
The following paper was originally published in the

Proceedings of the 3rd USENIX Windows NT Symposium
Seattle, Washington, USA, July 12–13, 1999

M T E X — A B R I D G E F O R M I G R A T I N G C A D
D E S I G N E N V I R O N M E N T F R O M U N I X T O N T

Ty Tang, Vipul Lal, and Shesha Krishnapura

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

 MTEX - A Bridge For Migrating CAD Design Environment From
UNIX To NT

Ty Tang, Vipul Lal, Shesha Krishnapura
ty.tang@intel.com, vipul.lal@intel.com, shesha.krishnapura@intel.com

Design Technology, Intel Corporation

Abstract
This paper shares an innovative technology that we
developed while migrating Intel CAD design
environment from UNIX to Microsoft Windows NT
operating system. The UNIX to Windows NT
migration is a complex and challenging task because
the chip design environment involves CAD
applications, CAD infrastructure scripts, design flows
made up of UNIX-centric scripts and design data.

Due to the wide differences between UNIX and NT
scripting architectures, straight porting to native NT
scripting environment is not feasible without a
complete redesign and redevelopment of the CAD
infrastructure and design flow scripts. Our approach to
this problem was to develop a transition production-
capable mixed NT-UNIX CAD environment
technology, MTEX, with the eventual goal of complete
migration to a Windows NT CAD environment. This
technology solves the script migration problem and
supports a seamless mix of UNIX and NT centric CAD
tools.

In this paper we will present MTEX functionality, its
internal design and architecture.

1. Introduction
Intel’s current CAD environment is based on high-end
UNIX based RISC workstations. To harness the power
of the cheaper Intel Architecture (referred to as IA from
here on) platform and to have a single workstation that
supports both engineering and office tools, Microsoft
Windows NT (referred to as NT from here on) was
chosen as the operating system of choice. The UNIX to
NT migration tasks were broken down into the
following three activities:

• Porting of CAD tools

• Porting of the associated runtime environment

• Porting of the test environment

Most of the CAD tools are written in high-level
language such as C or C++, whereas the runtime and

the test environment were mostly UNIX centric C-shell
and Perl scripts.

Initially we estimated, rather incorrectly, that most of
our effort would be used in porting the design tools to
native Win32 APIs. As we progressed further, it
became evident that the porting of C and C++ tools to
Win32 APIs does not constitute a big task.

Porting of runtime and test environment to Windows
NT became a bigger challenge due to the
incompatibility of the scripting environment between
NT and UNIX. The current commercially and publicly
available UNIX utilities on NT were not mature enough
to support a production-worthy UNIX-like scripting
engine in multi-user mode that provides the identical
UNIX functionality. Other possibilities were evaluated
that included going in for one of the native Win32
scripting environment, DOS batch files, which was very
limited in functionality or Visual Basic which will
require complete re-architect of Intel CAD runtime and
test environment.

We finally realized that complete migration in one-step
to IA-NT as a CAD platform was not possible and a
creative but simple technique was needed to meet our
aggressive migration goal. This paper describes the
problems in detail and our innovative technology to
over come to the migration problems.

2. The Problem
The main problems that prevent Intel CAD design
environment from moving directly to a pure IA-NT
compute environment:

• UNIX-centric runtime and test environment
scripts can not be reliably ported to IA-NT

• Not having the complete set of design CAD
tools on IA-NT (compile time and run time
dependent tools)

Intel CAD runtime and test environment is made up of
millions of lines of UNIX-centric Perl and shell scripts.
The runtime environment drives the microprocessor
design flow process. These infrastructure scripts act as

gluing utilities that integrates the various CAD
applications into a functional design environment.
Some of the tasks include data format translation, data
extraction, simulation, data analysis, waveform
analysis, performance analysis, design validation, etc.
The CAD runtime environment needs to be both
accurate and reliable to support design processes that
might run for days.

