USENIX Association

Proceedings of the
2001 USENIX Annud
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Kernel Mechanisms for Service Differentiation in Overloaded Web
Servers

Thiemo Voigt*
Swedish Institute of Computer Science
thiemo@sics.se
Renu Tewari
IBM T.J. Watson Research Center
tewarir@us.ibm.com
Douglas Freimuth
IBM T.J. Watson Research Center
dmfreim@us.ibm.com
Ashish Mehra
1Scale Networks
ashish@iscale.net

Abstract

The increasing number of Internet users and innovative
new services such as e-commerce are placing new de-
mands on Web servers. It is becoming essential for Web
servers to provide performance isolation, have fast recov-
ery times, and provide continuous service during over-
load at least to preferred customers. In this paper, we
present the design and implementation of three kernel-
based mechanisms that protect Web servers against over-
load by providing admission control and service dif-
ferentiation based on connection and application level
information. Our basic admission control mechanism,
TCP SYN policing, limits the acceptance rate of new re-
quests based on the connection attributes. The second
mechanism, prioritized listen queue, supports different
service classes by reordering the listen queue based on
the priorities of the incoming connections. Third, we
present HTTP header-based connection control that uses
application-level information such as URLs and cookies
to set priorities and rate control policies.

We have implemented these mechanisms in AIX 5.0.
Through numerous experiments we demonstrate their
effectiveness in achieving the desired degree of service
differentiation during overload. We also show that the
kernel mechanisms are more efficient and scalable than
application level controls implemented in the Web server.

*This work was partially funded by the national Swedish
Real-time Systems Research Initiative (ARTES). This work
was done when the author was visiting the IBM T.J. Watson
Research Center.

1 Introduction

Application service providers and Web hosting ser-
vices that co-host multiple customer sites on the
same server cluster or large SMP are becoming in-
creasingly common in the current Internet infras-
tructure. The increasing growth of e-commerce on
the web means that any server down time that af-
fects the clients being serviced will result in a cor-
responding loss of revenue. Additionally, the unpre-
dictability of flash crowds can overwhelm a hosting
server and bring down multiple customer sites si-
multaneously, affecting the performance of a large
number of clients. It becomes essential, therefore,
for hosting services to provide performance isolation
and continuous operation under overload conditions.

Each of the co-hosted customers sites or applications
may have different quality-of-service (QoS) goals
based on the price of the service and the applica-
tion requirements. Furthermore, each customer site
may require different services during overload based
on the client’s identity (preferred gold client) and
the application or content they access (e.g., a client
with a buy order vs. a browsing request). A simple
threshold based request discard policy (e.g., a TCP
SYN drop mode in commercial switches/routers dis-
cards the incoming, oldest or any random connec-
tion [1]) to delay or control overload is not adequate
as it does not distinguish between the individual

QoS requirements. For example, it would be de-
sirable that requests of non-preferred customer sites
be discarded first. Such QoS specifications are typ-
ically negotiated in a service level agreement (SLA)
between the hosting service provider and its cus-
tomers. Based on this governing SLA, the hosting
service providers need to support service differenti-
ation based on client attributes (IP address, session
id, port etc.), server attributes (IP address, type),
and application information (URL accessed, CGI re-
quest, cookies etc.).

In this paper, we present the design and implementa-
tion of kernel mechanisms in the network subsystem
that provide admission control and service differen-
tiation during overload based on the customer site,
the client, and the application layer information.

One of the underlying principles of our design was
that it should enable “early discard”, i.e., if a con-
nection is to be discarded it should be done as early
as possible, before it has consumed a lot of system
resources [2]. Since a web server’s workload is gen-
erated by incoming network connections we place
our control mechanisms in the network subsystem
of the server OS at different stages of the protocol
stack processing. To balance the need for early dis-
card with that of an informed discard, where the
decision is made with full knowledge of the content
being accessed, we provide mechanisms that enable
content-based admission control.

Our second principle was to introduce minimal
changes to the core networking subsystem in com-
mercial operating systems that typically implement
a BSD-style stack. There have been prior research
efforts that modify the architecture of the network-
ing stack to enable stable overload behavior [3].
Other researchers have developed new operating sys-
tem architectures to protect against overload and
denial of service attacks [4]. Some “virtual server”
implementations try to sandbox all resources (CPU,
memory, network bandwidth) according to admin-
istrative policies and enable complete performance
isolation [5]. Our aim in this design, however, was
not to build a new networking architecture but to in-
troduce simple controls in the existing architecture
that could be just as effective.

The third principle was to implement mechanisms
that can be deployed both on the server as well
as outside the server in layer 4 or 7 switches that
perform load balancing and content based routing

for a server farm or large cluster [6]. Such switches
have some form of overload protection mechanisms
that typically consists of dropping a new connec-
tion packet (or some random new connection packet)
when a load threshold is exceeded. For content-
based routing the layer 7 switch functionality con-
sists of terminating the incoming TCP connection
to determine the destination server based on the
content being accessed, creating a new connection
to the server in the cluster, and splicing the two
connections together [7]. Such a switch has access
to the application headers along with the IP and
TCP headers. The mechanisms we built in the net-
work subsystem can easily be moved to the front-end
switch to provide service differentiation based on the
client attributes or the content being accessed.

There have been proposals to modify the process
scheduling policies in the OS to enable preferred web
requests to execute as higher priority processes [8].
These mechanisms, however, can only change the
relative performance of higher priority requests; they
do not limit the requests accepted. Since the hard-
ware device interrupt on a packet receive and the
software interrupt for packet protocol processing can
preempt any of the other user processes [3] such
scheduling policies cannot prevent or delay overload.
Secondly, the incoming requests already have numer-
ous system resources consumed before any schedul-
ing policy comes into effect. Such priority schedul-
ing schemes can co-exist with our controls in the
network subsystem.

An alternate approach is to enable the applications
to provide their individual admission control mecha-
nisms. Although this achieves application level con-
trol it requires modifications to existing legacy ap-
plications or specialized wrappers. Application con-
trols are useful in differentiating between different
clients of an application but are less useful in pre-
venting or delaying overload across customer sites.
More importantly, various server resources have al-
ready been allocated to a request before the appli-
cation control comes into effect, violating the early
discard policy. However, the kernel mechanisms can
easily work in conjunction with application specific
controls.

