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Abstract

This paper describes Rhino, a transactional memory

service implemented on top of the SPIN operating

system. Rhino is implemented as an extension that

runs in SPIN kernel's address space. We discuss

how the extension structure of Rhino can solve per-

formance problems previously unavoidable in tra-

ditional systems, and we quantify its bene�ts. We

also introduce three alternative bu�er management

schemes and study their performance under various

workloads.

1 Introduction

This paper describes Rhino, a transactional memory

service that lets applications perform transactions

on a virtual memory through ordinary loads and

stores.

Rhino runs on the SPIN operating system, which

lets user applications modify and augment the ker-

nel by safely downloading code (extensions) into the

kernel address space [2]. Rhino is implemented as

an extension. Extensions can e�ciently manipulate

kernel resources such as virtual memory pages and

�les, and can thus avoid the performance bottle-

necks that plague traditional systems.

We have developed several versions of Rhino as our

understanding of SPIN and its target applications

grew. These versions share the same transaction

mechanisms, but they di�er in the way they de-

tect updates to memory and manage bu�ers. In

this paper, we explore the tradeo�s among these

systems under di�erent workloads. We also show

how SPIN's extension architecture enhances the

performance of Rhino by comparing Rhino with its

user-space, UNIX-based implementation.

1.1 Transactional Memory Require-
ments

Transactional memory service allows applications to

access a database �le mapped onto virtual memory

regions in an atomic, isolated, and durable (also

known as ACID) manner [8]. It is used as a runtime

engine for managing persistent, pointer-rich data

structures, such as graphic design databases, pro-

ject management databases, and directory services.

Transactional memory is similar to a memory-

mapped �le, but the ACID property requires ad-

ditional operating system support. To ensure atom-

icity, wherein a set of database accesses must be per-

formed in an all-or-nothing manner, transactional

memory records all updates to the database; it then

replays or unwinds them after the system crashes or

when the application aborts an operation. To isol-

ate applications, transactional memory must lock

virtual memory regions that the applications have

accessed.

1.2 Limitations of Existing Systems

The functions provided by conventional operating

systems do not meet the requirements of trans-

actional memory systems. The following sections

highlight three areas where existing operating sys-

tems respond poorly to the needs of transactional

memory.

1.2.1 Write Detection

Transactional memory service must keep track of

the database changes to ensure ACID property. In

user-space transactional memory implementations,

writes to the database are usually detected by the

MMU protection and upcalls from the operating

system (SIGSEGV signals in UNIX). However, such



implementations incur high overhead [21], as shown

in Figure 1 (a). When a page fault occurs, the kernel

performs a full context switch into the signal hand-

ler. The signal handler calls the server to bring the

faulted page into client memory. It then issues a

system call, such as mprotect, to change the MMU

protection and makes a context switch back to the

faulted context. The whole process requires at least

eight user-kernel boundary crossings and four con-

text switches.

1.2.2 Inter-process Communication

Most transactional memories are organized as

client-server systems, since they can easily handle

concurrent updates by multiple applications. These

systems require frequent inter-process communic-

ation (IPC) for data fetching, database locking,

and transaction control. IPC performance becomes

more critical in a transactional memory services

where clients and the server exchange data pages,

than in relational database systems where only quer-

ies and answers are exchanged. Although fast IPC

mechanisms have been studied extensively [1, 11],

they have not made their way into mainstream op-

erating systems. Thus, IPC in existing operating

systems is slow, and it often becomes the bottleneck

in transactional memory implementations.

1.2.3 Bu�er Management

A transactional memory service must often handle

databases whose size exceeds that of main memory.

When the demand for memory exceeds a limit, the

operating system evicts pages from applications.

When a database bu�er page held on ordinary vir-

tual memory is evicted, extra disk accesses are re-

quired to swap out and later swap in the page.

Straightforward implementations have been unable

to address this problem, called double paging [13].

1.2.4 Organization of the Paper

Section 2 introduces the SPIN operating system.