The test system for CAD tool suite consists of UNIX
scripts which provide a dynamic and open environment
in the sense that these scripts can take any number and
type of test cases and analyzers as arguments. The test
system scripts rely heavily on UNIX-centric process
and user environment. Some tasks that appear
straightforward on UNIX might turn out to be non-
trivial on Windows NT. The following example
illustrates the point.

On UNIX, executing foo will output:

test data - success

On Windows NT, however, executing the same script
will fail due to couple of errors (even under tcsh with
proper TCSHSUBSTHB environment setup).

The first error happens when the script foo calls foo1.
Since foo1 is a tcsh script and Windows NT does not
support execute permission on scripts, "tcsh -f" needs to
be added to system() to invoke foo1 as follows:

system("tcsh -f foo1 ’grep -i -v fail’ datafile");

The second error is due to the fact that Win32 Perl does
not escape the single quote (’) character. As a result,
the second argument to foo1 on NT will be:

’grep -i -v fail’
instead of:

grep -i -v fail

as in UNIX. Of course, changing the single quote to
double quote (") will get the script to work under NT.

In brief, we want to bring up a point that even though
the commercial and public UNIX-like utilities are
available on Windows NT, the native NT scripting
environment does not remotely resemble UNIX
scripting environment. During the porting of our CAD
runtime and test system, we realized that the currently
available UNIX utilities for NT can not support and
maintain a production-level quality UNIX-like
infrastructure environment for Intel CAD tool
development and design activities on Windows NT.

Besides the many concerns we have with the UNIX-like
tools’ reliability and functional incompatibility on
Windows NT, the main discouragement comes from the
high failure rate of UNIX-centric scripts performing in
the integrated UNIX-like scripting environment under
Windows NT. We have pointed out some of the
problems in example one above. The many "little"
differences between UNIX and Windows NT such as
escape characters, executable loading mechanism,
search-path support for scripts, limited DOS shell, etc.
make the runtime environment highly unstable,
especially in cases where executable flows are moving
back and forth between Perl and shell scripts. These
scripts rely heavily on idiosyncratic UNIX environment
to behave properly.

Example: system($argv[1]), where $argv[1] can be an
executable, a Perl script, a shell script, or a command
series such as ’awk ... | grep ... | head ...’.

We came to the conclusion that we might be able to put
a patch here and there to fix the immediate problems as
they occur in our runtime and test environment.
However, with millions of lines of scripts, it is very
unlikely that we can achieve the stability level we need
for our CAD development and design activities. We
realized that we must not pretend that we are still using
UNIX on NT and began to investigate alternatives to
our problems.

3. The Analysis
Our project goal is clear and simple that is to move
Intel CAD design environment to IA-NT. Two primary
boundary conditions while meeting this goal are:

Script 1: foo
#!/usr/local/bin/perl
system("foo1 ’grep -i -v fail’ datafile");

Script 2: foo1
#!/usr/local/bin/tcsh -f
cat $argv[2] | $argv[1]

ASCII file: datafile
test data - success
test data - fail

Example 1

1. The skill set of Intel CAD tool developers and chip
design engineers is UNIX-centric. Any chosen
solution to migrate Intel CAD environment from
UNIX to Windows NT needs to be least disruptive
to these developers and design engineers.

2. Intel CAD environment consist of both internally
developed and external CAD applications and
libraries. The chosen solution must be in
accordance with the computing standard of the
EDA industry to assure the co-existence of internal
tools with external tool libraries.

The right solution is to re-architect Intel CAD tools,
runtime and validation environment to take advantage
of native Windows NT features (Windows NT Logo
standards, ActiveX controls, DCOM, etc.) coupled with
Windows NT centric extension language interface to
achieve the complete benefits of native Windows NT
environment. However, this is undoubtedly a long-term
project and we are working towards that direction.

We realized that the practical short-term solution is to
use Windows NT CAD applications with pre-existing
UNIX centric Intel CAD runtime and test environment
scripts to enable Intel developers and design engineers a
gradual exposure and a smooth migration to NT.