Since most web servers receive requests over
HTTP/TCP connections, our controls are located
in three different stages in the lifetime of a TCP
connection.

e The first control mechanism, TCP SYN polic-
ing, is located at the start of protocol stack pro-
cessing of the first SYN packet of a new connec-
tion and limits acceptance of a new TCP SYN
packet based on compliance with a token bucket
based policer.

e The next control, prioritized listen queue, is lo-
cated at the end of a TCP 3-way handshake,
i.e., when the connection is accepted and sup-
ports different priority levels among accepted
connections.

e Third, HTTP header-based connection control,
is located after the HTTP header is received
(which could be after multiple data packets)
and enables admission control and priority val-
ues to be based on application-layer information
contained in the header e.g., URLSs, cookies etc.

We have implemented these controls in the AIX 5.0
kernel as a loadable module using the framework of
an existing QoS-architecture [9]. The existing QoS
architecture on AIX supports policy-based outbound
bandwidth management [10]. These techniques are
easily portable to any OS running a BSD style net-
work stack!.

We present experimental results to demonstrate that
these mechanisms effectively provide selective con-
nection discard and service differentiation in an over-
loaded server. We also compare against application
layer controls that we added in the Apache 1.3.12
server and show that the kernel controls are much
more efficient and scalable.

The remainder of this paper is organized as follows:
In Section 2 we give a brief overview on input packet
processing. Our architecture and the kernel mech-
anisms are presented in Section 3. In Section 4 we
present and discuss experimental results. We com-
pare the performance of kernel based mechanisms
and application level controls in Section 5. We de-
scribe related work in Section 6 and finally, the con-
clusions and future work in Section 7.

2 Input Packet Processing: Back-

ground

In this section we briefly describe the protocol pro-
cessing steps executed when a new connection re-

LA port to Linux is underway.

URL-based
connection
control

SYN vartial Prioritized Accept

A — | listen —> |listen —
queve queue

by server

Rate Control
connection setup complete

Figure 1: Proposed kernel mechanisms.

quest is processed by a web server. When the device
interface receives a packet it triggers a hardware in-
terrupt that is serviced by the corresponding device
driver [11]. The device driver copies the received
packet into an mbuf and de-multiplexes it to deter-
mine the queue to insert the packet. For example,
an IP packet is added to the input queue, ipintrq.
The device driver then triggers the IP software in-
terrupt. The IP input routine dequeues the packet
from the IP input queue and does the next layer de-
multiplexing to invoke the transport layer input rou-
tine. For example, for a TCP packet this will result
in a call to a tcp_input routine for further process-
ing. The call to the transport layer input routine
happens within the realm of the IP input call, i.e.,
there is no queuing between the IP and TCP layer.
The TCP input processing verifies the packet and
locates the protocol control block (PCB). If the in-
coming packet is a SYN request for a listen socket, a
new data socket is created and placed in the partial
listen queue and an ACK is sent back to the client.
When the ACK for the SYN-ACK is received the
TCP 3-way handshake is complete, the connection
moves to an established state and the data socket
is moved to the listen queue. The sleeping process,
e.g., the web server, waiting on the accept call is
woken up. The connection is ready to receive data.

3 Architecture Design

The network subsystem architecture adds three con-
trol mechanisms that are placed at the different
stages of a TCP connection’s life time. Figure 1
shows the various phases in the connection setup
and the corresponding control mechanisms: (i) when
a SYN packet is processed it triggers the SYN rate
control and selective drop (ii) when the 3-way hand-
shake is completed the prioritized listen queue selec-
tively changes the ordering of accepted connections
in the listen queue (iii) when the HTTP header is re-
ceived the HTTP header controls decide on dropping
or re- prioritizing the requests based on application

layer information. Each of these mechanisms can
be activated at varying degrees of overload where
the earliest and simplest control is triggered at the
highest load level.

3.1 SYN Policer

TCP SYN policing controls the rate and burst at
which new connections are accepted. Arriving TCP
SYN packets are policed using a token bucket pro-
file defined by the pair < rate, burst >, where rate
is the average number of new requests admitted per
second and burst is the maximum number of con-
current new requests. Incoming connections are ag-
gregated using specified filter rules that are based
on the connection end points (source and destina-
tion addresses and ports as shown in Table 2). On
arrival at the server, the SYN packet is classified
using the IP/TCP header information to determine
the matching rule. A compliance check is performed
against the token bucket profile of the rule. If com-
pliant, a new data socket is created and inserted in
the partial listen queue otherwise the SYN packet is
silently discarded.

When the SYN packet is silently dropped, the re-
questing client will time-out waiting for a SYN ACK
and retry again with an exponentially increasing
time-out value?. An alternate option, which we do
not consider, is to send a TCP RST to reset the con-
nection indicating an abort from the server. This ap-
proach, however, incurs unnecessary extra overhead.
Secondly, some clients send a new SYN immediately
after a TCP RST is received instead of aborting the
connection. Note that we drop non-compliant SYNs
even before a socket is created for the new connection
thereby investing only a small amount of overhead
on requests that are dropped.

To provide service differentiation, connection re-
quests are aggregated based on filters and each ag-
gregate has a separate token bucket profile. Filter-
ing based on client IP addresses is useful since a few
domains account for a significant portion of a web
server’s requests [12]. The rate and burst values are
enforced only when overload is detected and can be
dynamically controlled by an adaptation agent, the
details of which are beyond the scope of this paper.

2The timeout values are typically set to 6, 24, 48, up to 75
seconds.

socket{} socket{} socket{} socket{}
049 49 049 49
Prio: 1 Prio: 2 Prio: 2 Prio: 3
socket{}
0. q
S0_(os
so_glimit
so_glen
ptable

socket QoS attributes

Figure 2: Implementation of the prioritized listen
queue

3.2 Prioritized Listen Queue

The prioritized listen queue reorders the listen queue
of a server process based on pre-defined connection
priorities such that the highest priority connection is
located at the head of the queue. The priorities are
associated with filters (see Table 2) and connections
are classified into different priority classes. When a
TCP connection is established, it is moved from the
partial listen queue to the listen queue. We insert
the socket at the position corresponding to its pri-
ority in the listen queue. Since the server process
always removes the head of the listen queue when
calling accept, this approach provides better ser-
vice, i.e. lower delay and higher throughput, to con-
nections with higher priority.