Section 3 reviews SPIN's Rhino extension. In Sec-

tion 4, we discuss implementation issues and de-

scribe the advantages and disadvantages of three al-

ternative bu�er management schemes. Rhino's per-

formance is contrasted with UNIX implementations

in Section 5. Section 6 examines works related to

ours. We summarize our �ndings in Section 7.

2 Overview of SPIN

SPIN is an extensible operating system. Applica-

tions can safely extend the kernel functionality by

downloading code into the kernel address space [2].

The SPIN operating system consists of the kernel,

which provides basic services such as CPU schedul-

ing and device management, and extensions, which

are downloaded into the kernel address space after

the kernel boots. Extensions e�ciently communic-

ate and share resources with the kernel and other

extensions; from a performance viewpoint, they re-

semble dynamically linked modules.

The SPIN kernel and extensions are written in

Modula-3 [14], a general purpose, typesafe language.

The Modula-3 compiler, the SPIN runtime environ-

ment and the dynamic linker ensure that extensions

cannot arbitrarily access memory or other critical

resources, such as I/O ports and interrupt masks.

2.1 Use of Extensions in SPIN

Figure 2 shows a typical con�guration of SPIN.

Some SPIN extensions provide basic services used

by other extensions. For example, �le system exten-

sions provide common directory and �le operations

like those found in UNIX. The virtual memory ex-

tension provides address spaces and memory objects

similar to those found in Mach [23].

SPIN also supports user-space applications. Al-

though the SPIN kernel does not support nat-

ive system calls, it provides mechanisms that al-

low extensions to catch events from user-space ap-

plications, such as system calls and page faults.

The UNIX emulation extension uses these mech-

anisms to provide the UNIX API for user-space

applications[16]. Rhino is another extension that

implements a transactional memory service for user-

space applications. Note that unlike extensions,

user-space applications can be written in any lan-

guage. They are protected from other components

by hardware mechanisms, as they are in other op-

erating systems.

2.2 SPIN's Approach to Transactional
Memory

Rhino is implemented as an in-kernel extension.

This design makes it possible to overcome the op-

erating system de�ciencies described in Section 1.1.

For example, Figure 1 (b) shows page fault handling

in Rhino. By placing the page fault handler inside

the kernel space, Rhino can process a write detec-

tion event with two user-kernel crossings and zero
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context switches.

Extensions also reduce the IPC overhead that ex-

ists in client-server systems. Typical IPC involves

argument copying, context switching to the server

(assuming the server runs on the client machine),

writing back of results, and context switching back

to the client. In Rhino, context switches are elim-

inated, since the extension is in the kernel address

space and shared by all user-space applications.

Another example of the bene�ts of SPIN's extension

approach is bu�er management. Rhino maps the

database bu�er directly onto an application's ad-

dress space. It cooperates with the virtual memory

extension to swap bu�er pages directly to a database

�le rather than to a disk, thus solving the double

paging problem.

3 Overview of Rhino

Rhino is structured as an extension that commu-

nicate with user-space applications via system calls.

This section reviews the structure of the Rhino ex-

tension and its usage.

3.1 Rhino Structure
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Figure 3: The Rhino extension structure. The

Rhino system consists of shaded regions. It uses the

�le system extensions for database I/O and logging,

and the virtual memory extensions for database buf-

fering. Rhino is used by UNIX applications linked

with the transaction library.

The shaded regions of Figure 3 show the structure of

Rhino. Persistent malloc and system call stubs are

linked into applications as a library. The following

additional components reside in the kernel address

space as an extension.

� The transaction manager starts and terminates

transactions.

� The storage manager is the core of Rhino.1 It

detects applications' reads and writes and logs

them to ensure the ACID property. It also

manages bu�ers using memory objects.

� The log manager manages the log device, which

is a sequential-write, random-read persistent

device [8]. It is used by the storage manager

to guarantee database durability and atomicity.

The log manager also coordinates crash recov-

ery when Rhino is installed.

� The lock manager manages locks on regions. It

also detects deadlocks.