Our investigation of using exiting Win32 emulated
UNIX scripting environment can not meet our need as
we have illustrated in the earlier problem section. The
second approach in trying to use the POSIX subsystem
(both native Windows NT version and third-party
version) also did not solve our problem because Intel
CAD tools need to be native to Win32 subsystem due to
external vendor libraries dependency. The POSIX
subsystem does not work well in the areas of multi-
level inter-process invocation between WIN32
applications and POSIX utilities, symbolic links for
project data sharing, automatic environment variables
conversion, and NT-UNIX shared file-systems support.

After several attempts to get a complicated UNIX
scripting environment to work flawlessly and reliably
on Windows NT, we re-examined our approach from a
different angle. Instead of moving the UNIX centric
CAD design environment to Windows NT, why not
integrate native Windows NT applications into our pre-
existing UNIX CAD environment?

With this refreshing idea, we set out to develop an in-
house product, the MTEX technology (Multi-platform
Tool Execution eXtensions). MTEX allows CAD tools
to be configured to run on either UNIX or Windows NT
workstations while the bulk of CAD runtime and test
environment scripts remain on UNIX. This transition
technology serves as a bridge to allow the gradual
migration of Intel CAD tools and environment and the
gradual update of Intel engineers’ mind-set and skill-set
from UNIX to Windows NT.

4. Design Goal
As a UNIX to Windows NT transition technology, the
MTEX has a distinguished design goal:

Support a mixed NT-UNIX CAD design environment
which enable gradual migration of Intel CAD design
tools and design environment from UNIX to Windows
NT. This requirement has two advantages:

a. Allows to selectively migrate the high
compute usage CAD design tools from UNIX
to native Windows NT to start taking
advantage of the cheaper IA-NT computing
cycles early.

b. Allows CAD developers to use the existing
UNIX-centric test systems and test vectors to
validate their design tools on Windows NT.
This eliminates the uncertainty with the
correctness of the newly developed test cases
on Windows NT.

With time Intel’s CAD design environment will be
moving from UNIX majority to Windows NT majority
design tools and scripts.

5. MTEX Overview
MTEX is a transition technology to enable the
integration of a mixed NT-UNIX design environment.
The idea behind the MTEX capability is to extend the
remote procedure call concept to a remote execution
environment. The result is a tool environment that
allows transparent execution of CAD tools in mixed
NT-UNIX platforms. In this cross-platform
environment, the user will be working on an NT
desktop and executing design commands from a remote
UNIX xterm window using the same familiar design
flow written in scripts. The user view is illustrated in
Figure 1.

Local NT DeskTop Monitor

Unix-Xterm Window

ihp010:> design run_1...<ToolA>

T
oo

l R
un

s
on

 N
T

1

2

Script runs on Unix Server

NT-ToolA
runs on local

 NT CPU

Figure 1: User View of MTEX Environment

6. MTEX Architecture
The following block diagram provides a high level architecture of the MTEX application.

N FS / A FS File System
U NIX NT

 I/O
redirection

Exception
 handler

Tool
Invocation

 IPC
(M TEXD)

Samba / AFS File System

 I/O
redirection

Exception
 handler

Tool Setup

 IPC
(Tool Stub)

Tool Stub
Tool Stub

Tool Stub

Tool Stub
Tool Stub

Tool Stub

Tool Tool

U NIX M TEXD NT M TEXD

 Security

 I/O
redirection

Exception
 handler

Tool Setup

 IPC
(Tool Stub)

 I/O
redirection

Exception
 handler

Tool
Invocation

 Authentication

 IPC
(M TEX D)

 Security A uthentication

Figure 2: MTEX Architecture

6.1. MTEX Components
MTEX is implemented with three components: a
UNIX server daemon, an NT server service, and
CAD tools and scripts that are set up to run under
MTEX.

Every tool executable in this environment has two
complementary parts, namely the tool executable
itself and the tool stub, each of which is running on
different platforms. The tool stub is a wrapper
running on local system that launches the tool
executable on the remote system.