Figure 2 shows the implementation of a prioritized
listen queue. A special data structure used for main-
taining socket QoS attributes stores an array of pri-
ority pointers. Each priority pointer points to the
last socket of the corresponding priority class. This
allows efficient socket insertion — a new socket is
always inserted behind the one pointed to by the
corresponding priority pointer.

3.3 HTTP Header-based Controls

The SYN policer and prioritized listen queue have
limited knowledge about the type and nature of a
connection request, since they are based on the in-
formation available in the TCP and IP headers. For
web servers with the majority of the traffic being
HTTP over TCP, a more informed control is possi-
ble by examining the HTTP headers. For example,

Accept by server

_notintable __[reordered
HTTP request listen queue
arse URL priority only__ | update priority
i (if found)
i/ yes
N0 [consult rate ’
action table| control
yes i/ no
ai drop drop
servein
kernel

Figure 3: The HTTP header-based connection con-
trol mechanism.

Table 1: URL action table

URL ACTION
noaccess <drop >
/shop.html <priority=1 >

/index.html || < rate=15 conn./sec, burst=>5 conn.>,
<priority=1 >

< rate=10 , burst=2 >

/cgi-bin/*

a majority of the load is caused by a few CGI re-
quests and most of the bytes transferred belong to a
small set of large files. This suggests that targeting
specific URLs, types of URLSs, or cookie information
for service differentiation can have a wide impact
during overload.

Our third mechanism, HTTP header-based connec-
tion control, enables content-based connection con-
trol by examining application layer information in
the HTTP header, such as the URL name or type
(e.g., CGI requests) and other application-specific
information available in cookies. The control is ap-
plied in the form of rate policing and priorities based
on URL names and types and cookie attributes.

This mechanism involves parsing the HTTP header
in the kernel and waking the sleeping web server pro-
cess only after a decision to service the connection
is made. If a connection is discarded, a TCP RST
is sent to the client and the socket receive buffer
contents are flushed.

For URL parsing, our implementation relies upon
Advanced Fast Path Architecture(AFPA) [13], an

Table 2: Example Network-level Policies

| (dst IP,dst port,src IPsrc port) || (r,b) | priority
(*, 80, *, *) (300,5) 3
(*, 80, 10.1.1.1, %) (100,5) 3
(12.1.1.1, 80, ¥, %) (10,1) ®

in-kernel web cache on AIX. For Linux, an in-kernel
web engine called KHTTPD is available [14]. As
opposed to the normal operation, where the sleeping
process is woken up after a connection is established,
AFPA responds to cached HTTP requests directly
without waking up the server process. With AFPA,
a connection is not moved out of the partial listen
queue even after the 3-way handshake is over. The
normal data flow of TCP continues with the data
being stored in the socket receive buffer. When the
HTTP header is received (that is when the AFPA
parser finds two CR. control characters in the data
stream), AFPA checks for the object in its cache.
On a cache miss, the socket is moved to the listen
queue and the web server process is woken up to
service the request.

The HTTP header-based connection control mecha-
nism comes into play at this juncture, as illustrated
in Figure 3, before the socket is moved out of the
partial listen queue. The URL action table (Ta-
ble 1) specifies three types of actions/controls for
each URL or set of URLs. A drop action implies
that a TCP RST is sent before discarding the con-
nection from the partial listen queue and flushing the
socket receive buffer. If a priority value is set it de-
termines the location of the corresponding socket in
the ordered listen queue. Finally, rate control spec-
ifies a token bucket profile of a <rate, burst> pair
which drops out-of-profile connections similar to the
SYN policer.

3.4 Filter Specification

A filter rule specifies the network-level and/or
application-level attributes that define an aggregate
and the parameters for the control mechanism that
is associated with it. A network-level filter is a four-
tuple consisting of local IP address, local port, re-
mote IP address, and remote port; application-level
filters were shown in Table 1. Table 2 lists some
network-level filter examples. The first rule applies
to the web server process listening at local port 80
on all network interfaces; it specifies that all con-

System Adaptation/Policy

Statistics [~ | Agent Web Server

prioritized, listen queue

Socket Layer] ... N________ ol
(]
Kernel
TcP HTTPRequest (5) | HTTP Get URL-bes QOs
Engine adm. control
ol and Priority
Ack for TCPSYN (4) connection-based
priority
TCPSYN RST
| Polici ng (®)
v
g‘?z :;)T\; drop TCPSYN
(6] (6) (©)]
Lower Layers

Figure 4: Enhanced protocol stack architecture.

nections to the server are rate-controlled at a rate of
300 conns/sec, a burst of 5, and a priority of 3 (the
default lowest priority). The filter rules can contain
range of IP addresses, wildcards, etc.

3.5 Protocol Stack Architecture

We have developed architectural enhancements for
Unix-based servers to provide these mechanisms.
Figure 4 shows the basic components of the en-
hanced protocol stack architecture, with the new
capabilities utilized either by user-space agents or
applications themselves. This architecture permits
control over an application’s inbound network traffic
via policy-based traffic management [10]; an adapta-
tion/policy agent installs policies into the kernel via
a special API. The policy agent interacts with the
kernel via an enhanced socket interface by sending
(receiving) messages to (from) special control sock-
ets. The policies specify filters to select the traffic to
be controlled, and actions to perform on the selected
traffic. The figure shows the flow of an incoming re-
quest through the various control mechanisms.

3.6 Implementation Methodology and
Testbed

We have implemented the proposed kernel mecha-
nisms in ATX 5.0, and evaluated them on the testbed

described below. As shown in Figure 4, the QoS
module contains the TCP SYN policer, a priority
assignment, function for new connections, and the
entity that performs URL-based admission control
and priority assignment.

