Measuring CPU Overhead for I/0 Processing
in the Xen Virtual Machine Monitor

Ludmila Cherkasova
Hewlett-Packard Laboratories
1501 Page Mill Road, Palo Alto, CA 94303, USA
lucy.cherkasova@hp.com

Abstract. Virtual Machine Monitors (VMMSs) are gaining popularity
in enterprise environments as a software-based solution for building shared
hardware infrastructures via virtualization. In this work, using the Xen
VMM, we present a light weight monitoring system for measuring the CPU
usage of different virtual machines including the CPU overhead in the device
driver domain caused by I/O processing on behalf of a particular virtual ma-
chine. Our performance study attempts to quantify and analyze this overhead

for a set of I/O intensive workloads.

1 Introduction

The current trend toward virtualized computing resources and
outsourced service delivery has caused interest to surge in Vir-
tual Machine Monitors (VMM:s) that enable diverse applica-
tions to run in isolated environments on a shared hardware
platform. The Xen virtual machine monitor [1] allows multi-
ple operating systems to execute concurrently on commodity
x86 hardware. The recent HP Labs SoftUDC project [3] is
using Xen to create isolated virtual clusters out of existing
machines in a data center that may be shared across different
administrative units in an enterprise. Managing this virtual
IT infrastructure and adapting to changing business needs is
a challenging task. In SoftUDC, virtual machines (VMs) can
be migrated from one physical node to another when current
physical node capacity is insufficient, or for improving the
overall performance of the underlying infrastructure.

To support these management functions, we need an ac-
curate monitoring infrastructure reporting resource usage of
different VMs. The traditional monitoring system typically
reports the amount of CPU allocated by the scheduler for ex-
ecution of a particular VM over time. However, this method
might not reveal the “true” usage of the CPU by different
VMs. The reason is that virtualization of I/O devices results
in an I/O model where the data transfer process involves ad-
ditional system components, e.g. hypervisor and/or device
driver domains. Hence, the CPU usage when the hypervisor
or device driver domain handles the I/O data on behalf of the
particular VM needs to be charged to the corresponding VM.

In this work, we present a lightweight, non-intrusive mon-
itoring framework for measuring the CPU overhead in VMM
related layers during I/O processing and a method for charg-
ing this overhead to VMs causing the I/O traffic. Our perfor-
mance study presents measurements of the CPU overhead in
the device driver domain during I/O processing and attempts
to quantify and analyze the nature of this overhead.

Rob Gardner
Hewlett-Packard Laboratories
3404 E Harmony Rd., Fort Collins, CO 80528, USA
rob.gardner @hp.com

2 Xen

Xen [1, 2] is an x86 virtual machine monitor based on a vir-
tualization technique called paravirtualization [8, 1], which
has been introduced to avoid the drawbacks of full virtualiza-
tion by presenting a virtual machine abstraction that is sim-
ilar but not identical to the underlying hardware. Xen does
not require changes to the application binary interface (ABI),
and hence no modifications are required to guest applications.
For full details on the Xen architecture and features, we refer
readers to papers [1, 2]. Here, we only touch on some imple-
mentation details of Xen that are important for our monitoring
framework and performance study.

In the initial design [1], Xen itself contained device driver
code and provided safe shared virtual device access. The sup-
port of a sufficiently wide variety of devices is a tremendous
development effort for every OS project. In a later paper [2],
the Xen team proposed a new architecture used in the latest
release of Xen which allows unmodified device drivers to be
hosted and executed in isolated “driver domains” which, in
essence, are driver-specific virtual machines.