When a MTEX tool stub is executed on the local
system, it takes a snapshot of the local run-time
environment and sends this information to the server
daemon (or service). The MTEX server on the
remote system impersonates the local user, duplicates
the local run-time environment with necessary
platform specific adjustments, and invokes the actual
tool executable. The MTEX server also handles the
routing of STDIO streams to the tool stub and passes
the exit code of the tool executable to the tool stub.
The tool stub exits with the same exit code. An
overview of how MTEX components work together
is shown in Figure 3

Tool
A_Stub Tool A

Tool
B_StubTool B

Tool C
Tool

C_Stub

UX mtexd
(Server Daemon)

UNIX NT

NT mtexd
(Server Service)

Figure 3: Overview of MTEX Components

6.2. MTEX Features
MTEX provides the following features to enable
transparent remote tools execution:
1. Conversion and customization of the run-time

tool environment. The run-time environment on
the local system is duplicated on the remote
system for tool execution.

2. NT and UNIX shared file-system support so that
it can handle the tool stubs, executables, data,
and output files residing on shared file systems.

3. Handling the redirection of standard input,
standard output, and standard error streams
between the tool stub on the local system and the
tool executable on the remote system.

4. Providing the capability to execute binary files
on the remote system (UNIX or NT).

5. Providing the capability to launch the scripts on
the remote system (UNIX or NT).

6. Duplication of the shared file system credentials
for transparent user access from local to remote
system.

7. Impersonation of local system user on the remote
system and execution of the tool with the same
user credential.

In Figure 4 we illustrate how MTEX can be
integrated into pre-existing UNIX CAD design
environment. In the figure, a shared complementary
directory structure is set up between UNIX and NT.
The execution flow begins when the script
driver_script invokes the tool named testtool on
UNIX. Testtool is a MTEX client, which invokes the
real testtool.exe on Windows NT. After testtool.exe
has finished execution, the execution control returns
to testtool stub on UNIX-end which then exits with
testtool.exe’s exit status. At this point, the
driver_script continues with the execution flow to
invoke the analysis_script, on UNIX.

unix

testtool_1 .0 .7

driver_script

Z :\m ounts\m tex

nt

testtool_1 .0 .7

unix

testtool_1.0.7

driver_script

n t

testtool_1 .0 .7

driver_scrip t

/m ounts/m tex

N T U N IX

tes ttoo l testtoo l.exetesttoo l testtool.exe

driver_script

analysis_scrip t analysis_scrip tanalysis_scriptanalysis_script

1
2

3

Figure 4: Complementary Directory Structure and Execution Flow under MTEX

6.3. MTEX Internals
MTEX features are implemented across the MTEX
server and client. This section shows how the
features work and how they are structured in MTEX
server and MTEX client to provide a platform
independent execution environment.

6.3.1. MTEX Server Internal Modules

As shown in Figure 5, the MTEX server has four
major modules. They are IPC, Authentication, Tool
Invocation, and I/O Redirection. For clarity purpose,
we will omit the error and exception handling
routines in this section and in the diagram.

MTEXD, the MTEX server, is to be started by a
superuser on UNIX and a user with administrative
privileges on NT. It can also be setup to be invoked
as part of the boot-time initialization. The MTEX
server listens for connection requests by MTEX
clients. On detection of a connection request, the
server starts a new thread of execution (or a new
server process) to handle this request. The original
thread returns to listen for client requests.

The IPC module receives the message packets from
MTEX client (stub). It decodes the message and to
retrieve the following important information:

• User’s login information

• AFS token information

• Current working directory

• Customized runtime environment

• Application to be invoked and its arguments.

The Authentication module takes user login and AFS
token information and authenticates with local
operating system and the AFS server. If the
authentication fails, appropriate error handling action
is taken; otherwise, the execution proceeds with the
Tool Invocation module.

The Tool Invocation module sets the current working
directory and the tool runtime environment
customized for the local platform. It then spawns a
new process to invoke the tool with the correct
command line arguments.

The I/O redirection module redirects the STDIO
streams for the newly invoked tool back to the
MTEX stub's STDOUT/STDERR sockets as well as
redirects the stub’s input data to the tool's STDIN

stream. When the tool exits, the MTEX server gets
the exit code of the tool and sends it back to the stub.