All experiments were conducted on a testbed com-
prising an IBM HTTP Server running on a 375 MHz
RS/6000 machine with 512 MB memory, several 550
MHz Pentium III clients running Linux, and one
166 MHz Pentium Pro client running FreeBSD. The
server and clients are connected via a 100 BaseT
Ethernet switch. For client load generators we use
Webstone 2.5 [15] and a slightly modified version of
sclient [16]. Both programs measure client through-
put in connections per second. The experimental
workload consists of static and dynamic requests.
The dynamic files are minor modifications of stan-
dard Webstone CGI files that simulate memory con-
sumption of real-world CGIs.

The IBM HTTP Server is a modified Apache [17]
1.3.12 web server that utilizes an in-kernel HTTP
get engine called the Advanced Fast Path Architec-
ture (AFPA). We use AFPA in our architecture only
to perform the URL parsing and have disabled any
caching when measuring throughput results. Un-
less stated otherwise, we configured Apache to use a
maximum of 150 server processes.

4 Experimental Results

4.1 Efficacy of SYN Policing

In this section we show how TCP SYN policing pro-
tects a preferred client against flash crowds or high
request rates from other clients. In our setup, one
client replays a large e-tailer’s trace file represent-
ing a preferred customer. For the competing load
we use five machines running Webstone, each with
50 clients. All clients request an 8 KB file, which is
reasonable since a typical HTTP transfer is between
5 and 13 KB [12].

Without SYN policing, the e-tailer’s client receives
a low throughput of about 6 KB/sec. Using polic-
ing to lower the acceptance rate of Webstone clients,
we expect the throughput for the e-tailer’s client to
increase. Figure 5 shows that the throughput for
e-tailer’s client increases from 100 KB/sec to 800
KB/sec as the acceptance rate for Webstone clients

1400

T “preferred client protected” ——
"preferred client unprotected” ---x---

1200

1000

800 |

600 |

throughput (KB/sec)

400 |

200 |

0 50 100 150 200 250 300 350
accepted rate of non-preferred clients

Figure 5: Throughput of the preferred e-tailer’s client
with and without TCP SYN policing. On the X-axis
is the SYN policing rate of the non-preferred Webstone
clients that are continuously generating requests. The
Y-axis shows the corresponding throughput received by
the e-tailer’s client when there was no SYN control and
when SYN control was enforced.

is lowered from 300 reqs/sec to 25 reqs/sec. The ex-
periment demonstrates that a preferred client can be
successfully protected by rate-controlling connection
requests of other greedy clients.

TCP SYN policing works well when client identi-
ties and request patterns are known. In general,
however, it is difficult to correctly identify a mis-
behaving group of clients. Moreover, as discussed
below, it is hard to predict the rate control parame-
ters that enable service differentiation for preferred
clients without under-utilizing the server. For effec-
tive overload prevention the policing rate must be
dynamically adapted to the resource consumption
of accepted requests.

4.2 Impact of Burst Size

In the previous experiment we did not analyze the
effect of the burst size on the effective throughput.
The burst size is the maximum number of new con-
nections accepted concurrently for a given aggregate.
With a large burst size, greedy clients can overload
the server, whereas with a small burst, clients may
be rejected unnecessarily. The burst size also con-
trols the responsiveness of rate control. There is a
tradeoff, however, between responsiveness and the
achieved throughput.

We next show the effect of the burst size on the

2000

i “protected client’ ——
"bursty non-preferred client" ---x---
"total throughput" ---x---

1500 | Hoeee

1000

throughput (KB/sec)

500 |

L L L L L
0 10 20 30 40 50
non-preferred client's burst size at a given rate of 50

Figure 6: Impact of burst size on preferred client
throughput. The burst size for policing non-preferred
client is varied from 5 to 50 while the connection accep-
tance rate is fixed at 50 conn/sec. The plot shows the
throughput achieved by the preferred and non-preferred
clients along with the total throughput.

throughput of a preferred client. In our experiment,
the non-preferred client is a modified sclient pro-
gram that makes 50 to 80 back-to-back connection
requests about twice a second, in addition to the
specified request rate. Both the length of the in-
coming request burst and its timing are randomized.
Figure 6 shows the throughput of preferred and non-
preferred client with the SYN policing rate of the
non-preferred client set to 50 conn/sec and the burst
size varying from 5 to 50. The non-preferred sclient
program requests a 16 KB dynamically generated cgi
file. The preferred client is a Webstone program with
40 clients, requesting a static 8 KB file. As the burst
size is increased from 5 to 50, the sclient’s through-
put increases from 36.6 conns/sec (585.6 KB/sec) to
47.7 conns/sec (752 KB/sec), while the throughput
received by the preferred client decreases from about
140 conns/sec (1117 KB/sec) to 79 conns/sec.

Intuitively the overall throughput should have in-
creased, however, the observed decrease in total
throughput is due to the fact that we accept more
CPU consuming CGI requests from sclient, thereby,
incurring a higher overhead per byte transferred.

4.3 Prioritized Listen Queue:
Priority

Simple

With TCP SYN policing, one must limit the greedy
non-preferred clients to a meaningful rate during
overload. In most cases it is relatively simpler to
just give the preferred clients a higher absolute pri-

ority. We demonstrate next that the prioritized lis-
ten queue provides service differentiation, especially
with a large listen queue length.

In our experiments we classify clients into three pri-
ority levels. Clients belonging to a common priority
level are all created by a Webstone benchmark that
requests an 8 KB file. A separate Webstone instance
is used for each priority level. We measure client
throughput for each priority level while varying the
total number of clients in each class. Each priority
class uses the same number of clients.

In the first experiment, the Apache server is config-
ured to spawn a maximum of 50 server processes.
The results in Figure 7 show that when the total
number of clients is small, all priority levels achieve
similar throughput. With fewer clients, server pro-
cesses are always free to handle incoming requests.
Thus, the listen queue remains short and almost
no reordering occurs. As the number of clients in-
creases, the listen queue builds up since there are
fewer Apache processes than concurrent client re-
quests. Consequently, with re-ordering the through-
put received by the high priority client increases,
while that of the two lower priority clients decreases.
Figure 7 shows that with more than 30 Webstone
clients per class only the high-priority clients are
served while the lower-priority clients receive almost
no service.

