

‡This research was conducted while all authors were members of the Department of Electrical and Computer Engineering, Rice University,
Houston, Texas.

WSDLite: A Lightweight Alternative to Windows Sockets Direct Path‡

 Evan Speight Hazim Shafi John K. Bennett
Computer Systems Laboratory Trilogy Software, Inc. Department of Computer Science
 Cornell University Austin, Texas University of Colorado at Boulder
 espeight@csl.cornell.edu hazim_shafi@trilogy.com jkb@cs.colorado.edu

Abstract

This paper describes WSDLite, a thin software layer
that maps a useful subset of the WinSock2 API onto a
system area network. The development of WSDLite
was motivated by our experience with an early version
of Windows Sockets Direct Path (WSDP). WSDP was
developed by Microsoft to allow unmodified network
applications to exploit the performance and reliability
advantages of System Area Networks (SANs). This is
accomplished through the use of a software “switch”
that, when appropriate, redirects message traffic
through the SAN provider protocol stack instead of the
standard TCP/IP protocol stack. In addition to the
performance advantages, the WSDP architecture offers
several other benefits, including automatic support for
legacy code, a single well-known API for supporting
many different underlying SAN network protocols, and
substantially simpler buffer management than that
required by the native SAN API. The beta version of
WSDP that we examined did not perform as well as
expected, achieving only 26% of the native SAN
throughput on the system studied. In an effort to
determine whether or not this performance difference
was intrinsic, we developed WSDLite, a simple
alternative to WSDP. WSDLite is a user-level runtime
library that implements a small but commonly used
subset of the WinSock2 API. For those applications that
do not require full WinSock2 functionality, WSDLite
provides both the transparency of WSDP and much of
the performance benefit of the underlying SAN
architecture. In low-level network tests, WSDLite
achieves an average of 70% of the native SAN
performance. In this paper we describe the design of
WSDLite, and present results comparing the
performance of both parallel applications and low-level
benchmarks using WSDLite, WSDP, TCP, and a native
SAN programming library API as the network
programming layer.

1. Introduction

System area networks (SANs) are characterized by
high bandwidth; low latency (on the order of 10µsec or
less for zero-length messages); a switched network
environment; reliable transport service implemented
directly in hardware; no kernel intervention to send and
receive messages; and little or no copying on either the
sending or receiving side. SANs may be used for
enterprise applications such as databases, web servers,
reservation systems, and small to medium scale parallel
computing environments.

System area networks have not yet enjoyed wide

adoption, in part because of the difficulty associated
with writing applications to take advantage of network
programming libraries that generally ship with SAN
hardware. In order to provide low latency, zero or
single-copy messaging between nodes in a SAN,
programmers must address a variety of buffer
management and flow control issues not typically
associated with TCP/IP-style network programming.
These issues stem primarily from the use of DMA
between the network interface card and the host
memory, a process that allows system area networks to
provide orders-of-magnitude lower latencies and lower
processor utilizations than previous network
architectures and protocols. Addressing these
requirements can represent a significant burden, not
only to programmers developing new applications, but
also to those who wish to obtain the benefits of system
area networks for the many millions of lines of existing
network application code.

To address these concerns, Microsoft, working with

SAN implementers, has developed an alternative that
will allow network applications to obtain many of the
performance benefits associated with system area
networks while retaining the familiar programming
interface of Berkeley-style sockets in the WinSock2
API. This technology, called Windows Sockets Direct

Path (WSDP) [4], fits immediately below the network
application and routes network communication calls to
either the standard TCP/IP protocol stack or to the
WinSock SAN Provider stack, which utilizes the SAN’s
native network communication mechanism to achieve
low latency, high throughput messaging. One of the
principal benefits of WSDP is that existing WinSock2-
compliant applications do not have to be rewritten, or
even recompiled. Currently, WSDP is restricted to use
with the Data Center version of the Windows 2000
operating system.

WSDP necessarily implements the entire WinSock2

API, and as a result, incurs overhead costs associated
with providing full functionality. In the beta version of
WSDP that we have examined, this overhead is quite
substantial. While we expect release versions of WSDP
software to exhibit better performance than the current
beta version, we also believe that there are attractive
design alternatives for those applications that do not
require full WinSock2 functionality. This paper
explores one such alternative.

We have implemented WSDLite, a protocol layer

that implements a subset of the WinSock2 API on top
of the raw programming interface provided by the
GigaNet cLAN implementation of the Virtual Interface
Architecture (VIA) [3]. The VI Architecture is the
proposed standard for user-level networks developed by
Microsoft, Compaq, and Intel. The cLAN architecture
provides 9µsec latency for zero-byte messages in our
system area network environment when using the VI
Programming Library (VIPL) API. WSDLite, similar
to WSDP, allows programs written to use TCP/IP to
obtain the performance benefits associated with an
underlying network architecture that supports VIA. We
make use of the Detours [9] binary rewriting software
package to intercept the TCP calls implemented by
WSDLite and route them to the WSDLite
implementation of these functions, while forwarding
TCP calls not implemented within WSDLite to the
standard WinSock2 protocol stack. Detours allows us to
run Winsock2-compilaint applications without
recompilation. Unlike WSDP, however, WSDLite only
implements a subset (approximately 10%) of WinSock2
functions. The functions implemented were chosen
based upon their common use in a variety of software
available at our site. A lighter-weight protocol layer
such as WSDLite can provide substantial performance
benefit relative to full-functioned protocol layers for
applications that do not need the full TCP/IP
functionality provided by WSDP. Additionally,
WSDLite can be used on any Windows NT or
Windows 2000 system for which VIA support is
available; it is not restricted to Windows 2000 Data
Center. We have successfully tested WSDLite on