The execution flow of the above four MTEX server
modules is illustrated in Figure 5

OS authentication

receive msg from stub

AFS authentication

fork off tool

Send exit status to stub

wait for message from stub

main

IPC

Authentication

Tool Invocation

I/O Redirection

set tool environment

New thread

Figure 5: MTEX Server Execution Modules

6.3.2. MTEX Client Internal Modules

The MTEX client also has four major modules. They
are Tool Setup, Security, I/O Redirection, and IPC.

The Tool Setup module collects user environment
related data and converts the environment variables
according to the conversion rules specified in the
configuration file for the target platform. An
example of this conversion may include adding
default search paths.

The Security module collects the user login
information as well as the AFS information to be
processed by MTEX server's Authentication module.

The I/O redirection module redirects the local MTEX
stub input data to the appropriate MTEX server
socket and redirects the remote tool's output data to

the matching local stub’s STDIO streams. The I/O
redirection is totally transparent to the user.

The IPC module encodes the data collected by the
Tool Setup and Security modules into message
packets and sends them to the MTEX server. It then
goes into a send/receive state until the lifetime of the
tool. When it receives the exit message from MTEX
server, it puts the stub to exit with the same status as
that of the tool on the remote system.

The execution flow of the above four MTEX client
modules is illustrated in Figure 6

Tool Setup

main

verify mandatory variables

convert env. varaibles
using conversion rules

build and send control msg
with security and setup info

get OS login info

get AFS token info

send/receive tool data

IPC

Security

I/O Redirection

Figure 6: MTEX Client Execution Modules

6.4. MTEX Implementation
MTEX is developed for HP-UX 10.01, HP-UX
10.20, AIX 4.1 and Windows NT 4.0. The MTEX
server has been implemented as a daemon on UNIX
and as a Win32 service on Windows NT.

The IPC communication between MTEX server and
client is over TCP using BSD Sockets on UNIX and
Winsock 2.0 on Windows NT. AFS library calls are
used by the Security module to pass in user’s AFS

tokens to MTEX server and by the Authentication
module to establish user’s AFS credentials on the
server end. User authentication on Windows NT is
achieved by using the Win32 API
CreateProcessAsUser() to impersonate the current
logged-on user. This has the implication that the user
has to be logged-on to a Windows NT desktop in
order to use that system as the remote system under
MTEX.
The Tool Setup module copies relevant current user
runtime environment such as working directory,
process environment block, etc. while the Tool
Invocation module recreates the user runtime
environment on MTEX server end. Appropriate
adjustments are made to the environment to account
for syntax differences, system variables and path
differences, etc. between the local and remote system
as shown in the following example.

Original list of variables
DISPLAY=sccia677.sc.intel.com:0.0
HOME=/home/vlal

HOSTTYPE=hp9000s700

MTEX=/mtex_cad/hp700_ux100/mtex/v1.1
PATH=/bin:/usr/bin:/usr/vue/bin:/usr
/bin/X11:/usr/ccs/bin:.

Modified list of variables
DISPLAY=sccia677.sc.intel.com:0.0

HOSTTYPE=nt_4.0
MTEX=/mtex_cad/nt_4.0/mtex/v1.1

PATH=C:/WINNT;C:/WINNT/system32;X:/c
ygnus-b18/h-i386-cygwin32/bin;
X:/Perl/5.004_04/bin;.

PERL5LIB=X:/Perl/5.004_04/lib

Example 2: Environment Variables Modification

The variables can be divided into the following 4
categories based on the operations performed on
them.

• Variables that remain unchanged (e.g.
DISPLAY)

• Variables that are modified for the target
platform (e.g. HOSTTYPE, MTEX,PATH)

• New variables that are introduced for the target
platform(e.g. PERL5LIB)

• Variables that are blocked from being sent over
to the target platform (e.g. HOME)

Besides the major modules, MTEX routines also
support error and exception handling and recovery,

remote execution configuration and customization
(e.g. MTEX_PREPATH=xxx will prepend xxx to the
$PATH environment variable on remote machine),
etc. To make the technology simple and easy to
understand, we only cover the main features in this
paper. All MTEX modules are implemented with
documented library calls, system calls, and Win32
APIs.