Figure 8 illustrates the effect on response times ob-
served by clients of the three priority classes. It
can be seen that as the number of clients increases
across all priority classes the response time for the
lower priority classes increases exponentially. The
response time of the high priority class, on the other
hand, only increases sub-linearly. When the number
of high priority requests increases, the lower priority
ones are shifted back in the listen queue, thereby,
increasing their response times. Also as more high
priority requests get serviced by the different server
processes running in parallel and competing for the
CPU their response times increase.

We also observed that when the number of high pri-
ority requests was fixed and the lower priority re-
quest rate was steadily increased, the response time
of the high priority requests remained unaffected.

The priority-based approach enables us to give low
delay and high throughput to preferred clients in-
dependent of the requests or request patterns of

"high priority client’ ——
"medium priority client" ---x--- o
"low priority client" ---x---

w Y S

a o a

o o o
T T
!

w
=]
o

throughput (conn/sec)

S

)(- .- e——
0 L L X ek % .
0 5 10 1! 20 25 30 35 40 45
Number of Webstone clients

Figure 7: Throughput with the prioritized listen queue
and 3 priority classes with 50 Apache processes. The
number of clients in each class remains equal.

other clients. However, one may need many prior-
ity classes for different levels of service. The main
drawback of a simple priority ordering is that it pro-
vides no protection against starvation of low-priority
requests.

4.4 Combining Policing and Priority

To prevent starvation, low priority requests need to
have some minimum number reserved slots in the
listen queue so that they are not always preempted
by a high priority request. However, reserving slots
in the listen queue arbitrarily could cause a high pri-
ority request to find a full listen queue, which would
in turn cause it to be aborted after its 3-way hand-
shake is completed. To avoid starvation with fixed
priorities, we combine the listen queue priorities with
SYN policing to give preferred clients higher priority,
but limiting their maximum rate and burst, thereby,
implicitly reserving some slots in the queue for the
lower priority requests.

Table 3 shows the results for experiments with three
sets of Webstone clients with different priorities and
rate control of the high priority class. The lower
priority class has 30 Webstone clients while the high
priority class has 150 Webstone clients spread over
three different hosts. With no SYN policing of the
clients in the high priority class, the two low-priority
clients are completely starved. Table 3 shows that
rate limiting the clients in the high priority class to
300 conn/sec prevents starvation; the medium and

/ “high priority client’ ——
/ "medium priority client” ---x---
/ "low priority client" ---x---

0.8 |

o
o

response time (seconds)
o
~
T
%

0.2}

0 5 10 15 20 25 30 35 40
Number of Webstone clients

Figure 8: Response time with the prioritized listen
queue and 3 priority classes with 50 Apache processes.
The number of clients in each class remains equal.

Table 3: TCP SYN policing of a high-priority client
to avoid starvation of other clients.

| Throughput (conn/sec) of each priority class]

client (rate, burst) limit of high priority
priority || none | (300,300) [(200,200)

high 381 306 196
medium 0 78.6 180

low 0 4.1 13

low priority clients achieve a throughput of 78.6 and
4.1 conn/sec respectively.

4.5 HTTP Header-based Connection
Control

In this section we illustrate the performance and ef-
fectiveness of admission control and service differen-
tiation based on information in the HTTP headers
i.e., URL name and type, cookie fields etc.

Rate control using URLs: In our experimental
scenario the preferred client replaying the e-tailer’s
trace needs to be protected from overload due to a
large number of high overhead CGI requests from
non-preferred clients. The client issuing CGI re-
quests is an sclient program requesting a dynamic
file of length 5 KB at a very high rate. Figure 9
shows that without any protection, the preferred e-
tailer’s customer receives a low throughput of under
1 KB/sec. By rate-limiting the dynamic requests

700

“preferred client throughput” ——

600 |

500 |

IS
o
1<)

throughput (KB/sec)
8
o

L L L L L
0 10 20 30 40 50
Accepted rate of non-preferred dynamic clients

Figure 9: URL-based policing to protect preferred
e-tailer’s customers. The graph shows the resulting
throughput of the preferred e-tailer’s client as a specific
high overhead CGI requests is limited to a given number
of conn/sec

from 40 reqs/sec to 2 reqs/sec the throughput of
the preferred e-tailer’s customer improves from 1
KB/sec to 650 KB/sec. In contrast to TCP SYN
policing (Figure 5), URL rate control targets a spe-
cific URL causing overload instead of a client pool.

URL priorities: In this section we present the results
of priority assignments in the listen queue based on
the URL name or type being requested. The clients
are Webstone benchmarks requesting two different
URLs, both corresponding to files of size 8 KB.
There are two priority classes in the listen queue
based on the two requested URLs. Figure 10 shows
that the lower priority clients (accessing the low pri-
ority URL) receive lower throughput and are almost
starved when the number of clients requesting the
high priority URL exceeds 40. These results cor-
respond to the results shown earlier with priorities
based on the connection attributes (see Figure 7).
The average total throughput, however, is slightly
lower with URL-based priorities due to the addi-
tional overhead of URL parsing.

Combined URL-based rate control and priorities:
To avoid starvation of requests for the low-priority
URL, we rate limit the requests for the high-priority
URL. In this experiment, we assign a higher priority
to requests for a dynamic CGI request of size 5 KB
(requested by an sclient program), and lower prior-
ity to requests for a static 8 KB file (requested by
the Webstone program). Table 4 shows that starva-
tion can be avoided by rate-limiting the high-priority
URL requests.

™high priority client’ ——
"low priority client" -->---

300

N
a
=}

throughput (conn/sec)
=)
o o
o o
¥

[
o
S

o
=}
T

o

L L L L L i
10 15 20 25 30 35 40 45
Number of Webstone clients

o
o

Figure 10: Throughput with 2 URL-based priorities and
50 Apache server processes. The number of clients in
each class is equal

Table 4: URL-based policing of a high-priority client
to avoid starvation of other clients.
| Throughput (conn/sec) |

client (rate, burst) limit of high priority
priority || none | (30,10) | (10,10)
high 61.7 29.0 10.1
low 0 10.2 117
4.5.1 Overload Protection from High Over-

head Requests

So far we have used the URL-based controls for pro-
viding service differentiation based on URL names
and types. In the next experiment, we investigate if
URL-based connection control can be used to pro-
tect a web server from overload by a targeted control
of high overhead requests (e.g., CGI requests that
require large computation or database access).