clusters comprised of Windows NT 4.0 workstations
and servers, Windows 2000 Professional Workstations,
and Windows 2000 Data Center Servers. Simple
network latency tests show WSDLite to be an average
of 59% faster than the beta WSDP implementation
across all message sizes up to 32 Kbytes.

We examine the performance of WSDLite using

several network benchmark programs. First, we
compare the performance of a series of low-level
benchmarks with (1) TCP/IP using WinSock only, (2)
TCP/IP using WSDP, (3) TCP/IP using WSDLite, and
(4) a version written to use the native VIPL API. For
each of the low-level benchmarks, we report roundtrip
latency and network throughput. We also report
processor utilization, as well as throughput per CPU
second, which brings into focus the tradeoff between
network and application performance. We next
examine the overhead associated with the use of the
Detours [9] library to provide Winsock2 transparency.
Finally, we use the same four network layer
implementations as the messaging layer for the Brazos
Parallel Programming Library. By running a set of
parallel applications utilizing Brazos, we can evaluate
the performance of each network alternative on real
applications.

The rest of this paper is organized as follows.

Section 2 provides a brief overview of the Virtual
Interface Architecture in order to provide the context
for the discussion of Windows Sockets Direct Path in
Section 3. Section 4 describes the design and
implementation of WSDLite. In Section 5 we report
the results of our experimental comparison of WSDLite
and WSDP. Related work is described in Section 6.
We conclude and discuss future work in Section 7.

2. Overview of the VI Architecture

Although Windows Sockets Direct Path is designed
to work with a variety of system area network
architectures, we are only aware of current WSDP
support in the context of the Virtual Interface
Architecture. In this section, we present an overview of
the VI Architecture as implemented on the GigaNet
cLAN GNN1000 network interface card.

Figure 1 depicts the organization of the Virtual

Interface Architecture. The VI Architecture is
comprised of four basic components: Virtual Interfaces,
Completion Queues, VI Providers, and VI Consumers.
The VI Provider consists of the VI Network Adapter
and a Kernel Agent device driver. The VI Consumer is
composed of an application program and an operating
system communication facility such as MPI or sockets,
although some “VI -aware” applications communicate

directly with the VI Provider API. After connection
setup by the Kernel Agent, all network actions occur
without kernel intervention. This results in
significantly lower latencies than network protocols
such as TCP/IP. Traps into kernel mode are only
required for creation/destruction of VI’s, VI connection
setup and teardown, interrupt processing, registration of
system memory used by the VI NIC, and error
handling. VI Consumers access the Kernel Agent using
standard operating system mechanisms.

A VI consists of a Send Queue and a Receive
Queue. VI Consumers post requests (Descriptors) on
these queues to send or receive data. Descriptors
contain all of the information that the VI Provider needs
to process the request, including pointers to data
buffers. VI Providers asynchronously process the
posted Descriptors and mark them when completed. VI
Consumers remove completed Descriptors from the
Send and Receive Queues and reuse them for
subsequent requests. Both the Send and Receive
Queues have an associated “Doorbell” that is used to
notify the VI network adapter that a new Descriptor has
been posted to either the Send or Receive Queue. The
Doorbell is directly implemented on the VI Network
Adapter and no kernel intervention is required to
perform this signaling. The Completion Queue allows
the VI Consumer to combine the notification of
Descriptor completions of multiple VI’s without
requiring an interrupt or kernel call.

2.1. Memory Registration

In order to eliminate the copying between kernel
and user buffers that accounts for a large portion of the

overhead associated with traditional network protocol
stacks, the VI Architecture requires the VI Consumer to
register all send and receive memory buffers with the
VI Provider. This registration process locks down the
appropriate pages in memory, which allows for direct
DMA operations into user memory by the VI hardware,
without the possibility of an intervening page fault.
After locking the buffer memory pages in physical
memory, the virtual to physical mapping and an opaque
handle for each memory region registered are provided

to the VI Adapter. Memory registration allows the VI
Consumer to reuse registered memory buffers, thereby
avoiding duplication of locking and translation
operations. Memory registration also takes page-
locking overhead out of the performance-critical data
transfer path.