#!/usr/intel/bin/perl

($scriptName = $0) =~ s/.*\///g;

…< check for required environment variables > ...

exec("$mtexDir/mtexstub", <Remote system tool
path>, $scriptName, "@ARGV");

die "$scriptName -E- exec failed...";

Example 3: A simple UNIX front-end tool stub

A MTEX tool stub consists of two parts: the front-
end stub and a back-end generic MTEX client. The
front-end stub gets the name of its complementary

tool on the remote system (e.g. the stub for foo.exe is
foo).

On UNIX, the front-end stub is a Perl script that
simply invokes the generic MTEX stub with all of its
command line arguments. Example 3 presents a
sample UNIX front-end tool stub.

The back-end generic MTEX client, known as
mtexstub in the above example, is a thin client
executable on UNIX. It implements the MTEX client
modules described in section 6.3.2.

On Windows NT, the front-end stub is a simple ‘C’
application and the back-end MTEX client is an
explicitly loaded DLL that contains the code for
MTEX client modules. Example 4 presents a sample
Windows NT front-end tool stub.

Special utilities are developed to facilitate the
generation of tool stubs. These utilities can be
integrated into a tool makefile to automate the entire
process of build, test, release, and the creation of
required MTEX stubs for the tool.

#include <windows.h>
#include <stdio.h>
int main(int argc, char **argv)
{
 int retCode = 1;
 HINSTANCE hMtexLib;
 Char buffer[260];
 FARPROC mtexEntry;

 Buffer[0] = ’\\0’;
 .
 .
 // Get the MTEX environment variable. to load the mtexstub DLL
 sprintf(buffer, "%s/mtexstub.dll", getenv("MTEX"));
 // Load the MTEX stub library
 //
 if ((hMtexLib = LoadLibrary(buffer)) == NULL) {
 printf("%s: -E- Failed to load the library %s - %d\\n", argv[0], buffer, GetLastError());
 exit(GetLastError());
 }
 // Get the address of startMTEX function
 //
 if ((mtexEntry = GetProcAddress(hMtexLib, "startMTEX")) == NULL) {
 printf("%s: -E- Failed to get the entry point of the stub startMTEX - %d\\n", argv[0], GetLastError());
 FreeLibrary(hMtexLib);
 exit(GetLastError());

 }

 // Invoke the startMTEX function with the requisite arguments
 // Expand the toolPath is it starts with a ’\$’ - env. Variable
 //
 retCode = (* mtexEntry)(argc, argv,<toolPath……>);

 // Free the MTEX library
 FreeLibrary(hMtexLib);

 // Exit with the exit code returned by startMTEX(...) function
 exit(retCode);
}

Example 4: A simple MTEX NT front-end tool stub

7. User Experience
Over the past year, the CAD organization at Intel has
successfully used MTEX to validate more than 40
IA-NT ported CAD tools (3 million lines of Win32
ported code) using the same test system from UNIX
by running more than 1000 test flows in a seamless
mixed NT-UNIX platform. The test flows require
execution of both the IA-NT ported CAD tools as
well as the UNIX dependency CAD tools that are not
yet available on Windows NT (MTEX enables
runtime client-server modeling).

We have also received encouraging feedback from
our UNIX CAD developers who participated in the
early IA-NT productization and deployment effort.
With MTEX, they are able to pick up the IA-NT
ported codes for their tools from migration engineers
and integrate back into their environment with little
effort. They can use the pre-existing test suite and
test system to validate the correctness of the ported
codes. With no environment change, the deployment
task to IA-NT has proven to have negligible impact
to their daily work.

These CAD engineers appreciate the flexibility of the
MTEX that enabled them to combine tools from both
NT and UNIX environment to form a single seamless
platform independent design flow execution
environment. Having a familiar tool working under
Windows NT, it would be a good starting ground for
them to pick up Windows NT knowledge and to work
on future improvements to their tool environment to
take advantage of native Windows NT features.