We use the sclient load generator to request a given
high overhead URL and control the request rate,
steadily increasing it and measuring the throughput.
Figure 11 shows the client’s throughput with varying
request rates for a dynamic CGI request that gener-
ates a file size of 29 KB. The throughput increases
linearly with the request rate up to a critical point of
about 63 connections/sec. For any further increase
in the request rate the throughput falls exponentially
and later plateaus to around 40 connections/sec. To
understand this behavior we used vmstat to capture
the paging statistics. Since the dynamic requests are
memory-intensive, the available free memory rapidly
declines. For some combinations of the request rate

" "ng control" ——
"url-based control" ---x---

throughput (conn/sec)
N
o

s s L L s
0 20 40 60 80 100
request rate

Figure 11: Overload protection from high overhead re-
quests using URL-based connection control. The graph
shows the throughput of web server with no controls ser-
vicing CPU intensive CGI requests and the correspond-
ing throughput when the CGI requests are limited to 60
reqs/sec.

and the number of active processes, the available free
memory falls to zero. Eventually the system starts
thrashing as the CPU spends most of the time wait-
ing for pending local disk I/O. In the above experi-
ment with 150 server processes and a request rate of
63 reqs/sec the wait time starts increasing as indi-
cated by the wait field of the output from vmstat.

To prevent overload we use URL-based connection
control to limit the number of accepted dynamic
CGI requests to a rate of 60 reqs/sec and a burst
of 10. The dashed line in Figure 11 shows that with
URL-based control the throughput stabilizes to 60
reqs/sec and the server never thrashes. In the above
experiment, the URL-based connection control can
handle request rates of up to 150 requests per sec-
ond. However, for request rates beyond that thrash-
ing starts as the kernel overhead of setting up con-
nections, parsing the URL and sending the RSTs,
becomes substantial.

To further delay the onset of thrashing we augment
the URL-based control with the TCP SYN policer.
For every TCP RST that is sent we drop any subse-
quent SYN request from that same client for a spec-
ified time interval. The time interval selected is the
timeout value used for a lost SYN.

Table 5: Performance of AFPA and matching a URL
to a rule for a 8 KB file with different URL lengths.

Throughput (conn/sec) |

URL AFPA AFPA on, AFPA on,
off (no cache) | (no cache)
length no rule matching rule
11 char. 370.1 340.5 338.3
80 char. 361.5 321.9 319.4
160 char. 355.1 321.1 303.7

Table 6: Overhead of kernel mechanisms

| Operation | Cost(usec)]
TCP SYN policing 1 filter rule 7.9
3 filter rules 9.6
classification and priority | 1 rule 4.4
3 rules 5.0
AFPA including URL parsing 19
1 rule 5.0
URL-based rate control 2 rules 5.8
including URL matching | 3 rules 6.5
1 rule 3.8
URL-based priority 2 rules 4.1
including URL matching | 3 rules 4.3

4.5.2 Discussion

The HTTP header-based rate control relies on send-
ing TCP RST to terminate non-preferred connec-
tions as and when necessary. In a more user-friendly
implementation we could directly return an HTTP
error message (e.g., server busy) back to the client
and close the connection.

Our current implementation of URL-based control
handles only HTTP/1.0 connections. We are cur-
rently exploring different mechanisms for HTTP /1.1
with keep-alive connections to limit the number and
types of requests that can be serviced on the same
persistent connection. The experiments in the pre-
vious section have only presented results on URL
based controls. Similar controls can be set based on
the information in cookies that can capture transac-
tion information and client identities.

4.6 Overhead of the Kernel Mechanisms

We quantify the overhead of matching URLSs in the
kernel for varying URL lengths. Table 5 shows that
the overhead of matching a URL to a rule is mod-
erate (under 6% for a 160 character URL). The
throughput numbers are for 20 Webstone clients re-
questing an 8 KB file. Rules are matched using the
standard string comparison (strcmp) with no op-
timizations; better matching techniques can reduce
this overhead significantly. On a cache miss, the in-
kernel AFPA cache introduces an overhead of about
10% for an 8 KB file. However, the AFPA cache
under normal conditions increases performance sig-
nificantly for cache hits. In our experiments we have
the cache size set to 0 so that AFPA cannot serve
any object from the cache. When caching is enabled
Webstone received a throughput of over 800 connec-
tions per second on a cache hit.

Table 6 summarizes the additional overhead of the
implemented kernel mechanisms. The overhead of
compliance check and filter matching for TCP SYN
policing with 1 filter rule is 7.9 usecs. Simply match-
ing the filter, allocating space to store QoS state, and
setting the priority adds an overhead of around 4.4
usecs for 1 filter rule. The policing controls are more
expensive as they include accessing the clock for the
current time. Surprisingly, the URL matching and
rate control has a low overhead of 5.0 usecs for a
URL of 11 chars. This happens to be lower than
SYN policing as the strecmp matching is cheaper for
one short URL compared to matching multiple IP
addresses and port numbers. The overhead of URL
matching and setting priorities for a single rule is
around 3.8 psecs. The most expensive operation is
the call to AFPA to parse the URL. AFPA not only
parses the URL, but also does logging, checks if the
requested object is in the network buffer cache, and
pre-computes the HTTP response header.