There is an initial domain, called Domain0, that is created
at boot time and which is permitted to use the control inter-
face. The control interface provides the ability to create and
terminate other domains, control the CPU scheduling param-
eters and resource allocation policies, etc. Domain0 also may
host unmodified Linux device drivers and play the role of a
driver domain. In our experimental setup, described in Sec-
tion 4, we use Domain(0 as a driver domain. Devices can be
shared among guest operating systems. To make this sharing
work, the privileged guest hosting the device driver (e.g. Do-
main0) and the unprivileged guest domain that wishes to ac-
cess the device are connected together through virtual device
interfaces using device channels [2]. Xen exposes a set of
clean and simple device abstractions. I/O data is transferred
to and from each domain via Xen, using shared-memory,
asynchronous buffer descriptor rings. In order to avoid the
overhead of copying I/O data to/from the guest virtual ma-
chine, Xen implements the “page-flipping” technique, where
the memory page containing the I/O data in the driver domain
is exchanged with an unused page provided by the guest OS.
Our monitoring framework actively exploits this feature to
observe I/O communications between the guest domains and
the driver domains.

USENIX Association

2005 USENIX Annual Technical Conference

387

3 Monitoring Framework

To implement a monitoring system that accounts for CPU us-
age by different guest VMs, we instrumented activity in the
hypervisor CPU scheduler.

Let Domg, Domy, ..., Domy be virtual machines that
share the host node, where Domy is a privileged manage-
ment domain (Domain0) that hosts the device drivers. Let
Dom,q;e denote a special idle domain that “executes” on the
CPU when there are no other runnable domains (i.e. there is
no virtual machine that is not-blocked and not-idle). Dom ;4.
is the analog to the “idle-loop” executed by an OS when there
are no other runnable processes.

At any point of time, guest domain Dom; can be in one of
the following three states:

® execution state: domain Dom; is currently using CPU;

o runnable state: domain Dom; is not currently using
CPU but is on the run queue and waiting to be sched-
uled for execution on the CPU;

e blocked state: domain Dom; is blocked and is not on the
run queue (once unblocked it is put back on the queue).

For each domain Dom;, we collect a sequence of data de-
scribing the timing of domain state changes. Using this data,
it is relatively straightforward to compute the share of CPU
which was allocated to Dom,; over time.

As was mentioned in Section 2, in order to avoid the
overhead of copying I/O data to/from the guest virtual ma-
chine Xen implements the “page-flipping” technique, where
the memory page containing the I/O data is exchanged with
an unused page provided by the guest OS. Thus, in or-
der to account for different I/O related activities in Domg
(that “hosts” the unmodified device drivers), we observe the
memory page exchanges between Domg and Dom;. We
measure the number N,"” of memory page exchanges per-
formed over time interval T; when Domg is in execution
state. We derive the CPU cost (CPU time processing) of
these memory page exchanges as Cost]'” = T;/N/"". Af-
ter that, if there are IV, iD °™i memory page exchanges between
Domyg and virtual machine Dom; then Dom; is “charged”
for NP x Cost]™ of CPU time processing of Domain.
In this way, we can partition the CPU time used by Domain0
for processing the I/O related activities of different VMs shar-
ing the same device driver, and “charge” the corresponding
virtual machine that caused these I/O activities. Within the
monitoring system, we use a time interval of 100 ms to ag-
gregate overall CPU usage across different virtual machines.

4 Performance Study

We performed a few groups of experiments that exercise net-
work and disk I/O traffic in order to evaluate the CPU usage
caused by this traffic in Domain0.

All the experiments were performed on an HP x4000
Workstation with a 1.7 GHz Intel Xeon processor, 2 GB
RAM, Intel ¢100 PRO/100 network interface, and Maxtor
40GB 7200 RPM IDE disk. For these measurements, we used
the XenoLinux port based on Linux 2.6.8.1 and Xen 2.0.

The first group of experiments relates to web server
performance. Among the industry standard benchmarks
that are used to evaluate web server performance are the
SPECweb’96 [6] and SPECweb’99 [7] benchmarks. The
web server performance is measured as a maximum achiev-
able number of connections per second supported by a server
when retrieving files of various sizes. Realistic web server
workloads may vary significantly in both their file mix and
file access pattern. The authors of an earlier study [5] es-
tablished the web server performance envelope: they showed
that under a workload with a short file mix the web server
performance is CPU bounded, while under a workload with a
long file mix the web server performance is network bounded.