Rhino uses several standard extensions to carry out

operations. It stores databases and log records in

�les managed by �le system extensions. Files are

usually stored in the extent-based �le system, which

allocates �les on contiguous blocks and does not

cache blocks in memory. Rhino cooperates with the

virtual memory extension to manage database buf-

fers. Its bu�er management is described in detail in

Section 4.

3.2 Application Programming in Rhino

Database �les managed by Rhino are accessed either

by user-space applications or by other in-kernel ex-

tensions. For ease of use and understanding, we use

C nomenclature to present interfaces accessed by

user-space applications.

Table 1 shows the system calls supported by Rhino.

The system call interface resembles those found

in other systems [17, 10, 20]. Figure 4 shows a

simple application that writes \z"s onto the re-

gion that extends from byte 256 to byte 384 in the

�le \/efs/test". To access a database �le, the

application �rst calls trans_open to get a handle

to the �le. It then calls trans_mmap to map

the �le onto a virtual address space region (that

must be MMU-page aligned). After setup of the

transactional memory region, the application need

1Note that our use of the term \storage manager" di�ers

from that in other database literature [8]. \Storagemanager"

commonly refers to the code that manages raw disk I/O.

In our system, the storage manager is a resource manager

specialized for �le manipulation. Raw disk I/O is not part

of the transaction service, since Rhino directly uses the raw

I/O facility provided by SPIN's �le system.



only demarcate transactions by using trans_begin,

trans_commit, and trans_abort. Accesses to the

transactional memory region are detected through

page faults.2

main()
f

tid_t tid;
sid_t sid;
void *base = (void*)0x10000;

/* Open the �le /efs/test. */
sid = trans_open("/efs/test");
/* Map the storage from 0x10000 .. 0x90000. */
trans_mmap(base, 0x80000, sid);

tid = trans_begin();
/* Fill the region with "z". */
memset(base + 256, 'z', 128);
if (something_wrong()) trans_abort(tid);
else trans_commit(tid);

g

Figure 4: Sample application in user space.

4 Implementation Issues

This section describes the Rhino functions needed

to implement a transaction. Bu�ering is the key to

high performance. Locking and write detection are

needed to ensure the ACID property [8].

4.1 Bu�ering

Rhino stores database contents in memory-mapped

�les; in other words, the database is bu�ered on

pages that are mapped directly onto an application's

address space. Memory-mapped �les thus avoid the

double paging problem even if there is memory com-

petition.

E�cient bu�ering must comply with the write

ahead logging (WAL) rule, which dictates that

whenever a page is to be evicted, its log records

(undo records) must be 
ushed to the log device [8,

13]. Rhino ensures WAL by implementing its own

pageout procedure. Whenever the kernel chooses

a page for purging, the Rhino pageout module is

called to 
ush the log into the log device.

4.2 Locking

Rhino lets multiple applications access a database

concurrently. To ensure isolation among transac-

tions, database regions must be locked until a trans-

action �nishes. Rhino asserts locks in MMU page

grain using page faults.

2One version of Rhino requires a trans setrange sys-

tem call instead of page fault detection. In that version,

\trans setrange(sid, 256, 128);" is needed just before

memset.

Before a transaction starts, MMU mappings for the

database region are invalid. The �rst access to a

page causes a page fault. The page fault handler in

the Rhino extension obtains either a read or a write

lock on the page, depending on whether the access

is load or store. This scheme is essentially the same

as that used in systems such as ObjectStore [10] and

QuickStore [22]. Other locking approaches are pos-

sible, such as requiring applications to issue a sys-

tem call to lock a region [7]. However, we decided

on the MMU-based automatic locking approach to

make the programming interface as simple as pos-

sible.

A shortcoming of this approach is that mul-

tiple threads in a single process cannot execute

transactions simultaneously on the same database.

However, this is not a serious problem since thread

is not a unit of protection in most operating sys-

tems including SPIN; protecting database accesses

by threads does not provide much help to program-

mers.