2.2. Data Transfer Modes

The VI Architecture provides two different modes
of data transfer: traditional send and receive semantics,
and direct reads and writes to and from the memory of
remote machines. Remote data reads and writes
provide a mechanism for a process to send data to
another node or retrieve data from another node,
without any action on the part of the remote node (other
than VI connection). The send/receive model of the VI
Architecture follows the common approach to
transferring data between two endpoints, except that all
send and receive operations complete asynchronously.
The VI Consumers on both the sending and receiving
nodes specify the location of the data. On the sending
side, the sending process specifies the memory regions
that contain the data to be sent. On the receiving side,

Standard Application

 OS Vendor API (Sockets, MPI,

VI Provider API (VI User Agent)

Send
User Mode

Kernel Mode

VI
Kernel
Agent

VI Network Adapter

Descriptor

Descriptor

Descriptor

Descriptor

VI’s (one shown)
SQ RQ

Status Status

CQ

Receive

 Send
Doorbell

Receive
Doorbell

VI-Aware
Application

VI Provider

VI Consumer

Figure 1. Block Diagram of the Virtual Interface Architecture

the receiving process specifies the memory regions
where the data will be placed. The VI Consumer at the
receiving end must post a Descriptor to the Receive
Queue of a VI before the data is sent. The VI Consumer
at the sending end can then post the message to the
corresponding VI’s Send Queue.

Remote DMA transfers occur using the same

descriptors used in send/receive style communication,
with the memory handle and virtual address of the
remote memory specified in a second data segment of
the descriptor. VIA-compliant implementations are
required to support remote write, but remote read
capability is an optional feature of the VIA
Specification. The GigaNet cLAN architecture only
provides for remote writes.

3. Windows Sockets Direct Path

Windows Sockets Direct Path (WSDP) allows
programs written for TCP/IP to transparently realize the
performance advantages of user-level networks such as
VIA. Programs developed to the WinSock2 API do not

have to be rewritten to take advantage of changes in
underlying network architecture to a SAN, nor is
recompilation of these programs necessary. This
enables legacy network code to work “out of the box”
and enjoy at least some benefit of the low message
latency associated with SANs. Although WSDP is
designed to work with a variety of low-latency SAN
architectures, we restrict our discussion here to how
WSDP interacts with the cLAN VIA architecture
described in Section 2.

WSDP removes many of the pedantic tasks that
must be addressed by programs that directly access the
VIPL API. These include memory registration, certain
aspects of buffer management, and the effort required
to port and recompile a sockets-compliant application
to use the VIPL API. In the following sections we
describe the basic technology associated with WSDP as
well as some programming considerations that must be
addressed to use WSDP effectively.

Figure 2 depicts a block diagram of the WSDP

architecture. The key component of the WSDP
architecture is the software switch, which is responsible
for routing network operations initiated by WinSock2
API calls to either the standard TCP/IP protocol stack,
or to the vendor-supplied SAN WS Provider. In
addition to providing access to both of these pathways
to the network on an operation-by-operation basis, the
switch provides several important functions through the
use of a lightweight session executed on top of the SAN
provider. This session provides OOB (out of band)
support, flow control, and support for the select
operation. None of these mechanisms are traditionally
provided by a typical SAN architecture. There are

several operations that require the support of the
TCP/IP protocol stack (i.e., do not use WSDP),
including:

• Connections to remote subnets.
• Socket creation.
• Raw sockets and UDP sockets - Because SANs

support connection-oriented reliable
communication, all connectionless and

Winsock App

Winsock

Switch Software

SAN WS Provider

TCP/IP SAN WS Driver

SAN NDIS Miniport

SAN NIC

Winsock Service
Provider Interface

User

Kernel

WS Provider

Figure 2. Switch Architecture for Windows Sockets

uncontrolled communication must be handled by
the TCP/IP protocol stack. This limits the
applicability of WSDP to those applications that
(a) use TCP, and (b) do not make use of group
communication.

In addition to these restrictions on the use of WSDP,

system calls are required to complete most overlapped
I/O calls, increasing the latency of these calls due to
induced operating system overhead.

The switch component is also responsible for taking

care of several programming details that usually must
be addressed by the programmer writing directly to the
programming library supplied with SANs. A brief
discussion of these details follows:

• Buffer regis tration – As discussed in Section 2.1,

buffer space used for messaging must be
registered with a SAN provider in order to allow
direct DMA into and out of host memory by the
NIC. However, there is no provision for this
functionality in the WinSock2 specification, as the
operating system handles message buffering
through copying in a standard WinSock
environment. Therefore, the switch component is
responsible for ensuring that all buffer regions
used for communication are registered with the
SAN provider prior to use.

• Buffer placement – Another issue relating to the

management of buffers in a system area network
requires there to be a buffer posted to a network
endpoint prior to receipt of an incoming message.
This is again related to the use of DMA between
the network interface card and the host memory
and the lack of flow control associated with SAN
NICs. The switch software pre-posts small
buffers to each connection opened through the
WS SAN Provider in order to handle incoming
messages.

• Support for RDMA – Most system area network

include support for remote memory operations,
allowing a host node to directly write and/or read
data directly from a remote node’s address space.
No such API exists in the WinSock2
specification. WSDP makes use of the remote
write capability of the cLAN architecture in a
manner similar to that of WSDLite, as discussed
in the next section.