8. Limitations & Future Work
The limitations of current MTEX version are:

• Scripts need to be modified to remove all
references to local paths such as /tmp since
the mixed UNIX and NT environment
depends on the shared file system for their
data exchange.

• If application processes communicate with
each other through IPC, all of these
processes need to be executed on the same
platform.

• For MTEX to work correctly, the user has to
be logged on to the NT system.

The next version of MTEX will offer the following
features:

• Utilities to display MTEX invoked
processes and to terminate MTEX invoked
processes from any system where MTEX is
installed.

• Removal of the limitation of the user to be
logged on to the NT system for MTEX to
work correctly.

• Conversion rules moves to the server end so
that support for a new platform can be added
on the fly.

• GUI interface for MTEX management.

9. Conclusion
The Multi-platform Tool Execution eXtensions
(MTEX) technology is a simple but powerful
technique to provide a transition path, a bridge to
migrate a very complicated UNIX-centric
environment to Windows NT.

MTEX is by no means THE solution to the UNIX
scripting problems on Windows NT. However, we
believe that MTEX is a very important transition
technology to enable a successful UNIX to NT
migration. By supporting a platform independent
runtime environment, MTEX is implicitly enforcing
the classic computer science "divide and conquer"
strategy. What seems to be an impossible mission of
moving all Intel CAD design tools, CAD runtime and
test environment, user training, etc. from UNIX to
Windows NT turns out to be a feasible project by
using MTEX. The reader can refer to our paper in
Intel Technology Journal (Q1/99 issue, details in
reference section) for another innovative compile-
time client-server technology for their mixed NT-
UNIX applications.

Our motivation for writing this paper is to share our
experience on an innovative transition technology we
engineered to meet our CAD migration needs.
MTEX is generic and can be easily proliferable to
any other environments in any organization.
However, we believe that the best migration strategy
is the one that have been carefully studied and
evaluated according to the specific requirement of the
organization.

10. Acknowledgements
We thank Intel management for providing the
opportunity to work on this exciting project. We are
grateful to our department manager Tae Paik for his
vision, inspiration, patience, and continuous
encouragement during this project. We wish to
acknowledge Tae Paik for the brainstorming session
that helped us to come up with a run-time client-
server model. Thanks to Athena-NT Technical
Working Group members for ratifying the technical
concepts and documents. Special thanks to Tzvi
Melamed, Greg Hannon, Chenwei Chiu, and Ming
Lin for their technical feedback and encouragement
during the development work. We would like to
acknowledge Rumi Zahir for motivating us to write
this paper.

11. Trademarks
All brand names are the property of their respective
owners.

12. References
[1] Shesha Krishnapura et al. “CAD Design Flows

Development in a Cross-Platform Computing

Environment”, Intel Technology Journal Q1
1999.

[2] Alexander Wolfe, “Intel taps Windows NT in
design-software shift.” EETIMES, issue 948,
April 7, 1997, pages 1, 148.

[3] Richard Goering, “Can NT win in IC design?”
EETIMES, issue 992, page 70.

[4] Jeffrey Richter, Advanced Windows (3rd Ed)
Microsoft Press 1997.

[5] Marshall Brain, Win 32 System Services: The
Heart of Windows 95 and Windows NT.
Prentice Hall 1995.

[6] Andrew Lowe, Porting Unix Applications to
Windows NT. Macmillan 1997

[7] David A. Solomon, Inside Windows NT (2nd

Ed). Microsoft Press 1998.
[8] Jeffrey Richter, Win32 Q&A. Microsoft Systems

Journal June 1998.
[9] Jeffrey Richter, Manipulate Windows NT

Services by Writing a Service Control Program,
Microsoft Systems Journal February 1998.

[10] Jeffrey Richter, Design a Windows NT Service
to Exploit Special Operating System Facilities,
Microsoft Systems Journal October 1997.