5 Comparison of User Space and
Kernel Mechanisms

In this section we compare the effectiveness of our
kernel mechanisms with overload protection and ser-
vice differentiation mechanisms implemented in user
space. One might argue that kernel-based mecha-
nisms are less flexible and more difficult to imple-
ment than mechanisms implemented in user space.
User level controls although limited in their capa-

450

"TCP SYN pol\cl'nq" —
.~ "URL control" ---x---
400 | ‘Apache control" ---x--- |

w

@

=}
T

w
S
<1

throughput webstone (conn/sec)
*

L L L L L L
0 100 200 300 400 500 600 700
rate sclient (reqs/sec)

Figure 12: Throughput of kernel-based TCP SYN polic-
ing, kernel based URL rate control and Apache module
based connection rate control. The throughput achieved
by Webstone clients is measured against an increasing
request load generated by sclient. The sclient requests
are rate controlled to 10.0 req/sec with a burst of 2.

bilities, have easy access to application layer infor-
mation. However, kernel mechanisms are more scal-
able and provide much better performance. In gen-
eral, placing mechanisms in the kernel is beneficial
if it leads to considerable performance gains and in-
creases the robustness of the server without relying
on the application layer to prevent overload.

To enable a fair comparison we have extended the
Apache 1.3.12 server with additional modules [18]
that police requests based on the client IP address
and requested URL. The implemented rate control
schemes use exactly the same algorithms as our ker-
nel based mechanisms. If a request is not compliant
we send a “server temporarily unavailable” (503 re-
sponse code) back to the client and close the con-
nection.

The experimental setup consists of a Webstone traf-
fic generator with 100 clients requesting a file of size
8 KB along with an sclient program requesting a file
of size 16 KB. The sclient’s requests are rate con-
trolled with a rate of 10 requests per second and a
burst of 2; there are no controls set for the Web-
stone clients. During our experiments, we steadily
increased the sclient’s request rate.

Figure 12 illustrates that when the request load of
the sclient program is low (20 reqs/sec), the Web-
stone throughput is 392 conn/sec and 387.3 conn/sec
for TCP SYN policing and Apache user level con-
trols respectively. These controls limit the sclient
acceptance rate to 10.0 conn/sec. With in-kernel

"TCP SYN policl'nq" —
"URL control" ---x---

0
12} "Apache control" ---x--- T

08
0.6 |

0.4

response time webstone (seconds)

02}

L L L L L L
0 100 200 300 400 500 600 700
rate sclient (regs/sec)

Figure 13: Response times using kernel-based TCP
SYN policing, kernel based URL rate control and Apache
module based connection rate control. The response
time achieved by Webstone clients is measured against
an increasing request load generated by sclient. The
sclient requests are rate controlled to 10 req/sec with
a burst of 2.

URL-based rate control the throughput is lower (354
conn/sec). This low throughput is caused by the
additional 10% overhead added by AFPA (with no
caching) as discussed in Section 4.6. As discussed
earlier, with the cache size set to zero, we add more
overhead than necessary for URL parsing, without
the corresponding gains from AFPA caching.

As the sclient’s request load increases further, TCP
SYN policing is able to achieve a sustained through-
put for the Webstone clients, while the Apache based
controls shows a marked decline in throughput. The
graph shows that for a sclient load of 650 reqs/sec
the Webstone throughput for TCP SYN policing is
374 conn/sec; for in-kernel URL-based connection
control it is 260.7 conn/sec; for Apache user level
controls the throughput sinks to about 75 conn/sec.
The corresponding results for response times are
shown in Figure 13.

The experiment demonstrates that the kernel mech-
anisms are more efficient and scalable than the user
space mechanisms. There are two main reasons
for the higher efficiency and scalability: First, non-
compliant connection requests are discarded earlier
reducing the queuing time of the compliant requests,
in particular less CPU is consumed and the context
switch to user space is avoided. Second, when im-
plementing rate control at user space, the synchro-
nization mechanisms for sharing state among all the
Apache server processes decrease performance.

6 Related Work

Several research efforts have focused on admission
control and service differentiation in web servers [19],
[20], [21], [22], [8] and [23]. Almeida et al. [8] use
priority-based schemes to provide differentiated lev-
els of service to clients depending on the web pages
accessed. While in their approach the application,
i.e., the web server, determines request priorities,
our mechanisms reside in the kernel and can be ap-
plied without context-switching to user level. We-
bQoS [23] is a middleware layer that provides service
differentiation and admission control. Since it is de-
ployed in user space, it is less efficient compared to
kernel-based mechanisms. While WebQoS also pro-
vides URL-based classification, the authors do not
present any experiments or performance considera-
tions. Cherkasova et al. [20] present an enhanced
web server that provides session-based admission
control to ensure that longer sessions are completed.
Crovella et al. [24] show that client response time
improves when web servers serving static files serve
shorter connections before handling longer connec-
tions. Our mechanisms are general and can easily
realize such a policy.

Reumann et al. [25] have presented virtual services,
a new operating system abstraction that provides
resource partitioning and management. Virtual ser-
vices can enhance our scheme by, for example, dy-
namically controlling the number of processes a web
server is allowed to fork. In [26] Reumann et al. have
described an adaptive mechanism to setup rate con-
trols for overload protection. The receiver livelock
study [2] showed that network interrupt handling
could cause server livelocks and should be taken
into consideration when designing process schedul-
ing mechanisms. Banga and Druschel’s [27] resource
containers enable the operating system to account
for and control the consumption of resources. To
shield preferred clients from malicious or greedy
clients one can assign them to different containers.
In the same paper they also describe a multi listen
socket approach for priorities in which a filter splits
a single listen queue into multiple queues from which
connections are accepted separately and accounted
to different principals. Our approach is similar, how-
ever, connections are accepted from the same single
listen queue but inserted in the queue based on prior-
ity. Kanodia et al. [21] present a simulation study of
queuing-based algorithms for admission control and
service differentiation at the front-end. They focus

on guaranteeing latency bounds to classes by con-
trolling the admission rate per class. Aron et al. [28]
describe a scalable request distribution architecture
for clusters and also present resource management
techniques for clusters.

Scout [29], Rialto [30] and Nemesis[31] are operat-
ing systems that track per-application resource con-
sumption and restrict the resources granted to each
application. These operating systems can thus pro-
vide isolation between applications as well as service
differentiation between clients. However, there is a
significant amount of work involved to port appli-
cations to these specialized operating systems. Our
focus, however, was not to build a new operating
system or networking architecture but to introduce
simple controls in the existing architecture of com-
mercial operating systems that could be just as ef-
fective.