4. WSDLite

WSDLite implements approximately 10% of the
WinSock2 API. The following functions are currently
implemented by WSDLite: WSAStartup(),
WSACleanup() , WSASocket() , socket() , connect(),
listen(), accept(), bind(), send() , WSASend(), recv(),
WSARecv() , select(), closesocket(), and
WSAGetLastError().

When an application calls a function supported by
WSDLite, the function call is intercepted by the
Detours [9] runtime library and redirected to the version
of the function implemented by WSDLite. In order to
leverage functionality existing in the WinSock TCP/IP
protocol stack that is not directly related to messaging
performance (such as connection procedures and name
resolution), some of the WSDLite functions make calls
to their WinSock counterparts from within the
WSDLite library. For instance, during connection
procedures, the WSDLite implementation of bind()
calls the WinSock2 version of bind() internally to
check for errors such as two sockets being bound to the
same port. In fact, WSDLite duplicates the entire
connection process internally on the default TCP/IP
protocol stack in order to catch such errors, greatly
reducing the code size of the WSDLite implementation.

4.1. Sending Data in WSDLite

When a message is to be sent on a connected pair of
sockets, the WSDLite implementation of WSASend()
or send() first must register the buffer containing the
data to be sent, if it is not already registered with the
cLAN NIC.

Memory Registration Issues
Registering memory is an expensive operation for

two reasons. First, registering and deregistering
memory on each network access would add
unacceptable latency to network operations, especially
for small messages. We measured the cost of
registering memory for buffer sizes up to 32 Kbytes,
and found that it takes roughly 15 µsec to register and
deregister a region of memory with the VI Provider,
regardless of buffer size. This time increases linearly
with buffer size after the size exceeds the 64K segment
size used by the NT virtual memory manager. To
address this issue, WSDLite maintains a hash table of
address ranges that have been used as messaging
buffers previously, and this table is consulted before a
message can be sent. There are three possible outcomes
from the initial hash table lookup:

1. The address has previously been registered,

and the size registered is equal or larger than
the size of the buffer currently posted. No
other action is required.

2. The address has been previously registered,
but the size of the region registered does not
encompass the entire buffer currently posted.
The currently registered region must be
deregistered with the NIC and the new region
registered.

3. The address has not been previously
registered, and WSDLite must register the
entire buffer.

To reduce the amount of registering that must be

performed by WSDLite, it is important for application
programmers to reuse buffers as much as possible.

The second source of overhead associated with

memory registration results from the fact that a part of
the memory registration process involves pinning
messaging buffers into physical memory, which may
reduce the resources available for applications. To
address this problem, WSDLite employs a simple
garbage collection scheme based on timestamps to
reclaim unused message buffer space before the amount
of pinned RAM impacts application performance.

Choosing the Correct Send Semantic
We have found that minimum latency for messages

may be obtained in one of two ways, depending on the
size of the message. For small messages, the best
performance is achieved by copying data out of
temporary receive buffers into the application buffers
posted by the corresponding receive operation. For
larger messages, lower latency can be achieved by
taking advantage of VIA’s RDMA capability. When a
large message is to be sent, the sending process first
sends a setup message to the receiver. This message
contains the length of the message to be sent. The
receiver registers the memory region to be received into
(if it is not already available), and then returns the
virtual address and memory region handle to the
sending process. The sending process then remote-
writes the data directly into the address space of the
receiving process, and sends a completion message
containing the size of the message written to the
receiver when the operation has completed.

The message size at which WSDLite switches from

memory copying to RDMA depends on the speed of the
host processors, the efficiency of the memory
hierarchy, and the latency of network operations.

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000
Message Size

M
by

te
s/

se
c

memcpy()

RDMA

Figure 3. Bandwidth Crossover Point

The crossover point can be clearly seen in Figure 3,

which shows the sustainable bandwidth of WSDLite
when copying is always used regardless of message size
(labeled memcpy()), and when RDMA is always used.
In the case of our system, the crossover point occurs
between 8K and 16K. More precise measure ments
pinpoint it at 11.9 Kbytes. In general, if copying a
memory region of size n takes less time than the two
additional small messages necessary for the RDMA
transfer, memory copying will achieve better
performance. Because this value is likely to be
different on different machines, WSDLite attempts to
automatically determine the optimum value for this
cutoff the very first time a socket is created. When the
first socket on a machine is created, a small test is run
that measures the time to copy regions of memory of
varying sizes. When a connection is first made to a
remote machine, a test to determine the latency of
message sizes corresponding to the setup and
acknowledgement messages required for RDMA
transfer is also run. The cutoff point for this particular
machine can then be determined, and this value is
stored in a registry entry that is consulted each time an
application makes a connection through WSDLite to a
specific remote machine. This step only occurs once
during the connection to a remote machine. Subsequent
network programs that connect to the remote machine
can simply retrieve the cutoff value from the registry
based on the remote machine to which the connection is
being made. The registry value may be deleted by an
administrator at any time to force a recalculation of this
parameter, or overridden manually.