4.3 Write Detection

Transactional memory service must detect and

log all writes to the persistent region, permitting

changes to the database to be undone or redone

atomically [8]. We implemented three versions of

write detection in Rhino to study their perform-

ance trade-o�s under various workloads. They

are setrange, page grain logging, and page di�-

ing. Setrange requires applications to issue a

trans_setrange system call before modifying the

database. The other two versions rely on the MMU

to detect writes and di�er in detection precision.

Page grain logging treats the whole page as mod-

i�ed when at least one byte on the page changes.

Page di�ng tries to compute the exact set of modi-

�cations by comparing old and new page contents.

4.3.1 Setrange

The setrange approach creates a memory object for

each open database �le. It is mapped to the applica-

tion's address space when trans_mmap is called. Be-

fore modifying a region in the database, the applic-

ation must issue the trans_setrange system call to

notify the Rhino extension about the region. In re-

sponse to the call, Rhino pins down all bu�er pages

in the region so they will not be paged out until the

transaction ends. It then records the region in a

per-transaction record. Upon commit, Rhino scans

the per-transaction record and logs the contents of

each region as redo records. Thus, it implements a



System Call Function

storage = trans open(path) Opens the database �le path

trans close(storage) Closes the �le

trans setrange(storage, from, len) Noti�es the modi�cation to Rhino. This sys-

tem call exists only in one of the three altern-

ative versions of bu�er management.
trans mmap(addr, length, storage) Maps the �le onto caller's address space

trans munmap(addr, length) Unmaps the �le

trans id = trans begin() Begins a transaction

trans commit(trans id) Commits the transaction

trans abort(trans id) Aborts the transaction and rolls back its e�ect

Table 1: Rhino API
no-steal, no-force policy [6]. Update detection using

setrange was �rst implemented in RVM [17].

4.3.2 Page Grain Logging

Instead of relying on system calls from applications,

page grain logging version uses MMU protection to

detect writes. Database contents are stored in a

memory object, as in the setrange version. All vir-

tual memory mappings for the memory object are

invalid before a transaction starts.

When the application writes onto the memory ob-

ject, a page fault occurs, and the Rhino storage

manager brings page contents in from disk, if ne-

cessary. The current contents of the page are then

logged immediately as an undo record. Finally, the

storage manager maps the page onto the applica-

tion's address space. Upon commit, contents of all

modi�ed pages are logged as redo records.

When a bu�er page is chosen as a pageout victim,

the storage manager 
ushes the undo records gen-

erated for the page. Next, it writes the contents of

the storage page into the database �le. Finally, it re-

moves the page from the memory object. Thus, this

version implements a steal, no-force bu�er manage-

ment. Variations of page grain logging can be found

in many transactional memory systems, including

ObjectStore [10].

4.3.3 Page Di�ng

Page di�ng resembles page grain logging. However,

it tries to reduce the size of the log by computing dif-

ferences between old and new page contents. When

a database �le is opened, the storage manager cre-

ates two memory objects. The storage object is

mapped onto the application's address space, and

it caches the up-to-date contents of the �le. The

shadow object holds old bu�er contents. It is not

mapped onto address spaces; rather, it is used only

to group pages together. Figure 5 shows how the

two memory objects are used.

Virtual
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1. Begin transaction 2. Store by application

3. Commit transaction 4. Begin next transaction

Virtual
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Database
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Figure 5: Page di�ng algorithm

Before each transaction, all MMU mappings for the

database region are invalid. In response to a page

fault caused by an application store, the storage

manager brings the page into the storage object,

if necessary. It then allocates a page on the shadow

object and copies the contents of the storage object

page onto the new page. Finally, the storage ob-

ject page is mapped onto the application's address

space.

Upon commit, it compares the contents of each

modi�ed page and its shadow word by word and

computes the di�erences between them. The \di�"s

are logged as redo records. After commit, all map-

pings for the database region are invalidated.



When either a storage page or its shadow is chosen

as a pageout victim, and the storage page is modi-

�ed by some transaction, Rhino computes a \reverse

di�" of the shadow and the storage page. The re-

verse di� is logged and 
ushed as the undo record.