To perform a sensitivity study of the CPU overhead in Do-
main0 caused by different web traffic, we use Apache HTTP
server version 2.0.40 running in the guest domain, and the
httperf tool [4] for sending the client requests. The httperf
tool provides a flexible facility for generating various HTTP
workloads and for measuring server performance. In order to
measure the request throughput of a web server, we invoke
httperf on the client machine, which sends requests to the
server at a fixed rate and measures the rate at which replies ar-
rive. We run the tests with monotonically increasing request
rates, until we see that the reply rate levels off and the server
becomes saturated, i.e., it is operating at its full capacity. In
our experiments, the http client machine and web server are
connected by a 100 Mbit/s network.

We created a set of five simple web server workloads, each
retrieving a fixed size file: 1 KB, 10 KB, 30 KB, 50 KB, and
70 KB. Our goal is to evaluate the CPU overhead in Domain0
caused by these workloads. Figure 1 summarizes the results
of our experiments.

Figures 1 a), b) show the overall web server performance
under the studied workloads. To present all the workloads
on the same scale, we show the applied load expressed as a
percentage of maximum achieved throughput. For example,
the maximum throughput achieved under a workload with a
1 KB file size is 900 req/s. Thus the point on the graph with
X axis of 100% reveals 900 req/s throughput shown on the
Y axis. Similarly, the maximum throughput achieved under
a workload with 70 KB file size is 160 req/s, and this point
corresponds to 100% of applied load. Figure 1 b) presents
the amount of performed network I/O in KB/s as reported
by the httperf tool. These measurements combine the HTTP
requests (80 bytes long) and the HTTP responses (that in-
clude 278 bytes HTTP headers and the corresponding file
as content). Figure 1 b) reveals that web server through-
put is network bounded for workloads of 30-70 KB files
due to network bandwidth being limited to 100Mb/s (12.5
MBY/s). Another interesting feature of these workloads is ap-
parent from Figure 1 b): the amount of transferred network
I/O is practically the same for workloads of 30-70 KB files
(30KB x380 req/s ~ S0KB x 225 req/s ~ 70KB x 160 req/s).

Figure 1 c) shows the measured CPU usage by Domain0
for each of the corresponding workloads. The CPU usage by
Domain0 increases with a higher load, reaching 24% for the
workload of 1 KB files and peaking at 33-34% for workloads

388

2005 USENIX Annual Technical Conference

USENIX Association

1000 T
o
Q
7]
E=3
2
5
o
<
[=2]
3
o
=
=
a) Load (%)
CPU Usage by Domain 0
35
30
25 |
€ nl
=]
2 15}
o
10
5| i
0 L L L L L
0 20 40 60 80 100 120
C) Load (%)

12000 T
10000
8000

6000 |- w" 1

Net I/0 (KB/sec)
g

4000 .

2000 | |

o ‘ ‘ ‘ ‘
0 20 40 60 80 100 120
b) Load (%)

Amount of Memory Pages Exchange

12000 T T T T

1KB —+—

10000

8000 |-

6000

4000

2000

Memory Pages Exchange (pages/sec)

0 20 40 60 80 100 120
d) Load (%)

Figure 1: Summary of performance experiments with web server running in a single guest domain.

of 30-70 KB files. Measurements presented in Figure 1 c) an-
swer one of our questions about the amount of CPU usage in
Domain0 that is caused by device driver processing for web
server related workloads. The measured CPU usage presents
a significant overhead, and thus should be charged to the vir-
tual machine causing this overhead.