4.2. Choice of WSDLite Functions

Finally, we conclude this section with a brief
discussion on the functions that we chose to implement
in WSDLite. We implemented only those calls that
provide the network functionality required by our suite
of network programs used for this evaluation. We
believe these to be representative of a larger class of
network applications that only use basic TCP
functionality. By keeping the number of functions
small, and the implementation thin, we are able to
realize a high percentage of the performance available
from the SAN. Many other WinSock2 functions could
easily be added to the WSDLite implementation by
using our initial functions as a starting point. The
downside to our strictly user-level approach is that a
different version of WSDLite must be used for each
SAN network programming library. However,
precisely because we have kept the number of functions
both small and basic, this is not a difficult thing to do.
The approach taken by WSDP, on the other hand, is one
of providing full functionality regardless of the
underlying SAN network. This implies that 1) many
functions, whose implementations may not easily map
to the SAN programming API, will have high overhead;
and 2) another level of indirection must exist between
the switch software provided by Microsoft and the
hardware vendor-provided SAN layer. These two
observations necessitate an implementation with higher
overhead than a simple user-level library such as
WSDLite. Therefore, WSDLite is proposed as a
performance alternative to WSDP in certain situations,
not a replacement for applications requiring full TCP
functionality.

5. Experimental Results

In this section we begin by describing our
experimental platform. We then present results
comparing several important low-level network
performance measurements run under WSDP,
WSDLite, TCP, and VIPL on two uniprocessor nodes.
Next, we discuss these same measurements when SMP
nodes are used. Finally, we conclude the section with
results showing the performance of four scientific
parallel applications using the four network layer
alternatives when run on a larger cluster of SMP
servers.

5.1. SAN Configuration

All experiments were performed using a cluster of
Compaq Proliant 6400 servers running the Beta 2
release of Windows 2000 Data Center Server, build
2195. Each machine contains one to four 500 Mhz
Pentium-III processors, 512 Mbytes of SDRAM, and

dual 64-bit PCI busses running at 66 Mhz. The
interconnection network is implemented with a single
GigaNet GNN1000 NIC in each machine connected via
a GNX5000 switch. The switch cut-through latency is
580 ns. The unidirectional latency for a zero-byte
message on this system is 9 µsec, and the peak
sustainable bandwidth that we have observed is 102
Mbytes/sec.

5.2. Low Level Results

In this section we compare the performance of a
message ping-pong test that simply sends messages
between two nodes in the cluster. Each node waits for a
reply before sending the next message. We compare
the performance of this test when using WSDLite, the
TCP/IP protocol stack shipped with Windows 2000,
WSDP, and the same test written directly to the VIPL
API. Note that the first three tests are the same
executable; no modifications were necessary when
using WSDLite or WSDP to take advantage of the
underlying VI hardware. We examine the performance
of each of these schemes for message sizes up to
32Kbytes with respect to roundtrip latency, peak
sustainable bandwidth, processor utilization, and
Mbytes/CPU-second. Finally, we look at the overhead
associated with using the Detours [9] package to
provide transparent access to WSDLite through the
WinSock2 API. Results in this section have been
obtained with a single processor in each of the two
machines being used. The results of making the same
measurements with four processors in each machine is
discussed in Section 5.3.

Figures 4 and 5 show the performance of our ping-

pong test as measured by roundtrip latency and peak
sustainable bandwidth for message sizes from 1 byte to
32 Kbytes. With a single processor in each system, we
see that the latency of WSDLite is on average only
19.2% higher than that of native VIPL across all
message sizes. The differences between WSDLite and
VIPL stem from the extra overhead on each network
call of traversing through the TCP-to-VIPL translation
layer, the overhead associated with trapping WinSock2
calls using Detours, and the buffer management and
flow control that WSDLite must implement.

As expected, TCP performs poorly on latency and

peak bandwidth measurements with respect to either
WSDLite or VIPL. WSDP performs similarly to TCP,
but actually has higher latency at all message sizes and
averages 28.8% higher than TCP. The performance of
WSDP lags that of WSDLite by an average of 67.9%
for all message sizes. This performance advantage of
WSDLite is slightly higher at smaller message sizes,

with a 69.5% improvement for single-byte messages
and a 59.1% improvement for 32Kbyte messages.

10

100

1000

10000

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

Message Size (bytes)

R
ou

nd
tr

ip
 L

at
en

cy
 (

us
ec

)

TCP
WSDP
WSDLite
VIPL

Figure 4. Roundtrip Latency

0

10

20

30

40

50

60

70

80

90

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

Message Size (bytes)

B
an

dw
id

th
 (

M
by

te
s/

se
c)

TCP
WSDP
WSDLite
VIPL

Figure 5. Peak Sustainable Bandwidth

Figure 5 shows that the bandwidth of TCP and
WSDP peak at a maximum of around 30-35
Mbytes /sec, whereas VIPL achieves nearly 80
Mbytes/sec, and WSDLite around 72 Mbytes/sec. The
performance of WSDLite is restricted below the 16
Kbyte message size from additional copying out of the
pre-posted receive buffers, and from the extra setup and
acknowledgement messages necessary to implement the
RDMA transfer at 16 and 32 Kbyte message sizes.
However, these overheads still allow WSDLite to
perform within 22% of VIPL. The significantly higher
overheads of WSDP caused by multiple software

layering and polling between these layers results in
performance that is worse than just using TCP directly,
regardless of message size.