Next, the contents of the storage page are written

out to the database �le. Finally, both the storage

page and the shadow page are removed from the

memory objects. When the storage page is dirty

but is not being modi�ed by a transaction, Rhino

writes the page to the database �le without gener-

ating an undo record.

With this design, if the number of pages accessed

by the transaction is smaller than the main memory

size, no undo records are generated. Undo records

are generated only when bu�er pages are evicted.

Page di�ng was �rst proposed in QuickStore [22].

Unlike Rhino, QuickStore does not allow dirty pages

to be 
ushed before commit (no-steal policy). Thus,

QuickStore does not generate reverse di�s.

4.3.4 Trade-o�s among Write Detection

Versions

We implemented the setrange version �rst because

it was easy to understand and fast for small trans-

actions since it can minimize the amount of redo

records. However, we found a number of disadvant-

ages when we ran bigger transactions.

� Setrange requires manual intervention.

Programmers have to call trans_setrange

manually before modifying a database region.

Forgetting to make this call could result in un-

recorded the changes to the database.

� The overhead of calling trans_setrange is sig-

ni�cant in big transactions.

When a transaction makes many trans -

setrange calls, call overhead becomes sizeable.

Note that this problem is less serious in systems

like RVM [17] and Vista [12], which implement

setrange as a library.

� Memory overhead increases in large transac-

tions.

The biggest problem with setrange is that each

setrange region must be recorded until the

transaction terminates. Thus, we cannot limit

the amount of memory required to keep track

of a transaction.

A related problem is that setrange does not

work well with the steal bu�er management

policy, which is essential to run large transac-

tions. Because ranges must be remembered in

memory until a transaction commits, it is dif-

�cult to evict pages in the middle of a transac-

tion.

Page grain logging can limit memory consumption

regardless of the amount of modi�cations: all modi-

�cations are recorded in memory object pages, and

pages can be purged. It is less error prone than

setrange, because it does not require programmer

cooperation. Another advantage is that it can

amortize the write detection cost when many bytes

are updated in a page, because detection is required

only once3. Thus, it is faster than setrange when

many bytes are modi�ed per page.

The problem with this approach is the log can grow

quite large. For each modi�ed page, log records

twice as large as the page size are generated (one

for an undo record, one for a redo record). This is

wasteful for two reasons. First, it generates undo

and redo records for the whole page even if only a

single byte is modi�ed on the page. Second, page

grain logging blindly generates undo records even

for transactions small enough not to require paging,

in which case undo records are not needed [8].

Page di�ng combines the advantages of setrange

and page grain logging. It shares all the advantages

of page grain logging. In addition, it can minimize

log size by computing page di�s.

However, page di�ng introduces overhead that did

not exist in earlier versions. One source of over-

head is the page di�ng itself. Page di�ng needs

to walk over two pages and write out di�erences to

another memory region. Not only is this procedure

slow, but it retards other procedures by contamin-

ating the CPU cache. Another source of overhead is

the memory pressure imposed by shadow pages. In

the worst case, one in which all accessed pages are

modi�ed, the e�ective memory size is halved. Thus,

the system will have more paging activities.

5 Performance

This section evaluates the performance of Rhino.

All measurements were carried out on a DEC Al-

phastation 250 with a 21064A CPU running at

266MHz, 47MB of user memory, and a DEC RZ26L

1GB SCSI disk.

We compared �ve systems: the three versions of

3When the page is purged and later brought in again,

Rhino takes a page fault again.



Rhino running on SPIN, the page di�ng version of

Rhino running on Digital UNIX 3.2, and Object-

Store 4.0 running on Digital UNIX 3.2 [10].

Rhino on Digital UNIX uses the same page di�ng

code to detect modi�cations, but bu�ers are on or-

dinary virtual memory pages instead of a memory-

mapped �le, and page faults are detected using

UNIX signals. Digital UNIX Rhinowas measured to

quantify the bene�ts of SPIN's extension architec-

ture, which allows low-cost communication between

extensions and the kernel.

