order which favors the hardwares branch
prediction logic. This optimization reduces the overall number of mispredicted branches during
execution.

2. Toreorder the procedures of a program such that procedures on most frequent call-chains are laid out
contiguously. By repositioning the procedures in this order, paging and to a lesser extent, cache
misses, are reduced [8]. Also by placing most caller-callee pairs closer together in the code layout,
fewer long branch sequences are needed to reach the callee (a long branch on PA-RISC takes two
instructions).

Observe that both optimizations are code optimizations and nothing is done to reorder the data segment of the pro-
gram. Furthermore, the two optimizations are independent of one another.

2.4. How PBO Works

PBO produces and uses an execution profile from a program to perform its optimizations in a three step pro-
cess.

In the first step, the program code is instrumented to collect an execution profile. On the HP-UX C compiler,
the + I option causes the code to be instrumented. Every arc connecting the nodes of a basic blocks control graph
for each procedure is instrumented during the code generation phase. After code generation, the linker then adds



instrumentation for every arc of the procedure call graph.

The second step is to run the instrumented executable with some typical input data. For regular programs
that run to completion, a profile database is generated when the program completes. In the kernel’s case, a sepa-
rate application must extract profile information from the kernel when profiling has been completed.

The last and the fina step is to recompile the program using the profile data as an input to the compiler.
Under HP-UX, the +P option tells the compiler to examine the profile data. The compiler reads the profile
database and does basic block repositioning according to the profile. After the object files are built, linking is per-
formed. The linker reads the same database and performs procedure repositioning as dictated by the profile.

3. Benchmark Results

To test the effects of PBO on the HP-UX kernel, we selected four benchmarks that spent a significant
amount of their total execution timesin system (as opposed to user) mode. The benchmarks chosen were:

1. McKusick Kernel Performance Benchmark.
This benchmark was developed to assist in the performance improvement of 4.2BSD UNIX at U.C.
Berkeley in the 80's [10]. The benchmark was designed to be relatively insensitive to hardware con-
figuration changes as long as its minimum needs are met. It performs a number of common system
services with several different variations in system call parameters. In this case, the benchmark works
heavily on exec, pipes, fork and other system calls. The overal time to execute the applications
(rather than the kernel performance) is measured.

2. OSBENCH Operating System Performance Benchmark.
The OSBENCH benchmark was developed by John Ousterhout at U.C. Berkeley and used in the 1990
study [1]. It is designed to measure the performance of some basic operating system services. The
benchmark performs memory copies with various size buffers, performs some rudimentary file manip-
ulation using various sizes of files, tests pipe performance, checks simple system call response time
using getpid(), measures read and write performance with a variety of parameters. It reports results
for the specific micro benchmarks.

3.  The KBX Kernel Benchmark.
This benchmark was devel oped by Doug Baskins at Hewlett-Packard to aid in the performance tuning
of the HP-UX operating system on HP workstations. It is similar to the other kernel benchmarks in
that it measures the time it takes to perform several iterations of various system requests.

4. Netperf Network Performance Benchmark.
Netperf was aso developed at Hewlett-Packard by the Information Networks Division. It is a pro-
prietary tool designed primarily to measure bulk data transfer rates and request/response performance
using TCP and UDP. In our tests, we used it to measure the time it took to move data through the pro-
tocol stack in the kernel.

The first three benchmarks were chosen because they are generally well-known and understood kernel
benchmarks. The netperf benchmark was chosen because it stressed the networking part of the kernel, which
we thought might give particularly promising results.

The instrumented kernel was run with a single benchmark to obtain a profile database. The kernel was then
recompiled with the profile database to produce an optimized version. Note that the kernel was optimized sepa-
rately for each of the four benchmarks and the only optimization applied was PBO.

Once an optimized kernel was generated, it was run with the same benchmark and benchmark inputs used to
generate the PBO database. The results of the optimized kernel were then compared to those obtained by running
the base kernel that was built without any optimization. In the sections that follow, performance improvements are
always calculated as:

(time_base - time_opt) / time_opt

where time_base is the time it took to execute the benchmark (or portion thereof) on the base kernel and time_opt
isthe time it took to execute the benchmark on the optimized kernel. We also report the standard deviation for the



optimized results measured.

The results reported were obtained on an HP 9000/720 workstation with 64MB of RAM. The machine was
configured with 2 SCSI disks, each with approximately 100 MB of swap space, and connected to a 10 Mb/Sec Eth-
ernet. The workstation was running Release 8.07 of the HP-UX Operating System.