Figure 6 shows the average processor utilization for

the uniprocessor execution of our ping benchmark. For
small messages, VIPL has a much higher processor
utilization than either of the other three
implementations, resulting from a time compression
effect due to the small amount of time the message
requires “on the wire”, and the small fixed costs due to
the low overhead of the network protocol. WSDLite
and TCP display similar utilizations at small message
sizes due to their higher fixed-cost overhead relative to
VIPL. WSDP shows the lowest overall utilization for
message sizes less than 1K. All implementations that
use VI in some layer (WSDP, WSDLite, and VIPL)
show low processor utilizations at large message sizes
due to the fact that large messages require relatively
long DMA times to transfer the message to the NIC
hardware, during which time the processor is idle.
TCP, on the other hand, buffers and copies messages
internally, keeping the utilization high throughout the
entire range of message sizes.

0

10

20

30

40

50

60

70

80

90

100

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

Message Size (bytes)

B
an

dw
id

th
 (

M
by

te
s/

se
c)

TCP
WSDP
WSDLite
VIPL

Figure 6. Processor Utilization

The data presented in Figure 6 is misleading,
seeming to indicate that WSDP is the most efficient
protocol because the processor utilization is lower at
smaller message sizes, and the VI Architecture was
designed to maximize the performance of small
messages [4]. By dividing the peak bandwidth
achieved (as presented in Figure 5) by the processor
utilization necessary to sustain this bandwidth (as
shown in Figure 6), we can track the relative efficiency
of a particular network protocol or architecture and find

out how much processing time is required to send a
fixed amount of data. Figure 7 shows this measurement
for the ping test using TCP, WSDP, WSDLite, and
VIPL, and is expressed in Mbytes/CPU-second. With
only a single processor, TCP and WSDP perform
particularly poorly using this metric at small message
sizes. The relatively low processor utilization displayed
by WSDP in Figure 6 is offset by the extremely low
network throughput shown in Figure 5, causing
WSDP’s performance to nearly mirror that of TCP for
message sizes below 8Kbytes.

0.01

0.1

1

10

100

1000

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

Message Size (bytes)

B
an

dw
id

th
 (

M
by

te
s/

se
c)

TCP
WSDP
WSDLite
VIPL

Figure 7. Messaging Efficiency

WSDLite and VIPL, on the other hand, more than
make up for the additional processor utilization
required with improved bandwidth. Both protocols
perform similarly at small message sizes because of the
low overhead imposed by the runtime system. This
results in a higher amount of data transferred per
processor cycle than either WSDP or TCP. As message
size increases and the fixed “wire time” becomes a
larger portion of the overall network time, the
Mbytes/CPU-seconds metric for all protocols increases
as the processor overhead becomes less of a factor in
overall performance. For very large messages, the
performance of the three architectures that utilize VIA
begin to converge, whereas the high processor
utilization causes the TCP performance to flatten out
between 8 and 32 Kbytes.

5.3. SMP Performance

In order to evaluate the performance benefits of
running each implementation in an SMP environment,
we repopulated each of the two machines used in the

experiments with four 500 MHz P-III processors. The
performance difference between these results and those
presented in Section 5.2 stem from the level of
concurrency exploited by the runtime system, as well as
the overhead associated with managing threads residing
on different processors. Table 1 shows the thread
counts present in each process during the execution of
the test. Note that the thread counts did not change
when moving from a uniprocessor to a 4-way SMP.

 # Threads Thread Breakdown

TCP/IP 2 1 user thread
1 Winsock thread

WSDP 7
1 user thread

6 WSDP threads

WSDLite 3
1 user thread

1 Winsock thread
1 VIPL thread

VIPL 2
1 user thread
1 VIPL thread

Table 1. Thread Usage

From the thread counts shown in Table 1, we would

expect WSDP to exploit concurrency and thus show an
improved performance with multiple processors. The
other three architectures do not use concurrency in an
attempt to reduce overhead. With respect to peak
bandwidth, we found that WSDP does indeed perform
better with SMP nodes by an average of 17% across all
message sizes. The largest improvement occurred at
16K messages (48%). Because neither WSDLite nor
VIPL use concurrency within the runtime system, the
performance of these two implementations remains
nearly constant regardless of the number of processors
available (average improvement of 4.5% and .6%,
respectively). However, the throughput of WSDLite
remains an average of 67% better than that of WSDP
across all message sizes.

5.4. Overhead Associated with Detours

Finally, we examine the performance impact of
using Detours to eliminate the necessity of recompiling
a WinSock2 application to use the WSDLite library.
Detours instruments x86 binaries and inserts jump calls
to trap targeted Win32 functions. We have configured
Detours to trap all of the calls implemented in the
WSDLite library and redirect them to the WSDLite
implementation of the functions. Using this redirection,
as opposed to recompiling the program and linking
directly with the WSDLite library, incurs a 3 µsec
overhead per roundtrip message. It may be possible to
reduce this further through more direct interception
methods.