ObjectStore is a client-server database management

system that bu�ers database contents on a client's

virtual memory. It implements no-steal, no-force

bu�er management and page grain logging. Object-

Store is included to compare Rhino against a state-

of-the-art, object-oriented database system.

We �rst present the micro-benchmarks that show

the latency of the critical paths. Next, we

present results from two benchmarks, RVM [17]

and OO7 [3]. The RVM benchmark typi�es small

update transactions, while OO7 typi�es graphical

CAD database operations.

5.1 Micro-benchmarks

This section compares the micro-benchmark per-

formance of SPIN-based Rhino and Digital UNIX-

based Rhino to show how the extension architecture

of SPIN improves the performance of critical func-

tions. Table 2 shows the time breakdown of some

important events.

Null call indicates a null system call overhead (on

Digital UNIX, we measured the latency of getpid).

SPIN is slower than Digital UNIX, because the im-

plementation of system call in SPIN requires the use

of additional mechanisms to protect the kernel from

the runtime failure of an extension [16].

Begin shows the latency of trans_begin. Com-

mit(ro) is the time to commit a read-only transac-

tion. Commit(8byte) is the time to commit a trans-

action that modi�ed 8 bytes on a single page. Page

di�ng is used during commits.

Four numbers are shown for page faults. \Read"

faults are caused by load instructions, and \write"

faults by store instructions. \Warm" faults occur

when database contents are in main memory. Thus,

these are times with no disk I/O. \Cold" faults oc-

cur when database contents are not in mainmemory

and require pages to be read from the disk.

The SPIN version outperforms the UNIX version

for all events except the null call. The performance

di�erence is largest for warm page faults. There

are two reasons for this: (1) since the page fault

handler in SPIN runs in the kernel address space, it

can eliminate most of the user-kernel crossings, and

(2) page table manipulation in SPIN is more e�-

cient than mprotect used in Digital UNIX. In SPIN,

MMU can be manipulated by rewriting the MMU

page table directly. On the other hand, mprotect

requires more work, because it must manipulate the

memory object map data structure to make its e�ect

persist regardless of paging activity.

5.2 RVM Benchmark

The RVM benchmark is a program developed by

the authors of RVM [17]. Each transaction reads

and updates three 128-byte blocks and appends one

64-byte block to the end of the database. One 128-

byte block is chosen randomly from the entire data-

base; the other two 128-byte blocks are chosen from

a narrow region. Thus, this benchmark measures

the performance of small transactions.

We varied the database's size, ran 4000 transactions

for each size, and calculated the mean time needed

to complete one transaction. The number of bytes

modi�ed by each transaction does not depend on

the database size. However, transactions running on

small databases can utilize bu�ers more e�ciently

when many transactions are run successively.

Figure 6 shows the results. For small databases,

setrange and page di�ng perform almost equally

well. However, as the database's size grows, the

performance of page di�ng drops quickly: the page

di�ng algorithm can utilize only half the amount of

main memory available to the other schemes, since

all the bytes accessed are modi�ed in this bench-

mark. Page grain logging does a little worse than

setrange for all database sizes because of increased

logging activities. The UNIX page di�ng version

consistently performs about 1.5 to 2 times more

slowly than SPIN's page di�ng. This di�erence is

due to increased user-kernel crossings and extra data

copying during I/O, because bu�er pages are in or-

dinary virtual memory. ObjectStore fares badly in

this benchmark. Since it performs page grain log-

ging, whole page contents must be communicated

to the server via IPC. Thus, it is not suited to small

transactions.