3.1. McKusick Results

The McKusick test measures aggregate performance and was run for five iterations on each system (because
the time for each iteration was small). The results were:

M cKusick Benchmark Perfor mance Results
Mean Time Mean Time StdDev  Improvement
Base System (sec)  Optimized System (sec)
117.40 112.00 0.89 4.8%

Note that because the McKusick benchmark measures application performance, the kernel improvement is
diluted by application time spent in user space (which was not optimized). System time accounted for approxi-
mately 85% of execution time which hints that the OS performance improvement measured by this benchmark is
around 6%.

3.2. OSBENCH Results

OSBENCH was run three times each on both the base system and the optimized systems. The results are
summarized in the table below. (Cases where the standard deviation was larger than the measured improvement
are marked with a“*’).

OSBENCH Optimization M easurements
Time Time Perf. .
Optimized Base Standard Impr. units measured
328 324 0.66 * cwcor_1K milliseconds
32.2 32.6 0.12 1.1% cwcor_4K milliseconds
32.2 323 0.24 * cwcor_8K milliseconds
56.3 65.8 0.53 17.0% cwcor_16K milliseconds
99.2 115.3 0.59 16.2%  cwcor_64K milliseconds
149.7 166.2 0.19 11.0% cwcor_128K milliseconds
0.42 0.42 0.01 * cswitch milliseconds
0.17 1.18 0.00 * getpid microseconds per iteration
0.16 0.17 0.01 * open_close milliseconds per open/close pair
30.095 31.697 0.443 53% read megabytes/sec.
53.25 60.04 5.72 12.8%  selectl/O microseconds per iteration
56.09 58.33 0.13 4.0%  selectl/1 microseconds per iteration
86.26 94.27 5.65 9.3%  select10/0 microseconds per iteration
87.14 92.07 0.31 5.7%  select10/5 microseconds per iteration
83.14 86.52 3.87 * select10/10 microseconds per iteration
107.81 109.62 0.51 1.7%  select15/0 microseconds per iteration
109.4 110.8 5.90 * select15/5 microseconds per iteration
102.6 102.8 241 * select15/15 microseconds per iteration

The results were somewhat disappointing because any improvement in most of the micro benchmarks was
obscured by the variation in the measured performance values.



3.3. KBX Kernel Benchmark

The KBX benchmarks proved to give far more useful results. Its micro benchmark results are shown below
and are the results of five runs of the benchmark.

KBX Optimization M easurements
T.|m.e Time Std Dev Perf. Microbench Measured
Optimized Base Impr.
1.6 16 0 0% getpid()
32.3 39.7 0.48 23% ioctl(0, TCGETA, &termio)
19.8 19.2 0 -3% gettimeofday(&tp, NULL)
1.0 1.0 0 0% sbrk(0);
15 1.6 0.04 7% j = umask(0);
402.6 416.7 1.25 4% switch -- 2 x (if (read/write(fdpipe, BUF, 20) != 20))
139.0 141.2 0.32 2% if (write/read(fdpipe, BUF, 20) != 20)
175.1 179.1 0.40 2% if (write/read(fdpipe, BUF, 1024) != 1024)
425.2 441.9 1.39 4% if (write/read(fdpipe, BUF, 8192) != 8192)
3935 448.8 5.39 14% j = creat("/tmp/temp", 0777) & close(j))
273.3 295.5 241 8% pipe(pd); close(pd[Q]); close(pd[1])
6327.6 6441.9 12.69 2% if (fork() == 0) exit(0);
4321.2 4406.0 6.43 2% if (vfork() ==0) _exit(0);
15067.3 15907.1 15.04 6% if (fork() == 0) execve("kbx", NULL, NULL);
16604.2 17409.9 68.15 5% if (fork() == 0) execve("kbx", args(1000), NULL);
15087.5 15901.6 31.00 5% if (vfork() == 0) execve("kbx", NULL, NULL);
16590.6 17411.8 36.72 5% if (vfork() == 0) execve("kbx", args(1000), NULL);
66.9 66.1 0.57 -1% if (read(fd_file, BUF, 20) != 20) from cache
88.5 88.1 0.10 -5% if (read(fd_file, BUF, 1024) != 1024) from cache
230.4 231.2 0.59 3% if (read(fd_file, BUF, 8192) != 8192) from cache
99.4 106.8 0.45 7% if (write/read(inet_socket, BUF, 20) != 20)
316.3 360.5 2.58 14% if (write/read(inet_socket, BUF, 1024) = 1024)
1504.3 1622.8 53.75 8% if (write/read(inet_socket, BUF, 8192) != 8192)
210.1 230.0 17.67 9% if (write/read(unix_socket, BUF, 20) != 20)
228.9 241.3 3.76 5% if (write/read(unix_socket, BUF, 1024) != 1024)
614.0 653.8 4.24 6% if (write/read(unix_socket, BUF, 8192) !=8192)
22.78s 23.68s 0.27 4% real time
3.28s 3.46s 0.15 5% user time
19.17s 19.92s 0.11 4% system time

With the exception of the huge improvement in ioctl performance (which was rather startling), the bench-
marks generally suggest that major performance improvements came in tests that did context switching. Most of
the read commands from files achieved little or no improvement, but activities that created a new context (e.g.,
fork) or sent data between processes (the socket and pipe tests) generally show a 5% to 10% performance
improvement.