5.5. Application Results

In this section we examine the performance of
WSDP, WSDLite, TCP, and VIPL when each is used as
the underlying network layer for the Brazos Parallel
Programming Environment [12]. Brazos provides
transparent shared memory and message passing
support across a network of SMP machines running
Windows 2000/NT. Brazos was originally developed
for use with UDP on WinSock, delivering superior
performance to distributed shared memory applications.
Support for VI was later added. For the purposes of this
study, we converted Brazos to run using TCP sockets
and present results for four shared memory scientific
applications running on two quad Compaq Proliant
6400 servers. The four applications include Ilink, a
genetic linkage program used to trace genes through
family histories; Barnes Hut, an n-body problem solver
from the SPLASH-2 benchmark suite [15]; LU
decomposition, also from SPLASH-2; and FFT-3D,
used to solve fast Fourier transforms in three
dimensions, from the NAS parallel benchmark suite [1].

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

FFT-3D Barnes Hut Ilink LU

TCP
WSDP
WSDLite
VIPL

Figure 8. Parallel Application Performance

Figure 8 shows the performance of these four

applications on WSDLite, WSDP, and VIPL in terms of
the execution time normalized to that of the execution
time when run on TCP. For three of the four
applications (FFT-3D, Barnes Hut, and Ilink), WSDLite
performs within 2% of the VIPL performance,
demonstrating the low overhead associated with the
WSDLite runtime protocol layer. For LU, the
performance of WSDLite suffers slightly due to send
throttling in the WSDLite protocol, causing some send

operations to stall waiting for available buffers to be re-
posted on the receiving node.

For these experiments, WSDP performs particularly

poorly relative to TCP. We believe this performance
degradation to be the result of processor contention due
to the high number of threads used in the WSDP
protocol stack (see Table 1). Threading in WSDP is
used to boost concurrency between the software layers
that make up the protocol stack. Synchronization and
polling between these layers apparently results in
processor starvation for computation threads, leading to
a potentially large increase in parallel execution time.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

Seconds

P
ro

ce
ss

or
 U

til
iz

at
io

n

WSDLite

WSDP

Figure 9. Processor Utilization for LU

Ilink and LU exhibit this effect to a larger degree

because the computation-to-communication ratio of
these applications is higher than that of FFT-3D or
Barnes Hut. Therefore the contention for available
processing resources is higher in these two applications,
and the extra threads in WSDP exacerbate the problem.
Figure 9 shows the average processor utilization of the
four processors on one node when LU is run using
WSDLite and WSDP. Data is shown for the first 30
seconds of the program’s execution time, which
represents the entire program execution under
WSDLite. As indicated, the processor utilization for
WSDLite remains high throughout the program’s
execution, resulting in a high parallel speedup for this
application. When using WSDP, the processor
utilization varies widely during the course of execution
as the computation threads compete with the threads
that implement WSDP. The resulting context switching
reduces the effective processor utilization to the varying

levels shown in Figure 9, and results in a 60% increase
in overall execution time.

6. Related Work

Previous work in this area can be divided roughly
into two categories: new protocol and network interface
designs, and attempts to deliver the improvements of
these new network protocols and interfaces to
applications. Our work falls into the second category,
thus we concentrate on related work in this area.

Windows Sockets Direct Path (WSDP) [4] attempts

to deliver the performance of user-level network
interfaces (VIA in our case) transparently to TCP/IP
networked applications written for the WinSock2 API.
The approach taken by WSDLite differs from WSDP in
two significant ways. First, WSDLite only implements
a subset of the full WinSock2 API, albeit a useful
subset that suffices for many networked applications.
Second, our technique is not directly transparent.
Although we do not require access to source code nor
recompilation, we have to modify the applicable
binaries using Detours in order for WinSock2 calls to
be redirected. This is achieved by simply running the
desired executable with a program called withdll, which
injects the WSDLite DLL into the executable and
rewrites the binary file to cause the redirect to the
WSDLite implementation of WinSock2 functions.

VIA derives from a large body of related work in

user-level communication, with the basic operation
coming out of the U-Net research by von Eicken et al.
[7]. As part of the U-Net research, a proof-of-concept
implementation of TCP/IP was developed that delivered
close to the raw performance of U-Net to TCP- and
UDP-based applications. The results of this
implementation, presented by the authors in [7], were
partially what led us to investigate a performance
alternative to the beta version of WSDP that we initially
examined. VIA draws from several other research
projects including application device channels [5],
which provide the model for virtual interfaces to the
network; and Virtual Memory Mapped Communication
(VMMC) [6] and Active Messages (AM) [8], which
provide the model for remote memory operations used
in VIA. Other projects with similar goals to WSDLite
and WSDP include Fast Sockets [11], which like
WSDLite offers increased communication performance
by collapsing protocol layers, using simple buffer
management strategies, and by using “receive posting”
to bypass data copying. Thekkath et al. proposed
separating network control and data flow, and
employed unused processor opcodes to implement
remote memory operations [13]. Fast Messages [10]
allow direct user-level access to the network interface,

but do not support simultaneous use by multiple
applications. The HP Hamlyn network implements
user-level sends and receives in hardware [2].
ParaStation [14] provides unprotected user-level access
to the network interface. With Active Messages [8],
each message contains the address of a user-level
handler that is executed upon message arrival with the
message body as an argument. This allows the
programmer and compiler to overlap communication
and computation, thereby hiding latency.