5.3 The OO7 Benchmark

OO7 is the standard benchmark for object-oriented

databases [3]. The database consists of objects of



UNIX SPIN
Event

total trap other total trap other

null call 2.14 2.14 { 6.11 6.11 {

begin 55.4 { { 26.4 9.4 14

commit (ro) 152.3 { { 29.7 13.4 16.3

commit (8byte) 14200 { { 13328 15.2 13313

page fault (read, warm) 282.4 134 148.4 55.3 13.5 41.8

page fault (write, warm) 234.3 133 101.3 68.8 16.5 52.3

page fault (read, cold) 2881 131 2750 2272 20 2252

page fault (write, cold) 3059 113 2946 3054 19.7 3034

Table 2: Comparison of critical path latencies. The total columns show the total microseconds spent in each

event. Trap columns show the overhead needed to pass control to the signal handler (on Digital UNIX) or to

the Rhino page fault handler (on SPIN). Begin and commit for the UNIX implementation are implemented

in the user space, and they issue multiple system calls. Thus, only the total elapsed times are shown for

them.
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Figure 6: RVM benchmark results. 4000 transac-

tions were run consecutively. The time to complete

a single transaction is shown for each system.

various types connected in a tree structure (Fig-

ure 7).

We used the small, medium-3, and medium-9 con-

�gurations described in [3] (numbers in the medium

con�gurations show the density of internal connec-

tions). The total database sizes are about 10MB for

the small, 60MB for the medium-3, and 100MB for

the medium-9.

We ran three types of traversals, T1, T2A, and T2C.

They all traverse the object hierarchy and visit one

element within each intermediate node. T1 visits all

the elements in read only mode. T2a updates one

element for each intermediate node. T2c updates

each element four times.

Two types of numbers, cold and warm, are shown

for the small con�guration4. To obtain the cold

numbers, we started the benchmark with an

4Warm numbers are not shown for the medium con�gur-

ations. In fact, they are almost same as their cold counter-

parts.

empty bu�er cache5. An ObjectStore �le open

call (objectstore::open) pre-fetches some of

the database contents into memory. The time

needed to execute this procedure is also included

in the cold numbers. Hot numbers are obtained by

running four consecutive transactions after the cold

run and computing the mean of the �rst three. For

ObjectStore, the option to retain persistent pointers

(objectstore::retain_persistent_pointers)

was enabled. Thus, hot runs do not include

pointer-swizzling overhead.

We do not report the setrange performance, because

the setrange algorithm could not run OO7 for larger

databases: as described in Section 4.3.4, setrange

must retain all the range information in memory

until a commit, and it uses up the in-kernel heap.

... Assembly
hierarchy

Composite parts 

Atomic part

Figure 7: OO7 database structure. The database

consists of composite parts, each of which is a web

of atomic parts. Composite parts are indexed by a

tree.

5We used a raw device for databases to bypass operating

system caching.
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Figure 8: Small con�guration results. Bu�er cache

was warm.
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Figure 9: Small con�guration results. Bu�er cache

was cold.
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Figure 10: Medium con�guration (fanout=3) res-

ults. Bu�er cache was cold.
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Figure 11: Medium con�guration (fanout=9) res-

ults. Bu�er cache was cold.

Figure 8 shows \warm" results from the small data-

base. First, for T1 traversal, page grain logging and

page di�ng exhibit the same performance, because

they perform the same tasks in read-only transac-

tions. For other traversals, page di�ng performs

better than page grain logging because of smaller

log activity. The UNIX page di�ng version is con-

sistently twice as slow as SPIN's page di�ng version,

for the same reason described in the previous sec-

tion. ObjectStore consistently performs worse than

any of the Rhino versions. However, the perform-

ance discrepancy is smaller than in the RVM bench-

mark, because OO7 touches more bytes per page,

and thus IPC overhead is amortized.

Figure 9 shows \cold" results for the small database.

In the cold runs all Rhino versions perform about

the same, because disk I/O dominates the time.

Figures 10 and 11 show the \cold" results on a me-

dium database of fanout 3 and fanout 9, respect-

ively. Page di�ng does not perform well in these

benchmarks, because of the memory pressure caused

by shadow pages. Page grain logging is clearly the

best choice in medium-3 and medium-9. Object-

Store performs better here, because the IPC cost is

amortized over a large amount of updates.