Our monitoring tool measures the number of memory page
exchanges performed per second over time. Figure 1 d)
presents the rates of memory page exchanges between Do-
main0 and the corresponding guest domain. At first glance,
these numbers look surprising, but under more careful analy-
sis, they all make sense. While the memory pages are 4 KB,
a single memory page corresponds to a network packet trans-
fer whether it is a SYN, or SYN-ACK, or a packet with the
HTTP request. Thus network related activities for an HTTP
request/response pair for a 1 KB file require at least 5 TCP/IP
packets to be transferred between the client and a web server.
Thus, processing 1000 requests for a 1 KB file translates to
~ 5000 TCP/IP packets and the corresponding rates of mem-
ory page exchanges.

Figure 2 presents the CPU usage by Domain0O versus the
amount of network I/O traffic transferred to/from a web server
during the the corresponding workload. Often, the expecta-
tions are that the CPU processing overhead can be predicted
from the number of transferred bytes. In the case of high vol-
ume HTTP traffic requesting small files, the small size trans-
fers are “counter-balanced” by the high number of interrupts
corresponding to the processing of the web requests. While
the amount of transferred data is relatively small for the 1 KB
file workload, it results in high CPU processing overhead in
Domain0 due to the vastly higher number of requests (10-20
times) for the corresponding workload as shown in Fig. 2.

Net I/O and CPU Usage by Domain 0

— 1]

30KB %+
50KB - g

35

T
1KB —+—

30

CPU Util (%)

0 1 1 1 1 1
0 2000 4000 6000 8000 10000

Net I/0 (KB/sec)

12000

Figure 2: CPU usage by Domain0 versus the amount of network I/O traffic
transferred to/from a web server.

To complete our web server case study, we run Xen with
two guest domains configured with equal resource alloca-
tions, where each guest domain runs an Apache web server.
Using the httperf tool, we designed a new experiment where
requests that are sent to a web server in Domainl retrieve
1 KB files, and the requests sent to a web server in Domain2
retrieve 70 KB files. In these experiments, we use the same
request rates as in a single guest domain case. Our goal is
to evaluate the CPU overhead in Domain0O caused by these
workloads, as well as present the parts of this overhead at-
tributed to Domainl and Domain2.

Figure 3 a) presents throughput achieved for both web
servers under the applied workloads. It shows that a web
server running in Domainl and serving 1 KB file workload
is able to achieve 50% of the throughput achieved by a web
server running in a single guest domain (see Figure 1 a). In-
terestingly, a web server running in Domain2 and serving
70 KB file workload is able to achieve almost 100% of its

USENIX Association

2005 USENIX Annual Technical Conference

389

Throughput
500

450
400
350
300
250
200
150

Throughput (reg/sec)

100
50 b

a) Load (%)

CPU Usage by Domain 0

30 T T T T
Dom0_CPU —+—
25 -
Dom0_Dom2_70KB ---%:--
20
®
g 15 |
=)
o
o
10 |
..r‘"-‘
5L o * i
0 1 1 1 1
0 20 40 60 80 100
b) Load (%)

Figure 3: Summary of performance experiments with web servers running in two different guest domains.

throughput compared to the single guest domain case. This
is because the performance of a web server handling a 70 KB
file workload is network bounded, not CPU bounded. In the
designed experiment, it can use most of the available network
bandwidth, since the “competing” 1 KB file workload is CPU
bounded and has network bandwidth requirements that are 70
times lower.

Figure 3 b) shows the measured CPU usage by Domain0
and the portions attributed to Domainl and Domain2. For
example, under 100% of applied load, the CPU usage by Do-
main0 is 26.5%, where Domainl is responsible for 7.5% and
Domain2 accounts for the remaining 19% of it. Thus, it is im-
portant to capture the additional CPU overhead caused by the
/O traffic in Domain0, and accurately charge it to the domain
causing this traffic.