7. Conclusions and Future Work

For those applications that use only the WSDLite
subset of TCP functionality, we have demonstrated that
WSDLite offers significant performance advantages
relative to WSDP. However, this result must be
qualified in several ways. First, we are using a beta
implementation of WSDP. We expect the performance
of subsequent versions of WSDP to improve. Second,
some users may consider the modification of
application binaries required by WSDLite in order to
achieve transparency to be too aggressive for comfort.
Third, while it is relatively easy to add additional
functionality to WSDLite, certain aspects of Winsock2
functionality would likely be difficult to implement
without incurring additionally overhead. In spite of
these acknowledged limitations, WSDLite provides a
useful tool for many applications.

We will continue to update our results as new

versions of WSDP and the cLAN Winsock provider
become available. We also intend to experiment with
additional network applications. We are currently
evaluating FTP and a web-based client/server database
application for this purpose.

8. Acknowledgements

The authors would like to thank Galen Hunt of
Microsoft Corporation for providing valuable
information and sample code that allowed us to
successfully use the Detours package with WSDLite.

This research was supported in part by grants and

assistance from Compaq Computer Corporation,
GigaNet Corporation, Intel Corporation, Microsoft
Corporation, and by the Texas Advanced Technology
Program under Grant No. 003604-022.

Bibliography

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon,
The NAS Parallel Benchmarks, NASA Ames
RNR-91-002, August 1991.

[2] G. Buzzard, D. Jacobson, M. Mackey, S.
Marovich, and J. Wilkes. An Implementation of
the Hamlyn Sender-Managed Interface
Architecture. In Proceedings of the Second
Symposium on Operating System Design and
Implementation, pp. 245-259, 1996.

[3] Compaq Corporation, Intel Corporation, and
Microsoft Corporation. Virtual Interface
Architecture Specification, Version 1.0. 1997.

[4] Microsoft Corporation. Windows Sockets Direct
Path for System Area Networks. Microsoft
Corporation, 2000.

[5] P. Druschel and L. L. Peterson. Fbufs: A High-
Bandwidth Cross-Domain Transfer Facility. In
Proceedings of the 14th Annual Symposium on
Operating System Principles, pp. 189-202, 1993.

[6] C. Dubnicki, A. Bilas, K. Li, and J. Philbin.
Design and Implementation of Virtual Memory-
Mapped Communication on Myrinet. In
Proceedings of the International Parallel
Processing Symposium, pp. 388-396, 1997.

[7] T. V. Eicken, A. Basu, V. Buch, and W. Vogels.
U-Net: A User-Level Network Interface for
Parallel and Distributed Computing. In
Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pp. 40-53,
December 1995.

[8] T. v. Eicken, D. E. Culler, S. C. Goldstein, and K.
E. Schauser. Active Messages: A Mechanism for
Integrating Communication and Computation. In
Proceedings of the 19th International Symposium
on Computer Architecture, pp. 256-266, 1992.

[9] G. Hunt and D. Brubacher. Detours: Binary
Interception of Win32 Functions. In Proceedings
of the 3rd USENIX Windows NT Symposium, July
1999.

[10] S. Pakin, M. Lauria, and A. Chien. High
Performance Messaging on Workstations: Illinois
Fast Messages (FM) for Myrinet. In
Supercomputing '95, 1995.

[11] S. H. Rodrigues, T. E. Anderson, and D. E. Culle r.
High-Performance Local Area Communication
With Fast Sockets. In Proceedings of the Usenix
1997 Conference, January 1997.

[12] E. Speight and J. K. Bennett. Brazos: A Third
Generation DSM System. In Proceedings of the
1st USENIX Windows NT Symposium, pp. 95-106,
August 1997.

[13] C. A. Thekkath, H. M. Levy, and E. D. Lazowska.

Separating Data and Control Transfer in
Distributed Operating Systems. In Proceedings of
the Sixth International Conference on Architectural
Support for Programming Languages and
Operating Systems, pp. 2-11, October 1994.

[14] T. M. Warschko, J. M. Blum, and W. F. Tichy.
The ParaPC/ParaStation Project: Efficient Parallel
Computing by Clustering Workstations.
University of Karlsruhe, Department of Informatics
Technical Report 13/96, 1996.

[15] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta. Methodological Considerations and
Characterization of the SPLASH-2 Parallel
Application Suite. In Proceedings of the 22nd
Annual International Symposium on Computer
Architecture, pp. 24-36, June 1995.