5.4 Summary

This section compared the three versions of Rhino

with a transactional memory service implemented

entirely in user-space. The micro-benchmark num-

bers show that the extension structure of Rhino im-

proves the latency of all the events critical to per-

formance, especially the page fault handling. The

two application benchmarks, RVM and OO7, com-

pare trade-o�s among the three Rhino bu�er man-

agement alternatives. Page di�ng version runs e�-

ciently in small transactions. It can run larger trans-

actions, but its performance su�ers from memory



under-utilization due to shadow pages. Page-grain

logging does worse for small transactions due to

large log size, but it scales well up to large transac-

tions. The setrange version is fastest in small trans-

actions, but it does not scale for large transactions.

The RVM and OO7 results also show that SPIN-

based Rhino outperforms user-space transactional

memory implementations.

6 Related Work

This section reviews systems related to Rhino. We

include in our review object-oriented databases and

persistent languages, since they are closely related

to transactional memory.

ObjectStore [10], QuickStore [22], and Quick-

Silver [18] are client-server systems in which a server

process manages transactions, and clients perform

IPC to the server to access database contents. The

advantage of this approach is that servers can trans-

parently support clients running on di�erent hosts.

However, this approach also means that even local

clients must communicate through a slow IPC chan-

nel, thus creating performance problems.

RVM [17] and Texas [20] are implemented as a

library that is linked into user-space applications.

Since they have no IPC overhead, unlike client-

server systems, they can be fast. However, they

are inherently single-user database systems, because

there is no single authority that allows safe data

sharing.

A problem common to the systems discussed thus

far is double paging, since they are implemented as

ordinary user-space applications. The only way to

solve the double paging problem is to reserve a �xed

amount of memory for the database management

system and let the system perform its own paging.

This approach is e�ective when the whole machine

is dedicated to the database service. However, when

there are other applications competing for memory,

which is typical in transactional memories, this solu-

tion does not work well.

Some systems try to solve the double paging prob-

lem by using memory-mapped �les and a special

system call that lets user programs control the way

pages are evicted. RPVM [5] adds a system call

that dictates the order of page eviction. By telling

the kernel to purge a bu�er page after it purges

log pages that record updates to that page, write

ahead logging (WAL) can be implemented. Cam-

elot [7] and Cricket [19] use the Mach external

pager mechanism [23] to implement WAL. One dif-

ference between these systems and Rhino is that the

former are user-space applications. Thus, they can-

not avoid overhead due to a large number of user-

kernel crossings.

Vista[12] uses Rio, a non-volatile �le bu�er, to im-

plement transactions. Rio makes all updates to the

bu�er permanent immediately by recovering bu�er

contents during the system reboot. Thus, Vista

transactions are orders of magnitude faster than

transactions based on disk-logging.

Finally, there are systems that implement transac-

tions inside the kernel. IBM CPR [4] and Pilot [15]

support transactional updates of memory-mapped

�les. These systems solve problems found in other

systems. However, most applications do not use

transactions frequently enough to a�ord the com-

plexity introduced by embedding transaction sup-

port in the kernel, making this approach uneconom-

ical.

Herlihy and Moss proposed a transactional memory

that is a CPU instruction set designed to support

atomic memory updates[9]. Our use of the term is

not related to theirs.

7 Conclusions

This paper described the implementation and per-

formance of Rhino, a transactional memory imple-

mented on the SPIN operating system. By imple-

menting Rhino as an extension dynamically loaded

into the kernel address space, we avoid problems

associated with traditional systems, such as double

paging and user-kernel boundary crossing overhead.

We implemented three write-detection approaches

(setrange, page grain logging, and page shadowing)

to study their trade-o�s in the extension environ-

ment. Performance measurement demonstrate that

all versions of our system outperform user-space im-

plementations. Also, among the three variations of

Rhino, it was found that setrange and page di�ng

perform equally well for small transactions. Page

grain logging performs well for large transactions.

The SPIN operating system, as well as the Rhino

transactional memory service described in this

paper, can be obtained via the world wide web at

http://www.cs.washington.edu/research/projects/spin.
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