7 Conclusions and Future Work

In this paper, we have presented three in-kernel
mechanisms that provide service differentiation and
admission control for overloaded web servers. TCP
SYN policing limits the number of incoming con-
nection requests using a token bucket policer and
prevents overload by enforcing a maximum accep-
tance rate of non-preferred clients. The prioritized
listen queue provides low delay and high through-
put to clients with high priority, but can starve
low priority clients. We show that starvation can
be avoided by combining priorities with TCP SYN
policing. Finally, URL-based connection control
provides in-kernel admission control and priority
based on application-level information such as URLs
and cookies. This mechanism is very powerful and
can, for example, prevent overload caused by dy-
namic requests. We compared the kernel mecha-
nisms to similar application layer controls added in
the Apache server and demonstrated that the ker-
nel mechanisms are much more efficient and scalable
than the Apache user level controls.

The kernel mechanisms that we presented rely on the
existence of accurate policies that control the oper-
ating range of the server. In a production system
it is unrealistic to assume knowledge of the opti-
mal operating region of the server. We are currently
implementing a policy adaptation agent (Figure 4)
that dynamically adapts the rate control policies to
the changing workload conditions. This adaptation

agent uses available kernel statistics and past history
to select appropriate values for the various policies
and monitors the interaction between various control
options on the overall performance during overload.

Our current implementation does not address secu-
rity issues of fake IP addresses and client identities.
We plan to integrate a variety of overload prevention
policies with traditional firewall rules to provide an
integrated solution.

References

[1]
2]

[9]

[10]

[11]

“Cisco TCP intercept,” http://www.cisco.com.

J. C. Mogul and K. K. Ramakrishan, “Eliminat-
ing receive livelock in an interrupt-driven kernel,”
in Proc. of USENIX Annual Technical Conference,
Jan. 1996.

P. Druschel and G. Banga, “Lazy receiver process-
ing (LRP): a network subsystem architecture for
server systems,” in Proc. of OSDI, Oct. 1996, pp.
91-105.

O. Spatscheck and L. Peterson, “Defending against
denial of service attacks in scout,” in Proc. of OSDI,
Feb. 1999.

“Ensim corporation: virtual servers,”
http://www.ensim.com.

“Alteon web systems,”
http://www.alteonwebsystems.com.

“Cisco arrowpoint web network services,”

http://www.arrowpoint.com.

J. Almeida, M. Dabu, A. Manikutty, and P. Cao,
“Providing differentiated levels of service in web
content hosting,” in Proc. of Internet Server Per-
formance Workshop, Mar. 1999.

T. Barzilai, D. Kandlur, A. Mehra, and D. Saha,
“Design and implementation of an rsvp based qual-
ity of service architecture for an integrated services
internet,” IEEE Journal on Selected Areas in Com-
munications, vol. 16, no. 3, pp. 397413, Apr. 1998.

A. Mehra, R. Tewari, and D. Kandlur, “Design con-

siderations for rate control of aggregated tcp con-
nections,” in Proc. of NOSSDAV, June 1999.

G.R. Wright and W.R. Stevens, TCP/IP Illus-
trated, Volume 2, Addison-Wesley Publishing Com-
pany, 1995.

Martin F. Arlitt and Carey 1. Williamson, “Web

server workload characterization: The search for in-
variants,” in Proc. of ACM Sigmetrics, Apr. 1996.

P.Joubert, R. King, R.Neves, M.Russinovich, and
J.Tracey, “High performance memory based web
caches: Kernel and user space performance,” in
preparation.

[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

29]

(30]

(31]

linux

“Khttpd - http
http://www.fenrus.demon.nl/.

accelerator,”

“webstone,” http://www.mindcraft.com.

G. Banga and P. Druschel, “Measuring the capacity
of a web server,” in Proc. of USITS, Dec. 1997.

“apache,” http://www.apache.org.

L. Stein and D. MacEachern, Writing Apache mod-
ules with Perl and C, O'Reilly, 1999.

T. Abdelzaher and N. Bhatti, “Web server qos
management by adaptive content delivery,” in Int.
Workshop on Quality of Service, June 1999.

L. Cherkasova and P. Phaal, “Session based admis-
sion control: a mechanism for improving the per-
formance of an overloaded web server,” Tech. Rep.,
Hewlett Packard, 1999.

V. Kanodia and E. Knightly, “Multi-class latency-
bounded web servers,” in Intl. Workshop on Quality
of Service, June 2000.

K. Li and S. Jamin, “A measurement-based ad-
mission controlled web server,” in Proc. of INFO-
COMM, Mar. 2000.

Nina Bhatti and Rich Friedrich, “Web server sup-
port for tiered services,” IEEE Network, Sept. 1999.

M. E. Crovella, R. Frangioso, and M. Harchol-
Balter, “Connection scheduling in web servers,” in
Proc. of USITS, Oct. 1999.

J. Reumann, A. Mehra, K. Shin, and D. Kandlur,
“Virtual services: A new abstraction for server con-
solidation,” in Proc. of USENIX Annual Technical
Conference, June 2000.

H. Jamjoom and J. Reumann, “Qguard:protecting
internet servers from overload,” Tech. Rep., Uni-
versity of Michigan, CSE-TR-427-00, 2000.

G. Banga, P. Druschel, and J. Mogul, “Resource
containers: a new facility for resource management
in server systems,” in Proc. of OSDI, Feb. 1999.

M. Aron, D. Sanders, P. Druschel, and
W. Zwaenepoel, “Scalable content-aware request
distribution in cluster-based network servers,” in
Proc. of USENIX Annual Technical Conference,
June 2000.

D. Mosberger and L. L. Peterson, “Making paths
explicit in the scout operating system,” in Proc. of
OSDI, Oct. 1996, pp. 153-167.

M. B. Jones, J. S. Barrera III, A. Forin, P. J. Leach,
D. Rosu, and M. Rosu, “An overview of the Rialto
real-time architecture,” in ACM SIGOPS European
Workshop, Sept. 1996, pp. 249-256.

Thiemo Voigt and Bengt Ahlgren, “Scheduling
TCP in the Nemesis operating system,” in IFIP
WG 6.1/WG 6.4 International Workshop on Pro-
tocols for High-Speed Networks, Aug. 1999.