Some of the tests that make up this benchmark actually took slightly longer to run after being optimized than
they did in the base case. This is because the optimization took data from the entire benchmark (not individual
micro benchmarks) to generate a new operating system and the best performance for the entire benchmark some-
times forced blocks that did not get used as much into less advantageous positions relative to the arbitrary loca
tions that they occupy in the base case. This observation is a strong reminder of the importance of selecting profil-
ing inputs that mimic the softwares most likely uses. In extreme cases, failing to do so could actually produce a
system that would run slower overall after being optimized.



3.4. Netperf Network Performance Benchmark

Netperf can run avariety of benchmarks. The benchmark we used measures the performance single byte
transactions (sending one byte messages which get one byte replies) using UDP and TCP over the loopback inter-
face in the kernel. This benchmark was designed to measure the impact of PBO on the protocol processing (e.g.,
code to handle the protocol headers) portion of the networking code by minimizing the data in each packet. To
avoid performance effects due to one-behind caches in the operating system, this benchmark was run several times,
with increasing numbers of parallel senders and receivers. These results are the averages of 3 runs sending over
the loopback interface. Performance is measured in bytes sent per second, but since each byte was sent in asingle
packet and received a single byte ack, the transmission rate is equivalent to one half the packets per second pro-
cessed.

netperf Optimization M easurements
L oopback Interface
Number of TCP/UDP Transmission (b/s) Transmisi'on (b/s) Std Dev Performance
Processes Base Optimized Increase
1 TCP 1568.13 2115.69 26.68 35%
2 TCP 1592.89 2124.56 39.87 33%
4 TCP 1556.98 2100.17 12.13 35%
8 TCP 1492.07 2001.53 9.65 34%
16 TCP 1459.67 1879.47 8.00 29%
1 UDP 1801.68 2164.94 10.03 20%
2 UDP 1800.52 2158.79 45.76 20%
4 UDP 1761.23 2164.87 25.44 23%
8 UDP 1685.63 2055.01 14.47 22%
16 UDP 1609.51 1951.92 8.27 21%

While the results do show that TCP, which has a number of internal caches, improves less as the number of pro-
cesses increases, the transaction rate still improves sharply for both protocols, even when the number of parallel
processesislarge.

As an experiment, we then ran the test to a remote (unoptimized) host over an otherwise quiet Ethernet.
Thistest is less representative of the effects of PBO, because the performance of both the remote host and the Eth-
ernet affect the results, but it gives a feel for how much an optimized kernel might benefit from dealing with unop-
timized kernel. Keep in mind as well, that while the kernel loopback is generally reliable and does not lose pack-
ets, real networks do lose packets so the transmission rates may be influenced by the need to retransmit a few
packets.

I solated Network Link to Remote Host
Number of TCP/UDP Transmission (b/s) Transmpﬁ_on (b/s) Std Dev Per formance
Processes Base Optimized Increase
1 TCP 1070.51 1204.96 4.86 13%
2 TCP 1821.14 2079.58 2.05 14%
4 TCP 1831.10 2081.56 19.97 14%
8 TCP 1838.91 2072.57 11.79 13%
16 TCP 1866.70 2109.90 12.31 13%
1 UDP 1163.50 1261.34 472 8%
2 UDP 1966.01 2064.20 481 5%
4 UDP 2011.84 2091.83 16.57 4%
8 UDP 2023.67 2094.12 18.34 3%
16 UDP 2052.65 2141.47 14.63 4%




The performance improvements are clearly far less than those achieved over the loopback interface in an optimized
kernel, but a 14% improvement in TCP performanceis still quite useful.

4. Conclusions

The results of the different benchmarks vary from a modest few percent to dramatic (over 30% in parts of
the networking code), but the overall results are certainly encouraging.

The results imply that, using PBO, users can at tune their UNIX kernels to better serve the particular 1oad
patterns they experience without changing aline of source code. Obvioudly it is still important to replace slow ker-
nel code with code that runs faster. The point is that PBO adds afinal, finishing, level of optimization that can be
very useful. Indeed, in some situations, such as the TCP and UDP transactions tested with netperf, the PBO
optimizations can yield exceptional performance improvements.
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