The second group of experiments targets the disk I/O traf-
fic in order to evaluate the CPU usage in Domain0 caused
by this traffic. We use the dd command to read 500, 1000,
5000, and 10000 blocks of size 1024 KB from the “raw”
disk. Table 1 summarizes the measurements collected dur-
ing these experiments. First of all, the transfer time is di-

time is practically unchanged and again is directly propor-
tional to the transferred amount of data. The achieved disk
bandwidth is similar to the first set of experiments. However,

File Transfer Tput Domain0 CPU | Memory Page
Size Time (sec) (MB/s) Usage (%) Exch. (pages/s)
0.5GB 38.3 sec 13.0 MB/s 4.08% 3,275
1GB 77.8 sec 12.8 MB/s 4.1% 3,387
5GB 386.3 sec 12.9 MB/s 3.98% 3384
10 GB 772.1 sec 13. MB/s 3.91% 3383

File Transfer Tput Domain0 CPU | Memory Page
Size Time (sec) (MB/s) Usage (%) Exch. (pages/s)
0.5GB 38.4 sec 13.0 MB/s 12.68% 27,342
1GB 776.8 sec 13.0 MB/s 12.5% 27,240
5GB 379.5 sec 13.2 MB/s 12.52% 27,508
10 GB 763.6 sec 13.1 MB/s 12.51% 27,254

Table 1: Summary of “raw” disk performance measurements.
rectly proportional to the amount of transferred data. The
achieved disk bandwidth, the Domain0 CPU usage, and the
rates of memory page exchanges are consistent across differ-
ent experiments. This is expected for a disk bandwidth lim-
ited workload. However, the measured rates of memory page
exchanges are surprising: we expected to see around 3250
page/s (13,000 KB/s divided by 4 KB memory pages should
produce =~ 3250 page/s), but we observe rates of memory
page exchanges 8 times higher. The explanation is that the
block size at a “raw” disk device level is 512 bytes. Thus each
4 KB memory page is used for transferring only 512 bytes of
data. This leads to rates of memory page exchanges 8 times
higher and, as a result, to a significantly higher CPU overhead
in DomainO.

We repeated the same set of experiments for a disk device
that is mounted as a file system. Table 2 summarizes the re-
sults collected for the new set of experiments. The transfer

Table 2: Measurements for a disk device mounted as a file system.

the Domain0 CPU usage and the rates of memory page ex-
changes are much lower than for the first set of experiments.
The measured rates of memory page exchanges are close to
our initial expectations of 3250 page/s. The measured CPU
usage in Domain0 is only about 4% for all the experiments in
the second set, and it correlates well with the rates of memory
page exchanges.

To quantify the overhead introduced by our instrumenta-
tion and performance monitor, we repeated all the experi-
ments for the original Xen 2.0. The performance results for
the instrumented and non-instrumented, original version of
Xen 2.0 are practically indistinguishable.

In our future work, we intend to design a set of resource
allocation policies that take this CPU overhead into account.

References

[1] B.Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and the Art of Virtualization. Proc.
of ACM SOSP, October 2003.

[2] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, M.
Williamson. Reconstructing 1/0. Tech. Report, UCAM-CL-TR-596,
August 2004.

[3] M. Kallahalla, M. Uysal, R. Swaminathan, D. Lowell, M. Wray, T.
Christian, N. Edwards, C. Dalton, F. Gittler. SoftUDC: A Software-
based data center for utility computing. IEEE Computer, Special issue
on Internet Data Centers, pp. 46-54, November, 2004.

[4] D. Mosberger, T. Jin. Httperf—A Tool for Measuring Web Server Per-
formance. Proc. of Workshop on Internet Server Performance, 1998.

[5] F.Prefect, L. Doan, S.Gold, and W. Wilcke. Performance Limiting Fac-
tors in Http (Web) Server Operations. Proc. of COMPCON’96, Santa
Clara, 1996, pp.267-273.

[6] The Workload for the SPECweb96 Benchmark. http://www.
specbench.org/osg/web96/workload.html

[71 The Workload for the SPECweb99 Benchmark. http://www.
specbench.org/osg/web99/workload.html

[8] A. Whitaker, M. Shaw, and S. Gribble. Denali: A Scalable Isolation
Kernel. Proc. of ACM SIGOPS European Workshop, September 2002.

390

2005 USENIX Annual Technical Conference

USENIX Association

